Tropical Plant Phytonutrient Improves the Use of Insect Protein for Ruminant Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Research Design
2.3. Chemical Composition Determination
2.4. Rumen Degradable Protein Analysis
2.5. Fermentation Characteristics Determination
2.6. Statistical Analysis
3. Result
3.1. Chemical Composition of Products
3.2. Kinetic, Cumulative Gas
3.3. In Vitro Digestibility Characteristic
3.4. In Vitro Fermentation Characteristics
3.5. Total VFA Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollmann, J. Soybean versus other food grain legumes: A critical appraisal of the United Nations international year of pulses 2016. Bodenkultur 2016, 67, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Novandri, B.; Yantina, N.; Ridla, M. Use of black soldier fly larvae (Hermetia Illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study. Vet. World. 2017, 10, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- FAO Agricultural Data. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 29 January 2019).
- Ferri, M.; di Federico, F.; Damato, S.; Proscia, F.; Grabowski, N.T. Insects as feed and human food and the public health risk—A review. Berl. Munch. Tierarztl. Wochenschr. 2019, 132, 27–44. [Google Scholar]
- Akhtar, Y.; Isman, M.B. Insects as an Alternative Protein Source. In Proteins in Food Processing, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Friedersdorff, F.; Weinberger, S.; Biernath, N.; Plage, H.; Cash, H.; El-Bandar, N. The ureter in the kidney transplant setting: Ureteroneocystostomy surgical options, double-j stent considerations and management of related complications. Curr. Urol. Rep. 2020, 21, 3. [Google Scholar] [CrossRef]
- Singh, A.; Shabnam, S.; Parminder, S. Bypass protein technology: A review. J. Pharm. Innov. 2019, 8, 150–153. [Google Scholar]
- Unnawong, N.; Cherdthong, A.; So, S. Crude saponin extract from Sesbania grandiflora (L.) pers pod meal could modulate ruminal fermentation, and protein utilization, as well as mitigate methane production. Trop. Anim. Health Prod. 2021, 53, 196. [Google Scholar] [CrossRef]
- Unnawong, N.; Cherdthong, A.; So, S. Influence of supplementing Sesbania grandiflora pod meal at two dietary crude protein levels on feed intake, fermentation characteristics, and methane mitigation in Thai purebred beef cattle. Vet. Sci. 2021, 8, 35. [Google Scholar] [CrossRef]
- Ramesh, T.; Sureka, C.; Bhuvana, S.; Begum, V.H. Oxidative stress in the brain of Cigarette smoke-induced noxiousness: Neuroprotective role of Sesbania grandiflora. Metab. Brain Dis. 2015, 30, 573–582. [Google Scholar] [CrossRef]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.E. Method for estimation of tannin in grain sorghum. Agron. J. 1971, 63, 511–512. [Google Scholar] [CrossRef]
- Licitra, G.; van Soest, P.J.; Schadt, I.; Carpino, S.; Sniffen, C.J. Influence of the concentration of the protease from Streptomyces griseus relative to ruminal protein degradability. Anim. Feed Sci. Technol. 1999, 77, 99–113. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Rumen microbes and microbial protein synthesis in Thai native beef cattle fed with feed blocks supplemented with a urea-calcium sulphate mixture. Arch. Anim. Nutr. 2013, 67, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Orskov, E.R.; Mcdonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Borshchevskaya, L.N.; Gordeeva, T.L.; Kalinina, A.N.; Sineokii, S.P. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016, 71, 308–312. [Google Scholar] [CrossRef]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thiputen, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. Insects as novel ruminant feed and a potential mitigation strategy for methane emissions. Animals 2021, 11, 2648. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; de Meulenaer, B.; Michiels, J.; Eeckhout, M.; de Clercq, P.; de Smet, S. Nutritional composition of black soldier fly (Hermetia Illucens) prepupae peared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia Illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Jafari, S.; Goh, Y.M.; Rajion, M.A.; Ebrahimi, M. Effects of polyphenol rich bamboo leaf on rumen fermentation characteristics and methane gas production in an in vitro condition. Indian J. Anim. Res. 2020, 54, 16–27. [Google Scholar] [CrossRef]
- Arisya, W.; Ridwan, R.; Ridla, M.; Jayanegara, A. Tannin treatment for protecting feed protein degradation in the rumen in vitro. Proc. J. Phys: Conf. Ser. 2019, 1360, 012022. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Maccarana, L.; Cattani, M.; Tagliapietra, F.; Bailoni, L.; Schiavon, S. Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun, P. Effects of replacing soybean meal with dried rumen digesta on feed intake, digestibility of nutrients, rumen fermentation and nitrogen use efficiency in Thai cattle fed on rice straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
- Kroeckel, S.; Dietz, C.; Schulz, C.; Susenbeth, A. Effect of diet composition and lysine supply on growth and body composition in Juvenile Turbot (Psetta Maxima). Arch. Anim. Nutr. 2013, 67, 330–345. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Astuti, D.; Anggraeny, A.; Khotijah, L.; Suharti, S.; Jayanegara, A. Performance, physiological status, and rumen fermentation profiles of pre- and post-weaning goat kids fed cricket meal as a protein source. Trop. Anim. Sci. J. 2019, 42, 145–151. [Google Scholar] [CrossRef]
- Jayanegara, A.; Yantina, N.; Novandri, B.; Laconi, E.B.; Nahrowi, N.; Ridla, M. Evaluation of some insects as potential feed ingredients for ruminants: Chemical composition, in vitro rumen fermentation and methane emissions. J. Indones. Trop. Anim. Agric. 2017, 42, 247–254. [Google Scholar] [CrossRef]
- Jayanegara, A.; Gustanti, R.; Ridwan, R.; Widyastuti, Y. Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Italian J. Anim. Sci. 2020, 19, 1310–1317. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Supapong, C.; Anantasook, N.; Gunun, P. Improving rumen ecology and microbial population by dried rumen digesta in beef cattle. Trop. Anim. Health Prod. 2015, 47, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Wachirapakorn, C.; Pilachai, K.; Wanapat, M.; Pakdee, P.; Cherdthong, A. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Anim. Nutr. 2016, 2, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Thao, N.T.; Wanapat, M.; Kang, S.; Cherdthong, A. Effects of supplementation of eucalyptus (E. camaldulensis) leaf meal on feed intake and rumen fermentation efficiency in swamp buffaloes. Asian-Australas. J. Anim. Sci. 2015, 28, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, F.N.; Qi, S.; Sapienza, D.A. Invited review: Applied protein nutrition of ruminants-current status and future directions. Prof. Anim. Sci. 2014, 30, 150–179. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, M. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem. 1984, 32, 447–453. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Szumacher-Strabel, M.; Cielak, A. Dietary Possibilities to Mitigate Rumen Methane and Ammonia Production. In Greenhouse Gases—Capturing, Utilization and Reduction; InTech Open: Rijeka, Croatia, 2012. [Google Scholar]
- Yanza, Y.R.; Fitri, A.; Suwignyo, B.; Elfahmi; Hidayatik, N.; Kumalasari, N.R.; Irawan, A.; Jayanegara, A. The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals 2021, 11, 3317. [Google Scholar] [CrossRef]
- Ningrat, R.W.S.; Zain, M.; Erpomen; Suryani, H. Effects of doses and different sources of tannins on in vitro ruminal methane, volatile fatty acids production and on bacteria and protozoa populations. Asian J. Anim. Sci. 2017, 11, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Wina, E.; Muetzel, S.; Becker, K. The impact of saponins or saponin-containing plant materials on ruminant production-A review. J. Agric. Food. Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef] [PubMed]
Items | G. bimaculatus | S. grandiflora | Rice Straw |
---|---|---|---|
Dry matter, % | 95.37 | 94.19 | 92.20 |
-----------------% of dry matter-------------------- | |||
Organic matter | 92.02 | 93.86 | 90.61 |
Ash | 7.96 | 6.14 | 9.39 |
Ether extract | 27.79 | 4.42 | 1.46 |
Crude fiber | 9.52 | 13.6 | 38.13 |
Crude protein | 58.52 | 22.48 | 3.27 |
Ratio of G. bimaculatus to S. grandiflora | DM, % | OM, % | Ash, % | EE, % | CF, % | CP, % | TP, % | RUP, % |
---|---|---|---|---|---|---|---|---|
T1 (100:0) | 95.37 a | 92.02 | 7.96 | 27.79 | 9.52 a | 58.82 a | 51.42 a | 36.33 a |
T2 (99:1) | 95.75 a | 92.77 | 7.21 | 27.35 | 9.29 ab | 58.00 a | 47.85 bc | 37.95 a |
T3 (98:2) | 96.52 b | 91.51 | 8.47 | 26.90 | 8.65 abc | 56.31 b | 46.62 bc | 39.32 a |
T4 (97:3) | 97.34 c | 91.77 | 8.22 | 29.32 | 8.41 bc | 55.11 b | 46.27 bc | 46.19 b |
T5 (96:4) | 97.54 c | 92.09 | 7.90 | 29.58 | 8.39 bcd | 52.57 c | 46.09 bc | 45.58 b |
T6 (95:5) | 98.37 d | 91.32 | 8.66 | 27.01 | 8.04 cd | 52.65 c | 45.19 bc | 46.74 b |
T7 (94:6) | 98.43 d | 91.92 | 8.07 | 26.14 | 7.48 de | 52.14 cd | 44.64 bc | 47.01 b |
T8 (93:7) | 98.46 d | 97.77 | 8.21 | 25.62 | 6.83 e | 51.15 d | 44.45 c | 53.00 c |
Ratio of G. bimaculatus to S. grandiflora | Kinetic of Gas, mL/0.5 g DM | Gas Production at 96 h, mL/0.5 gDM | |||
---|---|---|---|---|---|
a | b | c | a + b | ||
T1 (100:0) | 0.47 | 57.38 | 0.0532 | 57.86 | 40.60 a |
T2 (99:1) | 0.49 | 56.50 | 0.0483 | 56.75 | 41.07 a |
T3 (98:2) | 0.53 | 54.40 | 0.0487 | 54.94 | 41.00 a |
T4 (97:3) | 0.85 | 55.81 | 0.0455 | 56.03 | 42.33 ab |
T5 (96:4) | 1.02 | 56.36 | 0.0539 | 57.39 | 40.87 a |
T6 (95:5) | 0.89 | 56.71 | 0.0575 | 57.61 | 43.00 b |
T7 (94:6) | 0.92 | 53.95 | 0.0594 | 54.87 | 43.53 b |
T8 (93:7) | 0.88 | 54.28 | 0.0565 | 55.17 | 46.23 b |
SEM | 0.14 | 1.07 | 0.003 | 1.11 | 1.53 |
Linear | 0.08 | 0.17 | 0.14 | 0.16 | 0.02 |
Quadratic | 0.33 | 0.30 | 0.79 | 0.33 | 0.85 |
Cubic | 0.70 | 0.34 | 0.56 | 0.48 | 0.58 |
Ratio of G. bimaculatus to S. grandiflora | In Vitro Dry Matter Digestibility, % DM | In Vitro Organic Matter Digestibility, % DM |
---|---|---|
24 h after Incubation | 24 h after Incubation | |
T1 (100:0) | 47.28 a | 67.66 a |
T2 (99:1) | 47.75 a | 67.11 a |
T3 (98:2) | 47.71 a | 67.23 a |
T4 (97:3) | 48.33 a | 69.32 ab |
T5 (96:4) | 49.42 a | 71.44 ab |
T6 (95:5) | 52.80 b | 74.75 b |
T7 (94:6) | 57.29 b | 78.18 b |
T8 (93:7) | 64.38 c | 79.35 b |
SEM | 5.74 | 0.17 |
Linear | 0.03 | 0.05 |
Quadratic | 0.75 | 0.54 |
Cubic | 0.95 | 0.22 |
Ratio of G. bimaculatus to S. grandiflora | pH | NH3-N, mg/100 mL | ||
---|---|---|---|---|
4 h after Incubation | 8 h after Incubation | 4 h after Incubation | 8 h after Incubation | |
T1 (100:0) | 6.97 | 6.68 | 14.06 c | 21.06 c |
T2 (99:1) | 6.96 | 6.67 | 13.69 c | 20.69 c |
T3 (98:2) | 6.97 | 6.68 | 13.40 c | 20.16 c |
T4 (97:3) | 6.98 | 6.68 | 12.17 c | 20.55 c |
T5 (96:4) | 6.99 | 6.70 | 11.03 b | 20.37 c |
T6 (95:5) | 6.98 | 6.70 | 10.75 b | 18.77 b |
T7 (94:6) | 7.01 | 6.70 | 10.35 b | 19.33 b |
T8 (93:7) | 7.01 | 6.72 | 7.44 a | 15.45 a |
SEM | 0.009 | 0.01 | 0.89 | 1.06 |
Linear | 0.40 | 0.49 | 0.05 | 0.02 |
Quadratic | 0.40 | 0.10 | 0.63 | 0.90 |
Cubic | 0.81 | 0.49 | 0.80 | 0.40 |
Ratio of G. bimaculatus to S. grandiflora | TVFAs, mmol/L | C2, mmol/L | C3, mmol/L | C4, mmol/L | ||||
---|---|---|---|---|---|---|---|---|
4 h after Incubation | 8 h after Incubation | 4 h after Incubation | 8 h after Incubation | 4 h after Incubation | 8 h after Incubation | 4 h after Incubation | 8 h after Incubation | |
T1 (100:0) | 75.05 | 107.00 | 53.41 | 70.78 | 5.61 c | 18.23 | 7.03 | 9.66 |
T2 (99:1) | 76.82 | 103.04 | 54.54 | 70.71 | 5.47 c | 20.41 | 5.97 | 7.75 |
T3 (98:2) | 52.52 | 104.76 | 39.24 | 74.17 | 6.42 bc | 22.34 | 5.73 | 8.28 |
T4 (97:3) | 49.51 | 101.31 | 40.60 | 72.00 | 6.94 bc | 21.82 | 4.85 | 8.23 |
T5 (96:4) | 56.60 | 100.23 | 39.60 | 69.70 | 7.46 b | 23.59 | 4.63 | 8.69 |
T6 (95:5) | 56.30 | 101.55 | 40.04 | 71.08 | 7.70 b | 24.86 | 4.63 | 8.28 |
T7 (94:6) | 54.31 | 100.93 | 40.44 | 73.66 | 11.10 a | 24.56 | 3.60 | 6.85 |
T8 (93:7) | 52.51 | 96.50 | 38.46 | 73.16 | 12.19 a | 26.54 | 2.75 | 4.78 |
SEM | 6.67 | 1.68 | 6.08 | 2.21 | 0.38 | 1.32 | 0.63 | 1.44 |
Linear | 0.05 | 0.20 | 0.22 | 0.64 | 0.0002 | 0.36 | 0.09 | 0.89 |
Quadratic | 0.80 | 0.91 | 0.98 | 0.73 | 0.44 | 0.85 | 0.91 | 0.88 |
Cubic | 0.24 | 0.28 | 0.36 | 0.48 | 0.03 | 0.62 | 0.68 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonkhaeng, B.; Wanapat, M.; Wongtangtintharn, S.; Phesatcha, K.; Supapong, C.; Suntara, C.; Yuangklang, C.; Vasupen, K.; Khotsakdee, J.; Chanjula, P.; et al. Tropical Plant Phytonutrient Improves the Use of Insect Protein for Ruminant Feed. Agriculture 2022, 12, 1628. https://doi.org/10.3390/agriculture12101628
Khonkhaeng B, Wanapat M, Wongtangtintharn S, Phesatcha K, Supapong C, Suntara C, Yuangklang C, Vasupen K, Khotsakdee J, Chanjula P, et al. Tropical Plant Phytonutrient Improves the Use of Insect Protein for Ruminant Feed. Agriculture. 2022; 12(10):1628. https://doi.org/10.3390/agriculture12101628
Chicago/Turabian StyleKhonkhaeng, Benjamad, Metha Wanapat, Sawitree Wongtangtintharn, Kampanat Phesatcha, Chanadol Supapong, Chanon Suntara, Chalermpon Yuangklang, Kraisit Vasupen, Jiravan Khotsakdee, Pin Chanjula, and et al. 2022. "Tropical Plant Phytonutrient Improves the Use of Insect Protein for Ruminant Feed" Agriculture 12, no. 10: 1628. https://doi.org/10.3390/agriculture12101628
APA StyleKhonkhaeng, B., Wanapat, M., Wongtangtintharn, S., Phesatcha, K., Supapong, C., Suntara, C., Yuangklang, C., Vasupen, K., Khotsakdee, J., Chanjula, P., Gunun, P., Gunun, N., & Cherdthong, A. (2022). Tropical Plant Phytonutrient Improves the Use of Insect Protein for Ruminant Feed. Agriculture, 12(10), 1628. https://doi.org/10.3390/agriculture12101628