Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Water Storage
2.4. Soil Properties
2.5. Grain Yield and WUE
2.6. Statistical Analysis
3. Results
3.1. Dynamics of Water Regime, Yield and WUE
3.2. Mean Grain Yield, Water Consumption and WUE
3.3. Soil Water Retention
3.4. Soil Water Profile
3.5. Soil Property
3.6. Relationship between Soil Water Content and Precipitation with Yield
4. Discussion
4.1. The Shortcomings of Mono-Tillage
4.2. The Effects of Rotational Tillage on Yield and Soil Workability
4.3. The Relationship between Water Regime Variation and Grain Yields
4.4. The Influence of Tillage on Crop Production under Varied Rainfall Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miransari, M.; Smith, D. Sustainable wheat (Triticum aestivum L.) production in saline fields: A review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.; Oweis, T.; Bishaw, Z.; Rischkowsky, B.; Hassan, A.A.; Grando, S. The potential of small-scale rainfed agriculture to strengthen food security in Arab countries. Food Secur. 2011, 3, 163–173. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Medrano, H.; Tomas, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.-z.; Zhang, X.-c.; Zheng, F.-l. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Su, L.; Wang, S.; Zhang, Y.; Li, J.; Wang, X.; Wang, R.; Lyu, W.; Chen, N.; Wang, Q. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use. Agric. Ecosyst. Environ. 2018, 251, 67–77. [Google Scholar]
- He, G.; Wang, Z.; Li, F.; Dai, J.; Li, Q.; Xue, C.; Cao, H.; Wang, S.; Malhi, S.S. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agric. Water Manag. 2016, 171, 1–9. [Google Scholar] [CrossRef]
- Gan, Y.T.; Siddique, K.H.M.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.P.; Chai, Q. Ridge-Furrow Mulching Systems-An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sa, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Araya, T.; Nyssen, J.; Govaerts, B.; Deckers, J.; Sommer, R.; Bauer, H.; Gebrehiwot, K.; Cornelis, W.M. Seven years resource-conserving agriculture effect on soil quality and crop productivity in the Ethiopian drylands. Soil Tillage Res. 2016, 163, 99–109. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D. Developments in conservation tillage in rainfed regions of North China. Soil Tillage Res. 2007, 93, 239–250. [Google Scholar] [CrossRef]
- Thierfelder, C.; Matemba-Mutasa, R.; Rusinamhodzi, L. Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil Tillage Res. 2015, 146, 230–242. [Google Scholar] [CrossRef]
- Dang, Y.P.; Moody, P.W.; Bell, M.J.; Seymour, N.P.; Dalal, R.C.; Freebairn, D.M.; Walker, S.R. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res. 2015, 152, 115–123. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils1. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.X.; Gao, Z.Q.; Wang, P.R.; Mo, F.; Xue, L.Z.; Lei, M.M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Somasundaram, J.; Reeves, S.; Wang, W.; Heenan, M.; Dalal, R. Impact of 47 years of No-tillage and stubble retention on soil aggregation and Carbon distribution in a Vertisol: Impact of No till, stubble retention on soil aggregation and Carbon. Land Degrad. Dev. 2017, 28, 1589–1602. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Pires, L.F.; Borges, J.A.R.; Rosa, J.A.; Cooper, M.; Heck, R.J.; Passoni, S.; Roque, W.L. Soil structure changes induced by tillage systems. Soil Tillage Res. 2017, 165, 66–79. [Google Scholar] [CrossRef]
- Renton, M.; Flower, K.C. Occasional mouldboard ploughing slows evolution of resistance and reduces long-term weed populations in no-till systems. Agric. Syst. 2015, 139, 66–75. [Google Scholar] [CrossRef]
- Lopez-Garrido, R.; Madejon, E.; Leon-Camacho, M.; Giron, I.; Moreno, F.; Murillo, J.M. Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study. Soil Tillage Res. 2014, 140, 40–47. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Acar, M.; Acir, N.; Barut, Z.B.; Budak, M. Strategic tillage may sustain the benefits of long-term no-till in a Vertisol under Mediterranean climate. Soil Tillage Res. 2019, 185, 17–28. [Google Scholar] [CrossRef]
- Quincke, J.A.; Wortmann, C.S.; Mamo, M.; Franti, T.; Drijber, R.A. Occasional tillage of no-till systems: Carbon dioxide flux and changes in total and labile soil organic carbon. Agron. J. 2007, 99, 1158–1168. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R.; Owens, L.B. On-farm effects of no-till versus occasional tillage on soil quality and crop yields in eastern Ohio. Agron. Sustain. Dev. 2011, 31, 475–482. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, H.; Zhang, Y.H.; Wang, R.; Zhang, Y.J.; Xu, Z.G.; Jia, G.C.; Wang, X.L.; Li, J. The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions. Agric. Water Manag. 2018, 203, 376–384. [Google Scholar] [CrossRef]
- Brouder, S.M.; Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agric. Ecosyst. Environ. 2014, 187, 11–32. [Google Scholar] [CrossRef]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; da Veiga, M.; Reinert, D.J. Is chiseling or inverting tillage required to improve mechanical and hydraulic properties of sandy clay loam soil under long-term no-tillage? Geoderma 2017, 301, 72–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Wang, S.; Wang, H.; Xu, Z.; Jia, G.; Wang, X.; Li, J. Effects of different sub-soiling frequencies incorporated into no-tillage systems on soil properties and crop yield in dryland wheat-maize rotation system. Field Crops Res. 2017, 209, 151–158. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, M.; Wei, X.; Chen, X.; Zhao, J. Contribution of fertilisation, precipitation, and variety to grain yield in winter wheat on the semiarid Loess Plateau of China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 406–416. [Google Scholar] [CrossRef]
- Wang, E.; McIntosh, P.; Jiang, Q.; Xu, J. Quantifying the value of historical climate knowledge and climate forecasts using agricultural systems modelling. Clim. Chang. 2009, 96, 45–61. [Google Scholar] [CrossRef]
Tillage Treatments | Year | |||||||
---|---|---|---|---|---|---|---|---|
2007–2008 | 2008–2009 | 2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | |
NT | NT | NT | NT | NT | NT | NT | NT | NT |
ST | ST | ST | ST | ST | ST | ST | ST | ST |
PT | PT | PT | PT | PT | PT | PT | PT | PT |
NT/ST | NT | ST | NT | ST | NT | ST | NT | ST |
ST/PT | ST | PT | ST | PT | ST | PT | ST | PT |
PT/NT | PT | NT | PT | NT | PT | NT | PT | NT |
Soil Properties | Depth (cm) | Tillage Treatments | |||||
---|---|---|---|---|---|---|---|
NT/ST | ST/PT | PT/NT | NT | ST | PT | ||
Organic matter Content (g kg−1) | 0–20 | 16.9a | 16.1ab | 15.2b | 16.1ab | 16.0ab | 15.2b |
20–40 | 10.6a | 9.6b | 10.3a | 9.1b | 10.6a | 9.3b | |
40–60 | 8.2ab | 7.4bc | 6.7c | 8.8a | 7.4bc | 7.6bc | |
Total N content (g kg−1) | 0–20 | 0.9b | 0.9c | 0.9c | 1.0a | 0.8c | 0.9c |
20–40 | 0.7a | 0.6b | 0.7a | 0.5c | 0.7a | 0.6bc | |
40–60 | 0.6a | 0.5b | 0.6b | 0.5bc | 0.6b | 0.5c | |
Bulk density (g cm−3) | 0–20 | 1.4b | 1.4b | 1.4b | 1.4a | 1.4b | 1.4b |
20–40 | 1.5ab | 1.5ab | 1.5b | 1.6a | 1.5ab | 1.5b | |
40–60 | 1.4a | 1.5a | 1.4a | 1.5a | 1.4a | 1.4a | |
Macroaggregates proportion (%) | 0–20 | 7.3a | 6.0b | 5.3bc | 6.1b | 5.8b | 4.8c |
20–40 | 4.5a | 3.7b | 3.5b | 4.0b | 3.6b | 2.8c | |
40–60 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ma, L.; Lv, W.; Li, J. Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau. Agriculture 2022, 12, 1582. https://doi.org/10.3390/agriculture12101582
Wang R, Ma L, Lv W, Li J. Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau. Agriculture. 2022; 12(10):1582. https://doi.org/10.3390/agriculture12101582
Chicago/Turabian StyleWang, Rui, Lijuan Ma, Wei Lv, and Jun Li. 2022. "Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau" Agriculture 12, no. 10: 1582. https://doi.org/10.3390/agriculture12101582
APA StyleWang, R., Ma, L., Lv, W., & Li, J. (2022). Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau. Agriculture, 12(10), 1582. https://doi.org/10.3390/agriculture12101582