Relationships between Dairy Cows’ Chewing Behavior with Forage Quality, Progress of Lactation and Efficiency Estimates under Zero-Concentrate Feeding Systems
Abstract
:1. Introduction
2. Animals, Materials and Methods
2.1. Farms and Animals
2.2. Data Collection
2.3. Feed Sampling and Analysis
2.4. Processing and Validation of RumiWatch Data
2.5. Definition of Efficiency Parameters
2.6. Statistical Analysis
3. Results
3.1. Feed Quality
3.2. Temporal Development of Intake, Rumination, Body Condition and Yields
Intercept | Slope by DIM | Slope by FQS | Average by Lactation Class | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | ||||||||||
Response Variable | Est. ± SE | p | Est. ± SE | p | Est. ± SE | p | Est. ± SE | Est. ± SE | Est. ± SE | p | R2 m | R2 c |
Rumination time (min/d) | 466 ± 19 | * | −0.13 ± 0.03 | *** | 29.1 ± 1.5 | *** | 440 ± 19 | 445 ± 19 | 455 ± 18 | 0.121 | 0.443 | 0.590 |
Eating time (min/d) | 651 ± 31 | * | −0.33 ± 0.03 | *** | −14.9 ± 1.9 | *** | 597 ± 31 a | 581 ± 31 a | 563 ± 30 b | ** | 0.191 | 0.471 |
Activity changes (n/d) | 147 ± 7 | * | −0.05 ± 0.01 | *** | −0.4 ± 0.5 | 0.434 | 138 ± 7 a | 124 ± 7 b | 125 ± 7 b | *** | 0.079 | 0.514 |
3.3. Impact of Feed Quality Score and Rations on Chewing Sensor Data and Milk Yield
3.4. Relation of Chewing Behavior Traits and Lactation Class with Efficiency Parameters
3.5. Animal and Farm Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leiber, F.; Schenk, I.K.; Maeschli, A.; Ivemeyer, S.; Zeitz, J.O.; Moakes, S.; Klocke, P.; Staehli, P.; Notz, C.; Walkenhorst, M. Implications of feed concentrate reduction in organic grassland-based dairy systems: A long-term on-farm study. Animal 2017, 11, 2051–2060. [Google Scholar] [CrossRef]
- Brito, A.F.; Silva, L.H.P. Symposium review: Comparisons of feed and milk nitrogen efficiency and carbon emissions in organic versus conventional dairy production systems. J. Dairy Sci. 2020, 103, 5726–5739. [Google Scholar] [CrossRef]
- Horn, M.; Steinwidder, A.; Gasteiner, J.; Podstatzky, L.; Haiger, A.; Zollitsch, W. Suitability of different dairy cow types for an Alpine organic and low-input milk production system. Livest. Sci. 2013, 153, 135–146. [Google Scholar] [CrossRef]
- Horn, M.; Steinwidder, A.; Pfister, R.; Gasteiner, J.; Vestergaard, M.; Larsen, T.; Zollitsch, W. Do different cow types respond differently to a reduction of concentrate supplementation in an Alpine low-input dairy system? Livest. Sci. 2014, 170, 72–83. [Google Scholar] [CrossRef]
- Friggens, N.C.; Blanc, F.; Berry, D.P.; Puillet, L. Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management. Animal 2017, 11, 2237–2251. [Google Scholar] [CrossRef]
- Bieber, A.; Wallenbeck, A.; Leiber, F.; Fuerst-Waltl, B.; Winckler, C.; Gullstrand, P.; Walczak, J.; Wojcik, P.; Neff, A.S. Production level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland, and Sweden. J. Dairy Sci. 2019, 102, 5330–5341. [Google Scholar] [CrossRef]
- Peyraud, J.L.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7 (Suppl. S1), 57–67. [Google Scholar] [CrossRef]
- Bieber, A.; Wallenbeck, A.; Spengler Neff, A.; Leiber, F.; Simantke, C.; Knierim, U.; Ivemeyer, S. Comparison of performance and fitness traits in German Angler, Swedish Red and Swedish Polled with Holstein dairy cattle breeds under organic production. Animal 2020, 14, 609–616. [Google Scholar] [CrossRef]
- Leiber, F. Let them graze! Potentials of ruminant production outside the feed-food competition. In Managing Healthy Livestock Production and Consumption; El-Hage Scialabba, N., Ed.; Elsevier Academic Press: London, UK, 2022; pp. 137–148. [Google Scholar] [CrossRef]
- Seymour, D.J.; Canovas, A.; Baes, C.F.; Chud, T.C.S.; Osborne, V.R.; Cant, J.P.; Brito, L.F.; Gredler-Grandl, B.; Finocchiaro, R.; Veerkamp, R.F.; et al. Invited review: Determination of large-scale individual dry matter intake phenotypes in dairy cattle. J. Dairy Sci. 2019, 102, 7655–7663. [Google Scholar] [CrossRef]
- Phuong, H.N.; Friggens, N.C.; de Boer, I.J.M.; Schmidely, P. Factors affecting energy and nitrogen efficiency of dairy cows: A meta-analysis. J. Dairy Sci. 2013, 96, 7245–7259. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed]
- Büchel, S.; Sundrum, A. Technical note: Evaluation of a new system for measuring feeding behavior of dairy cows. Comput. Electron. Agric. 2014, 108, 12–16. [Google Scholar] [CrossRef]
- Bikker, J.P.; van Laar, H.; Rump, P.; Doorenbos, J.; van Meurs, K.; Griffioen, G.M.; Dijkstra, J. Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J. Dairy Sci. 2014, 97, 2974–2979. [Google Scholar] [CrossRef]
- Leiber, F.; Holinger, M.; Zehner, N.; Dorn, K.; Probst, J.K.; Spengler Neff, A. Intake estimation in dairy cows fed roughage-based diets: An approach based on chewing behaviour measurements. Appl. Anim. Behav. Sci. 2016, 185, 9–14. [Google Scholar] [CrossRef]
- Rombach, M.; Sudekum, K.H.; Munger, A.; Schori, F. Herbage dry matter intake estimation of grazing dairy cows based on animal, behavioral, environmental, and feed variables. J. Dairy Sci. 2019, 102, 2985–2999. [Google Scholar] [CrossRef] [PubMed]
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Tafaj, M.; Kolaneci, V.; Junck, B.; Maulbetsch, A.; Steingass, H.; Drochner, W. Influence of fiber content and concentrate level on chewing activity, ruminal digestion, digesta passage rate and nutrient digestibility in dairy cows in late lactation. Asian-Australas. J. Anim. Sci. 2005, 18, 1116–1124. [Google Scholar] [CrossRef]
- Leiber, F.; Probst, J.K.; Zehner, N.; Spengler Neff, A.S. Feeding and rumination behaviour of dairy cows fed by varied feeding regimes. Agrarforsch. Schweiz 2015, 6, 462–469. [Google Scholar]
- Zetouni, L.; Difford, G.F.; Lassen, J.; Byskov, M.V.; Norberg, E.; Lovendahl, P. Is rumination time an indicator of methane production in dairy cows? J. Dairy Sci. 2018, 101, 11074–11085. [Google Scholar] [CrossRef]
- Swissherdbook. Rasse Swiss Fleckvieh. 2021. Available online: https://www.swissherdbook.ch/unsere-rassen/swiss-fleckvieh/ (accessed on 3 March 2021).
- Isensee, A.; Leiber, F.; Bieber, A.; Spengler, A.; Ivemeyer, S.; Maurer, V.; Klocke, P. Comparison of a classical with a highly formularized body condition scoring system for dairy cattle. Animal 2014, 8, 1971–1977. [Google Scholar] [CrossRef] [Green Version]
- Jans, F.; Kessler, J.; Münger, A.; Schori, F.; Schlegel, P. Fütterungsempfehlungen ür die Milchkuh. In Fütterungsempfehlungen für Wiederkäuer; Agroscope: Posieux, Switzerland, 2016. [Google Scholar]
- Werner, J.; Umstatter, C.; Kennedy, E.; Grant, J.; Leso, L.; Geoghegan, A.; Shalloo, L.; Schick, M.; O’Brien, B. Identification of possible cow grazing behaviour indicators for restricted grass availability in a pasture-based spring calving dairy system. Livest. Sci. 2019, 220, 74–82. [Google Scholar] [CrossRef]
- Dohme-Meier, F.; Kaufmann, L.D.; Gors, S.; Junghans, P.; Metges, C.C.; van Dorland, H.A.; Bruckmaier, R.M.; Munger, A. Comparison of energy expenditure, eating pattern and physical activity of grazing and zero-grazing dairy cows at different time points during lactation. Livest. Sci. 2014, 162, 86–96. [Google Scholar] [CrossRef]
- De Souza, R.A.; Tempelman, R.J.; Allen, M.S.; VandeHaar, M.J. Updating predictions of dry matter intake of lactating dairy cows. J. Dairy Sci. 2019, 102, 7948–7960. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, P.; Burgos, M.S.; Petermann, R.; Munger, A.; Blum, J.W.; Thomet, P.; Menzi, H.; Kohler, S.; Kunz, P. Does body size of dairy cows, at constant ratio of maintenance to production requirements, affect productivity in a pasture-based production system? J. Anim. Physiol. Anim. Nutr. 2011, 95, 717–729. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. Version 1.4.5. R Package. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 3 March 2021).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.15. 2019. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 3 March 2021).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Berton, M.; Bittante, G.; Zendri, F.; Ramanzin, M.; Schiavon, S.; Sturaro, E. Environmental impact and efficiency of use of resources of different mountain dairy farming systems. Agric. Syst. 2020, 181, 102806. [Google Scholar] [CrossRef]
- Schader, C.; Muller, A.; Scialabba, N.E.; Hecht, J.; Isensee, A.; Erb, K.H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12, 12. [Google Scholar] [CrossRef]
- Pahl, C.; Hartung, E.; Mahlkow-Nerge, K.; Haeussermann, A. Feeding characteristics and rumination time of dairy cows around estrus. J. Dairy Sci. 2015, 98, 148–154. [Google Scholar] [CrossRef]
- Thorup, V.M.; Nielsen, B.L.; Robert, P.E.; Giger-Reverdin, S.; Konka, J.; Michie, C.; Friggens, N.C. Lameness Affects Cow Feeding But Not Rumination Behavior as Characterized from Sensor Data. Front. Vet. Sci. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Richter, S.H.; Garner, J.P.; Würbel, H. Environmental standardization: Cure or cause of poor reproducibility in animal experiments? Nat. Methods 2009, 6, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Kapp-Bitter, A.N.; Dickhoefer, U.; Kaptijn, G.; Pedan, V.; Perler, E.; Kreuzer, M.; Leiber, F. On-farm examination of sainfoin supplementation effects in dairy cows in a roughage-based feeding system: Indicators of protein utilisation. Livest. Sci. 2021, 248, 104509. [Google Scholar] [CrossRef]
- Rombach, M.; Munger, A.; Niederhauser, J.; Sudekum, K.H.; Schori, F. Evaluation and validation of an automatic jaw movement recorder (RumiWatch) for ingestive and rumination behaviors of dairy cows during grazing and supplementation. J. Dairy Sci. 2018, 101, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Iwaasa, A.D. Eating and ruminating activities of cattle fed alfalfa or orchard-grass harvested at two stages of maturity. Can. J. Anim. Sci. 1993, 73, 79–88. [Google Scholar] [CrossRef]
- Teller, E.; Vanbelle, M.; Kamatali, P. Chewing behaviour and voluntary grass silage intake by cattle. Livest. Prod. Sci. 1993, 33, 215–227. [Google Scholar] [CrossRef]
- Mazzenga, A.; Gianesella, M.; Brscic, M.; Cozzi, G. Feeding behaviour, diet digestibility, rumen fluid and metabolic parameters of beef cattle fed total mixed rations with a stepped substitution of wheat straw with maize silage. Livest. Sci. 2009, 122, 16–23. [Google Scholar] [CrossRef]
- Nishida, T.; Eruden, B.; Hosoda, K.; Matsuyama, H.; Xu, C.; Shioya, S. Digestibility, methane production and chewing activity of steers fed whole-crop round bale corn silage preserved at three maturities. Anim. Feed Sci. Technol. 2007, 135, 42–51. [Google Scholar] [CrossRef]
- Kröger, I.; Humer, E.; Neubauer, V.; Kraft, N.; Ertl, P.; Zebeli, Q. Validation of a noseband sensor system for monitoring ruminating activity in cows under different feeding regimens. Livest. Sci. 2016, 193, 118–122. [Google Scholar] [CrossRef]
- Kapp-Bitter, A.N.; Dickhoefer, U.; Suglo, E.; Baumgartner, L.; Kreuzer, M.; Leiber, F. Graded supplementation of chestnut tannins to dairy cows fed protein-rich spring pasture: Effects on indicators of protein utilization. J. Anim. Feed Sci. 2020, 29, 97–104. [Google Scholar] [CrossRef]
- Egger-Danner, C.; Kock, A.; Furst, C.; Ledinek, M.; Gruber, L.; Steininger, F.; Zottl, K.; Furst-Waltl, B. Indirect traits for feed efficiency. Zuchtungskunde 2018, 90, 467–475. [Google Scholar]
Run | Starting Date | Ration | Botanical Characterization 1 | THI 2 | Ncows |
---|---|---|---|---|---|
Farm1_a | 29 August 2017 | Pasture | K2-3 | 63.8 | 39 |
Farm1_b | 3 September 2017 | Pasture | A3 | 62.1 | 39 |
Farm1_c | 6 June 2018 | Mixed | G2 + G4 | 54.6 | 34 |
Farm1_d | 11 April 2018 | Pasture | A4 | 56.7 | 34 |
Farm1_e | 23 August 2018 | Mixed | A2 | 65.0 | 39 |
Farm1_f | 28 August 2018 | Mixed | K3 + L4 | 59.2 | 39 |
Farm1_g | 10 October 2018 | Pasture | L3 + G3 | NA | 35 |
Farm1_h | 15 October 2018 | Mixed | G3 | NA | 35 |
Farm2_a | 5 November 2017 | Mixed | A2-3 | 43.4 | 42 |
Farm2_b | 10 November 2017 | Mixed | L2-3 | 40.9 | 42 |
Farm2_c | 21 March 2018 | Hay | G3-4 | 46.3 | 27 |
Farm2_d | 26 March 2018 | Mixed | G1 + G3-4 | 42.8 | 27 |
Farm2_e | 16 November 2018 | Mixed | G2 + G3-4 | 35.2 | 30 |
Farm2_f | 21 November 2018 | Hay | G3-4 | 39.0 | 30 |
Farm2_g | 16 April 2019 | Mixed | G3 + G3-4 | 59.0 | 21 |
Farm2_h | 21 April 2019 | Pasture | G3 | 56.1 | 21 |
Data Origin | Variable | Farm 1 (Observations n = 294) | Farm 2 (Observations n = 240) | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Median | Min–Max | Mean ± SD | Median | Min–Max | ||
Trial 1 | Eating time (min/d) | 609.9 ± 88.8 | 628.6 | 341.3–768.3 | 538.3 ± 71.7 | 542.3 | 325.6–714.2 |
Ruminate time (min/d) | 413.1 ± 79.4 | 399.5 | 240.5–606.7 | 490.4 ± 71.9 | 486.9 | 324.5–666.5 | |
Other activity time (min/d) | 412.8 ± 102.4 | 394.6 | 233.3–692.8 | 401.0 ± 80.8 | 410.0 | 219.6–603.9 | |
Ruminate chews per minute (avg. of 24 h) | 43.2 ± 6.8 | 42.5 | 26.6–67.5 | 50.3 ± 7.0 | 49.8 | 31.2–71.4 | |
Ruminate chews per bolus (avg. of 24 h) | 34.5 ± 6.2 | 34.2 | 18.7–55.9 | 43.7 ± 6.8 | 43.8 | 28.3–60.7 | |
Activity changes (n/d) | 121.9 ± 20.0 | 120.0 | 77.3–183.0 | 133.1 ± 26.5 | 128.7 | 79.3–220.3 | |
Body weight (kg) | 581.8 ± 61.1 | 583 | 456–787 | 648.4 ± 75.4 | 658 | 441–810 | |
Body condition score | 2.90 ± 0.29 | 2.75 | 2.25–3.75 | 3.21 ± 0.34 | 3.25 | 2.50–4.00 | |
ECM (kg/d) 3 | 16.6 ± 5.7 | 15.1 | 6.7–37.0 | 21.3 ± 5.7 | 21.4 | 5.2–33.0 | |
Milk protein (%) | 3.37 ± 0.30 | 3.34 | 2.76–5.12 | 3.70 ± 0.50 | 3.72 | 2.77–5.40 | |
Milk fat (%) | 4.34 ± 0.59 | 4.29 | 2.96–6.35 | 4.44 ± 0.79 | 4.49 | 1.88–6.98 | |
Milk lactose (%) | 4.73 ± 0.15 | 4.73 | 4.27–5.48 | 4.67 ± 0.17 | 4.69 | 3.78–5.13 | |
Days in milk | 182.5 ± 76.1 | 210.5 | 3–300 | 148.7 ± 108.6 | 161 | 3–308 | |
HB 2 | Lactation number | 3.5 ± 2.8 | 2 | 1–12 | 3.9 ± 2.4 | 3.5 | 1–10 |
Lactation yield (kg) | 6362 ± 1815 | 6406 | 2295–10,621 | 5857 ± 1226 | 5863 | 2135–10,208 | |
Lactation length (d) | 336 ± 101 | 307 | 90–602 | 297 ± 70 | 306 | 80–584 | |
DECMTL 4 (kg/d) | 19.6 ± 3.2 | 19.7 | 12.6–26.3 | 20.8 ± 2.9 | 20.9 | 14.4–27.7 | |
Milk proteinTL (%) | 3.31 ± 0.24 | 3.32 | 2.72–3.96 | 3.42 ± 0.18 | 3.43 | 3.00–3.86 | |
Milk fatTL (%) | 4.22 ± 0.43 | 4.15 | 3.48–5.52 | 4.28 ± 0.35 | 4.29 | 3.37–5.20 | |
Milk lactoseTL (%) | 4.77 ± 0.10 | 4.77 | 4.46–5.02 | 4.70 ± 0.11 | 4.70 | 4.43–4.93 |
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
Eigenvalue | 3.54 | 0.27 | 0.12 | 0.08 |
% variance | 88.38 | 6.70 | 2.88 | 2.03 |
% variance cum. | 88.38 | 95.08 | 97.97 | 100.00 |
Variables’ % contribution | ||||
Dry matter | 25.70 | 9.65 | 38.69 | 25.97 |
Crude fiber | 25.47 | 13.99 | 37.83 | 22.71 |
NEL | 24.65 | 33.90 | 11.29 | 30.15 |
Crude protein | 24.18 | 42.46 | 12.19 | 21.16 |
Variables’ coordinate contribution | ||||
Dry matter | 0.95 | −0.16 | 0.21 | 0.15 |
Crude fiber | 0.95 | 0.19 | −0.21 | 0.14 |
NEL | −0.93 | −0.30 | −0.11 | 0.16 |
Crude protein | −0.92 | 0.34 | 0.12 | 0.13 |
Ration | DM (%) | CP (g/kg DM) | Ash (g/kg DM) | CF (g/kg DM) | NEL (MJ/kg DM) | APD (g/kg DM) | |
---|---|---|---|---|---|---|---|
Hay (n = 57) | Mean ± SD | 89.7 a ± 1.0 | 124.8 c ± 7.9 | 91.8 b ± 3.5 | 279.8 a ± 2.7 | 5.2 c ± 0.0 | 79.2 c ± 5.5 |
Min–Max | 88.8–90.7 | 117.4–133.0 | 88.5–95.4 | 277.1–282.2 | 5.2–5.2 | 74.0–85.0 | |
Mixed (n = 274) | Mean ± SD | 32.4 b ± 17.7 | 178.0 b ± 19.6 | 110.4 b ± 24.8 | 236.6 b ± 18.0 | 5.8 b ± 0.2 | 100.2 b ± 5.1 |
Min–Max | 11.9–67.3 | 149.0–204.8 | 72.2–141.8 | 206.9–263.8 | 5.5–6.2 | 92.5–107.8 | |
Pasture (n = 203) | Mean ± SD | 15.4 c ± 3.4 | 207.5 a ± 15.8 | 113.6 a ± 10.2 | 215.0 c ± 11.9 | 6.2 a ± 0.2 | 108.9 a ± 2.8 |
Min–Max | 9.3–20.4 | 181.0–228.3 | 96.1–130.8 | 195.3–226.6 | 5.8–6.5 | 104.0–111.8 |
Intercept | Rumination Time Corrected | Eating Time Corrected | Activity Changes Corrected | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Response Variable | Estimate | SE | p | Estimate | SE | p | Estimate | SE | p | Estimate | SE | p | R2 m | R2 c |
MPETL 1 | 0.1602 | 0.0086 | *** | −2.17 × 10−5 | 6.32 × 10−6 | *** | −5.25 × 10−6 | 8.59 × 10−6 | 0.542 | −3.32 × 10−6 | 2.89 × 10−5 | 0.908 | 0.232 | 0.814 |
FEday 2 | 0.9938 | 0.2000 | *** | −6.42 × 10−6 | 1.40 × 10−4 | 0.963 | 1.15 × 10−4 | 1.83 × 10−4 | 0.532 | −5.06 × 10−4 | 5.66 × 10−4 | 0.37 | 0.002 | 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiber, F.; Moser, F.N.; Ammer, S.; Probst, J.K.; Baki, C.; Spengler Neff, A.; Bieber, A. Relationships between Dairy Cows’ Chewing Behavior with Forage Quality, Progress of Lactation and Efficiency Estimates under Zero-Concentrate Feeding Systems. Agriculture 2022, 12, 1570. https://doi.org/10.3390/agriculture12101570
Leiber F, Moser FN, Ammer S, Probst JK, Baki C, Spengler Neff A, Bieber A. Relationships between Dairy Cows’ Chewing Behavior with Forage Quality, Progress of Lactation and Efficiency Estimates under Zero-Concentrate Feeding Systems. Agriculture. 2022; 12(10):1570. https://doi.org/10.3390/agriculture12101570
Chicago/Turabian StyleLeiber, Florian, Florian N. Moser, Stefanie Ammer, Johanna K. Probst, Cem Baki, Anet Spengler Neff, and Anna Bieber. 2022. "Relationships between Dairy Cows’ Chewing Behavior with Forage Quality, Progress of Lactation and Efficiency Estimates under Zero-Concentrate Feeding Systems" Agriculture 12, no. 10: 1570. https://doi.org/10.3390/agriculture12101570
APA StyleLeiber, F., Moser, F. N., Ammer, S., Probst, J. K., Baki, C., Spengler Neff, A., & Bieber, A. (2022). Relationships between Dairy Cows’ Chewing Behavior with Forage Quality, Progress of Lactation and Efficiency Estimates under Zero-Concentrate Feeding Systems. Agriculture, 12(10), 1570. https://doi.org/10.3390/agriculture12101570