Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclined Inserted Grafting Method
2.2. Structure and Working Principle of Rootstock Clamping Device
2.2.1. Structure of Rootstock Clamping Device
2.2.2. Working Principle
2.2.3. Design of Clamping Mechanism
2.2.4. Design of Seedling Pressing Mechanism
2.3. Experiment Materials
2.4. Experiment Conditions and Methods
2.5. Experimental Factors and Indicators
2.6. Experimental Design
2.7. Data Analysis
3. Results and Discussion
3.1. Single-Factor Experiment Analysis and Discussion
3.2. Orthogonal Experiment Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Yang, F.; Liu, Y.; Li, J.; Song, H.L. Identification of key off-flavor compounds in thermally treated watermelon juice via gas chromatography-olfactometry-mass spectrometry, aroma recombination, and omission experiments. Foods 2020, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.K.; Wu, G.; Perkins, V.P.; Spears, K.; Claypool, P.L.; Baker, R.A.; Clevidence, B.A. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 2007, 23, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Tarazona-díaz, M.; Viegas, J.; Moldao-martins, M.; Aguayo, E. Bioactive compounds from flesh and by-product of fresh-cut watermelon varieties. J. Sci. Food Agric. 2011, 91, 805–812. [Google Scholar] [CrossRef]
- Martyn, R.D. Fusarium wilt of watermelon: 120 years of research. Hortic. Rev. 2014, 42, 349–442. [Google Scholar] [CrossRef]
- Wu, Y.C.; Zhou, J.Y.; Li, C.G.; Ma, Y. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen 2019, 8, e813. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Pivonia, S.; Burger, Y.; Edelstein, M.; Gamliel, A.; Katan, J. Toward integrated management of monosporascus wilt of melons in Israel. Plant Dis. 2000, 84, 496–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, G.; Perpiñá, G.; Esteras, C.; Armengol, J.; Picó, B.; Pérez-de-Castro, A. Resistance in melon to Monosporascus cannonballus and M. eutypoides: Fungal pathogens associated with Monosporascus root rot and vine decline. Ann. Appl. Biol. 2020, 177, 101–111. [Google Scholar] [CrossRef]
- Xu, L.H.; Nicolaisen, M.; Larsen, J.; Zeng, R.; Gao, S.G.; Dai, F.M. Pathogen infection and host-resistance interactively affect root-associated fungal communities in watermelon. Front. Microbiol. 2020, 11, 3256. [Google Scholar] [CrossRef]
- Keinath, A.P.; Coolong, T.W.; Lanier, J.D.; Ji, P.S. Managing Fusarium wilt of watermelon with delayed transplanting and cultivar resistance. Plant Dis. 2019, 103, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Aslam, A.; Zhao, S.; Azam, M.; Lu, X.; He, N.; Li, B.; Dou, J.; Zhu, H.; Liu, W. Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. Peer J. 2020, 8, e8259. [Google Scholar] [CrossRef]
- Rouphael, Y.; Venema, J.; Edelstein, M.; Savvas, D.; Colla, G.; Ntatsi, G.; Ben-Hur, M.; Kumar, P.; Schwarz, D. Grafting as a tool for tolerance of abiotic stress. In Proceedings of the Vegetable Grafting Principles and Practices, CAB International, Wallingford, UK, 5 June 2017; pp. 171–215. [Google Scholar] [CrossRef]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, M. Hormonal signaling in rootstock-scion interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Johnson, G. Grafted Watermelons Revisited. Weekly Crop Update. University of Delaware Cooperative Extension. 2017. Available online: https://sites.udel.edu/weeklycropupdate/?p=10563 (accessed on 6 May 2021).
- Chiu, Y.C.; Chen, S.; Chang, Y.C. Development of a circular grafting robotic system for watermelon seedlings. Appl. Eng. Agric. 2011, 10, 95–102. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gu, S. The production experiment of 2jc-500 grafting machine carrying on the watermelon to graft grows seedlings. J. Agric. Mech. Res. 2008, 1, 148–149. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, Q.; Chen, L.P.; Guo, W.Z.; Zheng, W.G. Design and optimization on rootstock cutting mechanism of grafting robot for cucurbit. Int. J. Agric. Biol. Eng. 2020, 13, 117–124. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Mu, Y.H.; Gu, S.J. Techniques of automatic grafting of cucurbitaceous vegetables. J. ZhongKai Univ. Agric. Technol. 2012, 1, 48–51. [Google Scholar] [CrossRef]
- Lou, J.Z.; Wu, K.; Chen, J.Y.; Ma, G.Y.; Li, J.P. Design and test of self-adaptive stock cotyledons pressing and clamping mechanism for oblique inserted grafting of Cucurbitaceous vegetables. Trans. CSAE 2018, 34, 76–82. [Google Scholar] [CrossRef]
- Yang, Y.L.; Li, K.; Chu, Q.; Zhong, L.X.; Jia, D.D.; Gu, S. Air suction clamp structure of rootstock cotyledons for inclined inserted grafting machine and its optimized experiment of operation parameters. Trans. CSAE 2014, 30, 25–31. [Google Scholar] [CrossRef]
- Zhu, X.C.; Jin, X.; Yao, B.; Cao, J. Modeling and Design of a frictionless pneumatic cylinder system with air bearings. In Proceedings of the 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Shenyang, China, 8–12 June 2015. [Google Scholar]
- Lou, J.Z.; Li, J.P.; Zhu, P.A. Design and test on growing point removal mechanism of melon vegetable grafting stock. Trans. CSAE 2016, 32, 64–69. [Google Scholar] [CrossRef]
- Lou, J.Z.; Li, J.P.; Zhu, P.A.; Lv, G.L.; Wang, M. Optimization of suction head of scion clamping mechanism for vegetable grafting machine. Trans. CSAM 2013, 44, 63–67. [Google Scholar] [CrossRef]
- Zheng, W.K.; Dong, J.K.; Zhang, L.; Chen, Z.H. Heating performance for a hybrid radiant-convective heating terminal by orthogonal test method. J. Build. Eng. 2020, 33, 101627. [Google Scholar] [CrossRef]
- Bai, J.; Ma, S.C.; Wang, F.L.; Xing, H.N.; Ma, J.Z.; Hu, J.W. Field test and evaluation on crop dividers of sugarcane chopper harvester. Int. J. Agric. Biol. Eng. 2021, 14, 118–122. [Google Scholar] [CrossRef]
- Li, H.; Zeng, S.; Luo, X.; Fang, L.; Liang, Z.; Yang, W. Design, DEM simulation, and field experiments of a novel precision seeder for dry direct-seeded rice with film mulching. Agriculture 2021, 11, 378. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, S.; Jin, W.; Yan, J.; Shi, Z.; Yu, N.; Yuan, P.; Zhu, X. Design and parameter optimization of an air suction jujube picking and conveying device. Trans. ASABE 2020, 63, 943–954. [Google Scholar] [CrossRef]
- Chen, H.T.; Wang, H.F.; Wang, Y.C.; Shi, N.Y.; Wei, Z.P.; Dou, Y.K. Design and experiment of three-leaf type air-suction seed meter with automatic clear and replace seeds features for soybean plot test. Trans. CSAM 2020, 51, 75–85. [Google Scholar] [CrossRef]
- Jiang, K. Study on Mechanism and Experimental Device of Splice Mechanical Grafting of Cucurbit. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2019. [Google Scholar]
- Jiang, K.; Zhang, Q.; Chen, L.P.; Guo, W.Z.; Mou, Y.Q. Simulation design and performance experiment of adsorption block in feeding and positioning mechanism for rootstock. Trans. CSAE 2020, 36, 73–80. [Google Scholar] [CrossRef]
- Lou, J.Z. Mechanism Study and Optimization Design of Inclined-Insert Grafting Device of Cucurbita Vegetable. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2014. [Google Scholar]
- Wang, F.; Ma, S.; Xing, H.; Bai, J.; Hu, J. Base cutting energy consumption for sugarcane stools using contra-rotating basecutters. Trans. ASABE 2021, 64, 221–230. [Google Scholar] [CrossRef]
Long Axis of Stem (mm) | Short Axis of Stem (mm) | Cotyledon Width (mm) | Single Cotyledon Length (mm) |
---|---|---|---|
3.52 ± 0.29 | 2.94 ± 0.29 | 20.23 ± 1.84 | 32.37 ± 3.29 |
Level | HD (mm) | NP (kPa) | IA (°) |
---|---|---|---|
1 | 2 | 4 | 10 |
2 | 2.5 | 6 | 15 |
3 | 3 | 8 | 20 |
No. | HD (mm) | NP (kPa) | IA (°) | Success Rate (%) | Damage Rate (%) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 93.33 | 0 |
2 | 1 | 2 | 2 | 95 | 0 |
3 | 1 | 3 | 3 | 91.67 | 0 |
4 | 2 | 1 | 2 | 96.67 | 0 |
5 | 2 | 2 | 3 | 95 | 0 |
6 | 2 | 3 | 1 | 98.33 | 0 |
7 | 3 | 1 | 3 | 90 | 1.67 |
8 | 3 | 2 | 1 | 96.67 | 0 |
9 | 3 | 3 | 2 | 95 | 5 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
HD | 19.131 | 2 | 9.565 | 30.502 | 0.032 * |
NP | 8.031 | 2 | 4.015 | 12.804 | 0.072 |
IA | 26.523 | 2 | 13.262 | 42.289 | 0.023 * |
Error | 0.627 | 2 | 0.314 | ||
Total | 80,647.845 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Lou, J.; Li, C.; Li, J. Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons. Agriculture 2021, 11, 736. https://doi.org/10.3390/agriculture11080736
Wu K, Lou J, Li C, Li J. Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons. Agriculture. 2021; 11(8):736. https://doi.org/10.3390/agriculture11080736
Chicago/Turabian StyleWu, Kang, Jianzhong Lou, Chen Li, and Jianping Li. 2021. "Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons" Agriculture 11, no. 8: 736. https://doi.org/10.3390/agriculture11080736
APA StyleWu, K., Lou, J., Li, C., & Li, J. (2021). Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons. Agriculture, 11(8), 736. https://doi.org/10.3390/agriculture11080736