The Response of Soil pH and Exchangeable Al to Alum and Lime Amendments †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Soil Management
2.3. Soil Analysis
2.4. Determination of Aluminum Concentrations and Effective Cation Exchange Capacity
2.5. Statistical Analysis
3. Results
3.1. Site-Specific Variance in Edaphic Response to Soil pH Gradients
3.2. Characterization and Exploration of Edaphic Properties
3.3. Spatio-Temporal Discrepancy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lukiw, W.J. Evidence supporting a biological role for aluminum in chromatin compaction and epigenetics. J. Inorg. Biochem. 2010, 104, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Ezaki, B.; Munjal, A.; Tripathi, B.N. Physiology and Biochemistry of Aluminum Toxicity and Tolerance in Crops. In Stress Responses in Plants; Springer: Berlin/Heidelberg, Germany, 2015; pp. 35–57. [Google Scholar]
- Påhlsson, A.-M.B. Influence of aluminium on biomass, nutrients, soluble carbohydrates and phenols in beech (Fagus sylvatica). Physiol. Plant. 1990, 78, 79–84. [Google Scholar] [CrossRef]
- Bear, F.E. Toxic Elements in Soils. In Yearbook of Agriculture 1957, Soils, A. Stefferud; United States Government Printing Office: Washington, DC, USA, 1957; pp. 165–171. [Google Scholar]
- Kochian, L.V.; Piñeros, M.A.; Hoekenga, O.A. The Physiology, Genetics and Molecular Biology of Plant Aluminum Resistance and Toxicity. Plant Soil 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Kariuki, S.K.; Zhang, H.; Schroder, J.L.; Edwards, J.; Payton, M.; Carver, B.F.; Raun, W.; Krenzer, E.G. Hard Red Winter Wheat Cultivar Responses to a pH and Aluminum Concentration Gradient. Agron. J. 2007, 99, 88–98. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Farmland Ownership and Tenure; United States Department of Agriculture, Economic Research Service: 2020. Available online: https://www.ers.usda.gov/topics/farm-economy/land-use-land-value-tenure/farmland-ownership-and-tenure/ (accessed on 14 February 2020).
- Gillespie, C.J.; Marburger, D.A.; Carver, B.F.; Zhang, H. Closely Related Winter Wheat Cultivar Performance in US Great Plains Acid Soils. Agron. J. 2020, 112, 3704–3717. [Google Scholar] [CrossRef]
- Lollato, R.; Edwards, J.T.; Zhang, H. Effect of Alternative Soil Acidity Amelioration Strategies on Soil pH Distribution and Wheat Agronomic Response. Soil Sci. Soc. Am. J. 2013, 77, 1831–1841. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of Soil Acidity of South American Soils for Sustainable Crop Production. Adv. Agron. 2014, 128, 221–275. [Google Scholar] [CrossRef]
- Zhang, H.; Raun, W.R.; Warren, J.; Arnall, D.B.; Penn, C.; Bushong, J.; Abit, J. Oklahoma Soil Fertility Handbook; Oklahoma Cooperative Extension Service Publication; Handbook E-1039; Oklahoma State University, Department of Plant and Soil Sciences: Stillwater, OK, USA, 2017; p. 188. [Google Scholar]
- Boman, R.; Westerman, R.; Johnson, G.; Jojola, M. Phosphorus Fertilization Effects on Winter Wheat Production in Acid Soils. Effic. Use Fertil. Agron. 1992, 92, 1. [Google Scholar]
- Xiao, K.; Yu, L.; Xu, J.; Brookes, P.C. pH, nitrogen mineralization, and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application: Results from a laboratory study. J. Soils Sediments 2014, 14, 1513–1525. [Google Scholar] [CrossRef]
- Mossor-Pietraszewska, T. Effect of aluminium on plant growth and metabolism. Acta Biochim. Pol. 2001, 48, 673–686. [Google Scholar] [CrossRef]
- Ramgareeb, S.; Cooke, J.A.; Watt, M. Responses of meristematic callus cells of two Cynodon dactylon genotypes to aluminium. J. Plant Physiol. 2004, 161, 1245–1258. [Google Scholar] [CrossRef]
- Lollato, R.P.; Ochsner, T.E.; Arnall, D.B.; Griffin, T.W.; Edwards, J.T. From Field Experiments to Regional Forecasts: Upscaling Wheat Grain and Forage Yield Response to Acidic Soils. Agron. J. 2019, 111, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Ifansyah, H. Soil PH and Solubility of Aluminum, Iron, and Phosphorus in Ultisols: The Roles of Humic Acid. J. Trop. Soils 2014, 18, 203–208. [Google Scholar] [CrossRef]
- Miller, R.O.; Kissel, D.E. Comparison of Soil pH Methods on Soils of North America. Soil Sci. Soc. Am. J. 2010, 74, 310–316. [Google Scholar] [CrossRef]
- Sikora, F.J. A Buffer that Mimics the SMP Buffer for Determining Lime Requirement of Soil. Soil Sci. Soc. Am. J. 2006, 70, 474–486. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Pittman, J.J.; Zhang, H.; Schroder, J.L.; Payton, M.E. Differences of Phosphorus in Mehlich 3 Extracts Determined by Colorimetric and Spectroscopic Methods. Commun. Soil Sci. Plant Anal. 2005, 36, 1641–1659. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation Exchange Capacity and Exchange Coefficients. In Methods of Soil Analysis, Part 3. Chemical Methods; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; Volume 5, pp. 1201–1229. [Google Scholar]
- SAS Institute. The JMP System for Windows; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Sutradhar, A.; Lollato, R.; Butchee, K.; Arnall, D.B. Determining Critical Soil pH for Sunflower Production. Int. J. Agron. 2014, 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- NRCS; USDA. Web Soil Survey. Available online: http://www.websoilsurvey.ncsc.usda.gov/app/ (accessed on 1 May 2019).
- Cornell, J.A.; Berger, R.D. Factors that influence the value of the coefficient of determination in simple linear and nonline-ar regression models. Phytopathology 1987, 77, 63–70. [Google Scholar] [CrossRef]
- Wang, S.; Wang, P.; Fan, C.Q. Distribution of Aluminum Fractionation in the Acidic Rhizosphere Soils of Masson Pine (Pinus massonianaLamb). Commun. Soil Sci. Plant Anal. 2015, 46, 2033–2050. [Google Scholar] [CrossRef]
- Antonangelo, J.; Neto, J.F.; Crusciol, C.A.C.; Alleoni, L.R.F. Lime and calcium-magnesium silicate in the ionic speciation of an Oxisol. Sci. Agric. 2017, 74, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-W.; Hsieh, C.-J.; Chang, K.-W.; Ringgaard, M.; Lin, C.-J. Training and Testing Low-Degree Polynomial Data Mappings via Linear SVM. J. Mach. Learn. Res. 2010, 11, 1471–1490. [Google Scholar]
- Kaitibie, S.; Epplin, F.M.; Krenzer, E.G.; Zhang, H. Economics of Lime and Phosphorus Application for Dual-Purpose Winter Wheat Production in Low-pH Soils. Agron. J. 2002, 94, 1139–1145. [Google Scholar] [CrossRef]
- Hsu, P.H.; Rennie, D.A. Reactions of phosphate in aluminum systems: II. Precipitation of phosphate by exchangeable alumi-num on a cation exchange resin. Can. J. Soil Sci. 1962, 42, 210–221. [Google Scholar] [CrossRef] [Green Version]
Location | Year | Soil pH | Al Saturation (Alsat) | AlKCl (mg kg−1) |
---|---|---|---|---|
Stillwater | 1 | 4.5–7.1 | 38.8–0% | 184–0 |
2 | 4.3–6.5 | 34.9–0% | 165–0 | |
Chickasha | 1 | 5.0–7.1 | 8.14–0% | 57.0–0 |
2 | 4.9–6.7 | 10.1–0% | 66.0–0 |
Target pH | Main Plot | AlKCl, mg kg−1 (MSY1) | Alsat, % (MSY1) | AlKCl, mg kg−1 (BOY2) | Alsat, % (BOY2) | AlKCl, mg kg−1 (MSY2) | Alsat, % (MSY2) |
---|---|---|---|---|---|---|---|
4 | 105 | 148 | 28 | 141 | 28 | 147 | 28 |
205 | 120 | 23 | 128 | 25 | 150 | 30 | |
301 | 130 | 28 | 178 | 35 | 131 | 28 | |
401 | 184 | 39 | 138 | 30 | 165 | 35 | |
4.5 | 106 | 51 | 10 | 67 | 14 | 93 | 18 |
203 | 63 | 12 | 84 | 16 | 92 | 19 | |
304 | 68 | 13 | 82 | 16 | 74 | 14 | |
402 | 71 | 14 | 94 | 16 | 104 | 14 | |
5 | 101 | 14 | 2 | 26 | 5 | 78 | 15 |
202 | 42 | 8 | 46 | 9 | 44 | 8 | |
303 | 28 | 5 | 35 | 7 | 47 | 9 | |
403 | 28 | 5 | 36 | 7 | 61 | 12 | |
5.5 | 103 | 14 | 2 | 8 | 1 | 6 | 1 |
201 | 0 | 0 | 0 | 0 | 26 | 5 | |
302 | 9 | 2 | 9 | 2 | 33 | 7 | |
404 | 17 | 3 | 6 | 1 | 26 | 5 | |
6 | 102 | 0 | 0 | 0 | 0 | 3 | 0 |
204 | 21 | 4 | 2 | 0 | 21 | 4 | |
306 | 0 | 0 | 0 | 0 | 4 | 1 | |
405 | 10 | 2 | 7 | 1 | 4 | 1 | |
7 | 104 | 0 | 0 | 10 | 1 | 0 | 0 |
206 | 0 | 0 | 0 | 0 | 3 | 1 | |
305 | 0 | 0 | 0 | 0 | 0 | 0 | |
406 | 0 | 0 | 0 | 0 | 0 | 0 |
Target pH | Main Plot | Soil pH (BOY1) | Amendment Rate (kg ha−1) | Soil pH (MSY1) | Soil pH (BOY2) | Amendment Rate (kg ha−1) | Soil pH (MSY2) |
---|---|---|---|---|---|---|---|
4 | 105 | 4.3 | 888 (Alum) | 4.6 | 4.5 | 2180 (Alum) | 4.3 |
205 | 4.4 | 1157 (Alum) | 4.6 | 4.6 | 2637 (Alum) | 4.4 | |
301 | 4.4 | 1157 (Alum) | 4.6 | 4.4 | 1749 (Alum) | 4.4 | |
401 | 4.1 | 296 (Alum) | 4.5 | 4.4 | 1749 (Alum) | 4.3 | |
4.5 | 106 | 4.6 | 296 (Alum) | 5.3 | 5 | 2180 (Alum) | 4.6 |
203 | 4.4 | 188 (Lime) | 5 | 4.9 | 1749 (Alum) | 4.6 | |
304 | 4.6 | 296(Alum) | 5.1 | 4.9 | 1749 (Alum) | 4.9 | |
402 | 4.9 | 1157 (Alum) | 5 | 4.9 | 1749 (Alum) | 4.4 | |
5 | 101 | 4.8 | 376 (Lime) | 5.7 | 5.5 | 2180 (Alum) | 4.6 |
202 | 5.2 | 592 (Alum) | 5.1 | 5 | *** | 5 | |
303 | 4.7 | 538 (Lime) | 5.4 | 5.3 | *** | 5.3 | |
403 | 4.6 | 727 (Lime) | 5.5 | 5.2 | *** | 5.5 | |
5.5 | 103 | 5.4 | 188 (Lime) | 5.6 | 5.6 | *** | 5.6 |
201 | 4.9 | 1103 (Lime) | 6.1 | 6.2 | 3040 (Alum) | 5.1 | |
302 | 5 | 915 (Lime) | 5.8 | 5.6 | *** | 5.6 | |
404 | 5 | 915 (Lime) | 5.4 | 5.7 | *** | 5.5 | |
6 | 102 | 5.4 | 1103 (Lime) | 6.2 | 6.2 | *** | 6.2 |
204 | 5.8 | 377 (Lime) | 5.5 | 5.8 | *** | 5.8 | |
306 | 5.3 | 1292 (Lime) | 6.5 | 6.5 | 2180 (Alum) | 5.8 | |
405 | 4.9 | 2018 (Lime) | 5.8 | 5.6 | 727 (Lime) | 5.8 | |
7 | 104 | 6.1 | 1642 (Lime) | 6.7 | 7.1 | *** | 7.1 |
206 | 6.4 | 1103 (Lime) | 6.8 | 6.8 | *** | 6.8 | |
305 | 6.5 | 915 (Lime) | 7.1 | 6.9 | *** | 6.9 | |
406 | 6 | 915 (Lime) | 7.1 | 6.8 | *** | 6.8 |
Target pH | Main Plot | AlKCl, mg kg−1 (MSY1) | Alsat, % (MSY1) | AlKCl, mg kg−1 (BOY2) | Alsat, % (BOY2) | AlKCl, mg kg−1 (MSY2) | Alsat, % (MSY2) |
---|---|---|---|---|---|---|---|
4 | 105 | 4.62 | 1 | 1.58 | 0 | 11.45 | 1 |
204 | 37.70 | 5 | 28.752 | 2 | 58.80 | 8 | |
306 | 20.10 | 3 | 18.54 | 1 | 34.50 | 5 | |
401 | 36.15 | 5 | 24.00 | 2 | 53.35 | 8 | |
4.5 | 103 | 7.41 | 1 | 3.55 | 0 | 27.20 | 4 |
201 | 19.89 | 3 | 21.12 | 2 | 19.00 | 3 | |
302 | 9.79 | 1 | 10.54 | 1 | 26. | 4 | |
402 | 57.14 | 8 | 30.83 | 2 | 65.55 | 10 | |
5 | 102 | 28.4 | 4 | 24.81 | 2 | 29.55 | 4 |
205 | 4.62 | 1 | 0.87 | 0 | 8.90 | 1 | |
304 | 0.36 | 0 | 0.34 | 0 | 4.35 | 1 | |
403 | 40.47 | 6 | 37.90 | 3 | 48.20 | 8 | |
5.5 | 104 | 8.91 | 1 | 4.74 | 0 | 12.85 | 2 |
206 | 0.15 | 0 | 0.33 | 0 | 3.75 | 1 | |
301 | 1.00 | 0 | 0 | 0 | 3.85 | 1 | |
404 | 9.81 | 10 | 10.33 | 10 | 10.10 | 10 | |
6 | 101 | 0.52 | 0 | 0 | 0 | 2.30 | 0 |
203 | 3.15 | 0 | 0 | 0 | 1.50 | 0 | |
305 | 0 | 0 | 0.37 | 0 | 0.80 | 0 | |
405 | 0.21 | 0 | 0 | 0 | 0 | 0 | |
7 | 106 | 0.06 | 0 | 0 | 0 | 2.05 | 0 |
202 | 0 | 0 | 0 | 0 | 1.30 | 0 | |
303 | 0.11 | 0 | 0.19 | 0 | 2.10 | 0 | |
406 | 0.12 | 0 | 0 | 0 | 0 | 0 |
Target pH | Main Plot | Soil pH (BOY1) | Amendment Rate (kg ha−1) | Soil pH (MSY1) | Soil pH (BOY2) | Amendment Rate (kg ha−1) | Soil pH (MSY2) |
---|---|---|---|---|---|---|---|
4 | 105 | 5.4 | 2260 (Alum) | 5.2 | 5.4 | 3337 (Alum) | 5.1 |
204 | 5 | 1614.6 (Alum) | 5 | 5.1 | 2610 (Alum) | 4.9 | |
306 | 5.5 | 2422 (Alum) | 5 | 5.2 | 2852 (Alum) | 4.9 | |
401 | 5.4 | 2260 (Alum) | 5 | 5.1 | 2610 (Alum) | 4.9 | |
4.5 | 103 | 5.3 | 1292 (Alum) | 5.2 | 5.3 | 1911 (Alum) | 5.1 |
201 | 5.6 | 1776 (Alum) | 5 | 5.1 | 1426 (Alum) | 5.1 | |
302 | 5.4 | 1453 (Alum) | 5.2 | 5.3 | 1911 (Alum) | 5.2 | |
402 | 5.2 | 1130 (Alum) | 5.1 | 5 | 1184 (Alum) | 5 | |
5 | 102 | 5.2 | 323 (Alum) | 5.2 | 5.2 | *** | 5.2 |
205 | 5.3 | 484(Alum) | 5.5 | 5.4 | 484.38 (Alum) | 5.3 | |
304 | 5.4 | 646(Alum) | 5.7 | 5.7 | 834 (Alum) | 5.5 | |
403 | 4.9 | 81 (Lime) | 5.2 | 5 | *** | 5 | |
5.5 | 104 | 5.8 | 484 (Alum) | 5.3 | 5.3 | *** | 5.3 |
206 | 6.4 | 1453 (Alum) | 5.5 | 5.5 | *** | 5.5 | |
301 | 6 | 807 (Alum) | 5.5 | 5.6 | *** | 5.6 | |
404 | 5.4 | 81 (Lime) | 5.6 | 5.3 | *** | 5.3 | |
6 | 101 | 5.9 | 81 (Lime) | 5.6 | 5.6 | 312 (Lime) | 5.7 |
203 | 5.3 | 538 (Lime) | 5.6 | 5.7 | 242 (Lime) | 5.8 | |
305 | 5.7 | 242 (Lime) | 5.8 | 5.6 | 323 (Lime) | 5.8 | |
405 | 5.6 | 323 (Lime) | 5.7 | 5.7 | 242 (Lime) | 6 | |
7 | 106 | 6.4 | 457 (Lime) | 6.4 | 6.3 | 457 (Lime) | 6.5 |
202 | 6.2 | 619 (Lime) | 6.4 | 6.5 | 378 (Lime) | 6.4 | |
303 | 5.7 | 1023 (Lime) | 6.2 | 6.5 | 378 (Lime) | 6.4 | |
406 | 5.9 | 861 (Lime) | 6.3 | 6.4 | 457 (Lime) | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillespie, C.J.; Antonangelo, J.A.; Zhang, H. The Response of Soil pH and Exchangeable Al to Alum and Lime Amendments. Agriculture 2021, 11, 547. https://doi.org/10.3390/agriculture11060547
Gillespie CJ, Antonangelo JA, Zhang H. The Response of Soil pH and Exchangeable Al to Alum and Lime Amendments. Agriculture. 2021; 11(6):547. https://doi.org/10.3390/agriculture11060547
Chicago/Turabian StyleGillespie, Christopher Jorelle, João Arthur Antonangelo, and Hailin Zhang. 2021. "The Response of Soil pH and Exchangeable Al to Alum and Lime Amendments" Agriculture 11, no. 6: 547. https://doi.org/10.3390/agriculture11060547
APA StyleGillespie, C. J., Antonangelo, J. A., & Zhang, H. (2021). The Response of Soil pH and Exchangeable Al to Alum and Lime Amendments. Agriculture, 11(6), 547. https://doi.org/10.3390/agriculture11060547