Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Field Experiment
2.3. Cultural Practices
2.4. Sample Collection, Preparation and Analysis
2.5. Determination of Grain Yield
2.6. Statistical Analysis
3. Results
3.1. Changes of Carbon Fractions under Different INM Practices
3.2. Changes of Organic Carbon Pools Based on Oxidizability under Different INM Practices
3.3. Lability Index (LI)
3.4. Amounts of CO2 Sequestered in the Rhizosphere Soil
3.5. Effects of Different INM Systems on Rice Grain Yield
4. Discussion
4.1. Effects of Different INM Practices on Soil Carbon Fractions
4.2. Changes of Different Oxidizable Organic Carbon Pools under INM Practices
4.3. Carbon Sequestration and Rice Yield under Different INM Practices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FAOSTAT Database Collections; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Ladha, J.; Dawe, D.; Pathak, H.; Padre, A.; Yadav, R.; Singh, B.; Singh, Y.; Singh, Y.; Singh, P.; Kundu, A. How extensive are yield declines in long-term rice–wheat experiments in Asia? Field Crop. Res. 2003, 81, 159–180. [Google Scholar] [CrossRef]
- Pathak, H.; Ladha, J.; Aggarwal, P.; Peng, S.; Das, S.; Singh, Y.; Singh, B.; Kamra, S.; Mishra, B.; Sastri, A. Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crop. Res. 2003, 80, 223–234. [Google Scholar] [CrossRef]
- Ladha, J.K.; Fischer, K.; Hossain, M.; Hobbs, P.; Hardy, B. Improving the Productivity and Sustainability of Rice-Wheat Systems of the lndo-Gangetic Plains: A Synthesis of NARS-IRRI Partnership Research; International Rice Research Institute: Los Banos, Phillippines, 2000. [Google Scholar]
- Nayak, A.; Gangwar, B.; Shukla, A.K.; Mazumdar, S.P.; Kumar, A.; Raja, R.; Kumar, A.; Kumar, V.; Rai, P.; Mohan, U. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic Plains of India. Field Crop. Res. 2012, 127, 129–139. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration in India. Clim. Chang. 2004, 65, 277–296. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration. Philos. T. Roy. Soc. B 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Ashiq, W.; Nadeem, M.; Ali, W.; Zaeem, M.; Wu, J.; Galagedara, L.; Thomas, R.; Kavanagh, V.; Cheema, M. Biochar amendment mitigates greenhouse gases emission and global warming potential in dairy manure based silage corn in boreal climate. Environ. Pollut. 2020, 265, 114869. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Nadeem, M.; Ashiq, W.; Zaeem, M.; Gilani, S.S.M.; Rajabi-Khamseh, S.; Pham, T.H.; Kavanagh, V.; Thomas, R.; Cheema, M. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ali, W.; Nadeem, M.; Ashiq, W.; Zaeem, M.; Thomas, R.; Kavanagh, V.; Cheema, M. Forage yield and quality indices of silage-corn following organic and inorganic phosphorus amendments in podzol soil under boreal climate. Agronomy 2019, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Ashiq, W. Evaluating the potential of biochar in mitigating greenhouse gases emission and nitrogen retention in dairy manure based silage corn cropping systems. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, CA, 2018. [Google Scholar]
- Swarup, A.; Yaduvanshi, N. Effects of integrated nutrient management on soil properties and yield of rice in alkali soils. J. Indian Soc. Soil Sci. 2000, 48, 279–282. [Google Scholar]
- Dalal, R.; Allen, D.; Wang, W.; Reeves, S.; Gibson, I. Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil Tillage Res. 2011, 112, 133–139. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Yuan, Y.; Liang, Y.; Li, L.; Han, X. Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. J. Soils Sediments 2014, 14, 854–859. [Google Scholar] [CrossRef]
- Ashiq, W.; Vasava, H.B.; Cheema, M.; Dunfield, K.; Daggupati, P.; Biswas, A. Interactive role of topography and best management practices on N2O emissions from agricultural landscape. Soil Tillage Res. 2021. Unpublished. [Google Scholar]
- Abid, M.; Lal, R. Tillage and drainage impact on soil quality: I. Aggregate stability, carbon and nitrogen pools. Soil Tillage Res. 2008, 100, 89–98. [Google Scholar] [CrossRef]
- Purakayastha, T.; Rudrappa, L.; Singh, D.; Swarup, A.; Bhadraray, S. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system. Geoderma 2008, 144, 370–378. [Google Scholar] [CrossRef]
- Devi, S.; Gupta, C.; Jat, S.L.; Parmar, M. Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric. 2017, 2, 486–494. [Google Scholar] [CrossRef]
- Manna, M.; Ghosh, P.; Acharya, C. Sustainable crop production through management of soil organic carbon in semiarid and tropical India. J. Sustain. Agric. 2003, 21, 85–114. [Google Scholar] [CrossRef]
- Manna, M.; Swarup, A.; Wanjari, R.; Singh, Y.; Ghosh, P.; Singh, K.; Tripathi, A.; Saha, M. Soil organic matter in a West Bengal Inceptisol after 30 years of multiple cropping and fertilization. Soil Sci. Soc. Am. J. 2006, 70, 121–129. [Google Scholar] [CrossRef]
- Kaur, T.; Brar, B.; Dhillon, N. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr. Cycl. Agroecosyst. 2008, 81, 59–69. [Google Scholar] [CrossRef]
- Shit, P.K.; Nandi, A.S.; Bhunia, G.S. Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Modeling Earth Syst. Environ. 2015, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Staff, S. Keys to Soil Taxonomy, 12th ed.; Natural Resources Conservation Service United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Bouyoucos, G. Improved hydrometer method for making particle size analysis. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- McGill, W.; Cannon, K.; Robertson, J.; Cook, F. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 1986, 66, 1–19. [Google Scholar] [CrossRef]
- Chan, K.; Bowman, A.; Oates, A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Joergensen, R. Microbial biomass. In Methods in Applied Soil Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 1995; pp. 375–417. [Google Scholar]
- Patra, D.; Chand, S.; Anwar, M. Organic C dynamics and its conservation under wheat (Triticum aesetivum)–Mint (Mentha arvensis)-Sesbania rostrata cropping in sub-tropical condition of northern Indo-Gangetic plains. J. Environ. Manag. 2014, 135, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Abrol, I.; Bronson, K.; Duxbury, J.; Gupta, R. Long-Term Soil Fertility Experiments in Rice-Wheat Cropping Systems; Facilitation Unit, Rice-Wheat Consortium for the Indo-Gangetic Plains: Wageningen, The Netherlands, 2000. [Google Scholar]
- Wang, Y.; Hu, N.; Xu, M.; Li, Z.; Lou, Y.; Chen, Y.; Wu, C.; Wang, Z.-L. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol. Fertil. Soils 2015, 51, 583–591. [Google Scholar] [CrossRef]
- Yan, D.; Wang, D.; Yang, L. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biol. Fertil. Soils 2007, 44, 93–101. [Google Scholar] [CrossRef]
- Yang, X.; Ren, W.; Sun, B.; Zhang, S. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 2012, 177, 49–56. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, M.; Wang, B.; Wang, X. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Nutr. Cycl. Agroecosystems 2009, 84, 59–69. [Google Scholar] [CrossRef]
- Li, M.; Lin-Zhang, Y.; Li-Zhong, X.; Ming-Xing, S.; Shi-Xue, Y.; Yun-Dong, L. Long-term effects of inorganic and organic amendments on organic carbon in a paddy soil of the Taihu Lake Region, China. Pedosphere 2011, 21, 186–196. [Google Scholar]
- Li, J.; Wen, Y.; Li, X.; Li, Y.; Yang, X.; Lin, Z.; Song, Z.; Cooper, J.M.; Zhao, B. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Diels, J.; Vanlauwe, B.; Van der Meersch, M.; Sanginga, N.; Merckx, R. Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC. Soil Biol. Biochem. 2004, 36, 1739–1750. [Google Scholar] [CrossRef]
- Rudrappa, L.; Purakayastha, T.; Singh, D.; Bhadraray, S. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil Tillage Res. 2006, 88, 180–192. [Google Scholar] [CrossRef]
- Verma, T.; Bhagat, R. Impact of rice straw management practices on yield, nitrogen uptake and soil properties in a wheat-rice rotation in northern India. Fertil. Res. 1992, 33, 97–106. [Google Scholar] [CrossRef]
- Yadav, R.; Dwivedi, B.; Pandey, P. Rice-wheat cropping system: Assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crop. Res. 2000, 65, 15–30. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Nayak, A.; Mohanty, S.; Tripathi, R.; Shahid, M.; Kumar, A.; Raja, R.; Panda, B.; Roy, K.; Neogi, S. Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Tillage Res. 2013, 129, 93–105. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- Basak, B.; Biswas, D.; Pal, S. Soil biochemical properties and grain quality as affected by organic manures and mineral fertilizers in soil under maize-wheat rotation. Agrochimica 2013, 57, 49–66. [Google Scholar]
- Das, B.B.; Dkhar, M. Organic amendment effects on microbial population and microbial biomass carbon in the rhizosphere soil of soybean. Commun. Soil Sci. Plant Anal. 2012, 43, 1938–1948. [Google Scholar] [CrossRef]
- Verma, R.K.; Verma, R.S.; Rahman, L.-U.; Yadav, A.; Patra, D.D.; Kalra, A. Utilization of distillation waste–based vermicompost and other organic and inorganic fertilizers on improving production potential in geranium and soil health. Commun. Soil Sci. Plant Anal. 2014, 45, 141–152. [Google Scholar] [CrossRef]
- Christensen, B.T. The Askov long-term experiments on animal manure and mineral fertilizers. In Evaluation of Soil Organic Matter Models; Springer: Berlin, Germany, 1996; pp. 301–312. [Google Scholar]
- Smith, P.; Powlson, D.; Glendining, M.; Smith, J. Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments. Glob. Chang. Biol. 1997, 3, 67–79. [Google Scholar] [CrossRef]
- Aoyama, M.; Kumakura, N. Quantitative and qualitative changes of organic matter in an Ando soil induced by mineral fertilizer and cattle manure applications for 20 years. Soil Sci. Plant Nutr. 2001, 47, 241–252. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265. [Google Scholar] [CrossRef]
- Liu, E.; Teclemariam, S.G.; Yan, C.; Yu, J.; Gu, R.; Liu, S.; He, W.; Liu, Q. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma 2014, 213, 379–384. [Google Scholar] [CrossRef]
Soil Property | Results |
---|---|
Sand (%) | 77.12 |
Silt (%) | 6.00 |
Clay (%) | 16.88 |
Textural Class | Sandy Loam |
Bulk Density (Mg m−3) | 1.34 |
pH (Soil: Water = 1: 2.5) | 4.64 |
Electrical conductivity (dSm−1) (Soil: Water = 1: 2.5) | 0.07 |
Cation exchange capacity (cmol(+)Kg−1) | 8.84 |
Organic carbon (%) | 0.428 |
Total carbon (%) | 1.57 |
Active pool of carbon (%) | 0.209 |
Passive pool of carbon (%) | 1.4 |
Total nitrogen (mg Kg−1) | 261 |
Available nitrogen (mg kg−1) | 26.3 |
Available phosphorus (mg kg−1) | 8.48 |
Available potassium (mg kg−1) | 10.14 |
Microbial biomass carbon (mg kg−1) | 93.00 |
Amendments | Total Carbon (TC) (%) | Total Nitrogen (TN) (%) | Total Phosphorus(TP) (%) | Total Potassium (TK) (%) | C:N Ratio |
---|---|---|---|---|---|
RS a (Stored) | 50.46 | 0.42 | 0.03 | 1.22 | 120.10 |
GL b | 54.52 | 2.76 | 0.12 | 0.38 | 19.80 |
FYM c | 15.37 | 0.57 | 0.09 | 0.39 | 27.00 |
VC d | 16.59 | 1.14 | 0.58 | 1.15 | 14.60 |
Treatment | Nutrients Added through Organic Manures (Kg/plot) | Nutrients Added through Chemical Fertilizers (Kg/plot) | ||||
---|---|---|---|---|---|---|
N | P | K | N | P | K | |
Control | - | - | - | - | - | - |
Rice Straw + NPK a | 0.02 | 0.00 | 0.05 | 0.14 | 0.08 | 0.03 |
Gliricidia + NPK | 0.07 | 0.01 | 0.05 | 0.09 | 0.07 | 0.03 |
FYM b + NPK | 0.14 | 0.07 | 0.14 | 0.02 | 0.01 | −0.06 |
Vermicompost + NPK | 0.10 | 0.00 | 0.01 | 0.06 | 0.08 | 0.07 |
NPK only | - | - | - | 0.16 | 0.08 | 0.08 |
Treatment | Mean Rice Grain Yield (t ha−1) | |||
---|---|---|---|---|
2007 (July–October) | 2008 (January–April) | 2008 (July–October) | Average Per Three Seasons | |
Control | 2.050 e | 2.540 e | 2.270 d | 2.290 F |
Rice Straw + NPK 1 | 3.170 d | 3.910 d | 3.510 c | 3.530 E |
Gliricidia + NPK | 3.680 c | 4.530 c | 4.170 b | 4.130 D |
FYM 2 + NPK | 3.970 b | 4.970 b | 4.690 a | 4.540 C |
Vermicompost + NPK | 4.240 a | 5.210 a | 4.710 a | 4.720 B |
NPK | 4.320 a | 5.310 a | 4.760 a | 4.800 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, M.; Ashiq, W.; Bhogilal Vasava, H.; Gamage, D.N.V.; Patra, P.K.; Biswas, A. Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India. Agriculture 2021, 11, 348. https://doi.org/10.3390/agriculture11040348
Ghosh M, Ashiq W, Bhogilal Vasava H, Gamage DNV, Patra PK, Biswas A. Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India. Agriculture. 2021; 11(4):348. https://doi.org/10.3390/agriculture11040348
Chicago/Turabian StyleGhosh, Mousumi, Waqar Ashiq, Hiteshkumar Bhogilal Vasava, Duminda N. Vidana Gamage, Prasanta K. Patra, and Asim Biswas. 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India" Agriculture 11, no. 4: 348. https://doi.org/10.3390/agriculture11040348
APA StyleGhosh, M., Ashiq, W., Bhogilal Vasava, H., Gamage, D. N. V., Patra, P. K., & Biswas, A. (2021). Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India. Agriculture, 11(4), 348. https://doi.org/10.3390/agriculture11040348