Nitrogen, Phosphorous, and Potassium Application Rate on the Young Seedling Growth of Salvadora persica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Media Preparation
2.3. Fertilization Treatments
- Control treatment (without fertilizers) (control);
- N:P:K 4:2:2 (T1) (N:P:K 2:2:2 g + 2 g of nitrogen supplemented as ammonium sulfate);
- N:P:K 6:3:3 (T2) (N:P:K 3:3:3 g + 3 g of nitrogen supplemented as ammonium sulfate);
- N:P:K 2:1:1S (T3) (N:P:K 1:1:1 g + 1 g of nitrogen supplemented as ammonium sulfate);
- N:P:K 2:1:1U (T4) (N:P:K 1:1:1 g + 1 g of nitrogen supplemented as urea);
- N:P:K 4:1:1S (T5) (N:P:K 1:1:1 g + 3 g of nitrogen supplemented as ammonium sulfate);
- N:P:K 4:1:1U (T6) (N:P:K 1:1:1 g + 3 g of nitrogen supplemented as urea);
- N:P:K 6:1:1S (T7) (N:P:K 1:1:1 g + 5 g of nitrogen supplemented as ammonium sulfate);
- N:P:K 6:1:1U (T8) (N:P:K 1:1:1 g + 5 g of nitrogen supplemented as urea).
2.4. Data Records
2.4.1. Vegetative Parameters
2.4.2. Chemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of Fertilization Treatments on the Aboveground Parameters
3.2. Effect of Fertilization Treatments on the Root Parameters
3.3. Chemical Contents of the Aboveground Parts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.S.; El-Gengaihi, S.E.E.; Ibrahim, M.E.; Schnug, E. Preliminary phytochemical and propagation trial with Salvadora persica L. Landbauforsch. Volkenrode 2008, 58, 135–138. [Google Scholar]
- Reddy, M.P.; Shah, M.T.; Patolia, J.S. Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Ind. Crops Prod. 2008, 28, 273–278. [Google Scholar] [CrossRef]
- Singh, G.; Singh, B.; Tomar, U.K.; Sharma, S. A Manual for Dryland Afforestation and Management; Scientific Publishers: New Delhi, India, 2016; 622p. [Google Scholar]
- Sujata, M. Medicinally potent and highly salt tolerant plant of arid zone-Salvadora persica L. (Meswak): A Review. J. Plant Sci. 2015, 3, 45–49. [Google Scholar]
- Khatak, M.; Khatak, S.; Siddqui, A.A.; Vasudeva, N.; Aggarwal, A.; Aggarwal, P. Salvadora persica. Pharmacogn. Rev. 2010, 4, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Al-Bagieh, N.H.; Idowu, A.; Salako, N.O. Effect of aqueous extract of miswak on the in vitro growth of Candida albicans. Microbios 1994, 80, 107–113. [Google Scholar] [PubMed]
- Chelli-Chentouf, N.; Meddah, A.T.T.; Mullié, C.; Aoues, A.; Meddah, B. In vitro and in vivo antimicrobial activity of Algerian Hoggar Salvadora persica L. extracts against microbial strains from children’s oral cavity. J. Ethnopharmacol. 2012, 144, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.K.; Tahir, M.M.; Rahim, N. Effect of N fertilizer source and timing on yield and N use efficiency of rainfed maize (Zea mays L.) in Kashmir–Pakistan. Geoderma 2013, 195, 87–93. [Google Scholar] [CrossRef]
- Ruiz Diaz, D.A.; Sawyer, J.E. Plant-available nitrogen from poultry manure as affected by time of application. Agron. J. 2008, 100, 1318–1326. [Google Scholar] [CrossRef]
- Randall, G.W.; Vetsch, J.A. Corn production on a subsurface-drained mollisol as affected by fall versus spring application of nitrogen and nitrapyrin. Agron. J. 2005, 97, 472–478. [Google Scholar] [CrossRef]
- Arya, R.; Chaudhary, K.R.; Lohara, R.R. Effect of nitrogen and gypsum on the establishment and early growth of Salvadora persica (L.) on salt affected soils under hot arid conditions in India. For. Trees Livelihoods 2005, 15, 291–306. [Google Scholar] [CrossRef]
- Sharif, F.; Khan, A.U. Alleviation of salinity tolerance by fertilization in four thorn forest species for the reclamation of salt-affected sites. Pak. J. Bot. 2009, 41, 2901–2915. [Google Scholar]
- Jasrotia, A.; Singh, R.P.; Singh, J.M.; Bhutani, V.P. Response of olive trees to varying levels of N and K fertilization. Acta Hortic. 1999, 474, 337–340. [Google Scholar] [CrossRef]
- Taha, R.A. Seed Germination and Seedlings Growth of Some Ornamental Trees. Master’s Thesis, Minia University, Minia, Egypt, 1994. [Google Scholar]
- El-Tantawy, A.; Shehata, M.S.; Mohamed, S.Y. Effect of chemical fertilization and gibberellin spray on the growth and chemical composition of Cupressus sempervirens var horizontals seedlings. Egypt. J. App. Sci. 1994, 9, 323–344. [Google Scholar]
- Shehata, N.N. Response of Poinciana regia Seedlings to Fertilization in Sandy Soils. Master’s Thesis, Minia University, Minia, Egypt, 1995. [Google Scholar]
- Pregl, F. Quantitative Organic Microanalysis, 4th ed.; J. and A. Churchill: London, UK, 1945. [Google Scholar]
- Truog, E.; Meyer, A.H. Improvements in the Deniges Colorimetric method for phosphorous and arsenic. Ind. Eng. Chem. Anal. Ed. 1929, 1, 136–139. [Google Scholar] [CrossRef]
- Brown, J.D.; Lilleland, O. Rapid determination of potassium and sodium in plant material and soil extracts by flame-photometer. Proc. Am. Soc. Hort. Sci. 1946, 48, 341–346. [Google Scholar]
- Lavres, J., Jr.; Santos, J.D.D.G.D., Jr.; Monteiro, F.A. Nitrate reductase activity and spad readings in leaf tissues of guinea grass submitted to nitrogen and potassium rates. Rev. Bras. Ciência Solo 2010, 34, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Snedecor, C.W.; Cochran, W.H. Two-way classification analysis of variance Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989; pp. 254–268. [Google Scholar]
- Duncan, D.B. Multiple range and multiple (F) test. Biometries 1955, 11, 1–24. [Google Scholar] [CrossRef]
- Aumeeruddy, M.Z.; Zengin, G.; Mahomoodally, M.F. A review of the traditional and modern uses of Salvadora persica L. (Miswak): Toothbrush tree of Prophet Muhammad. J. Ethnopharmacol. 2018, 213, 409–444. [Google Scholar] [CrossRef]
- Ponder, F.J. Fertilization improve black walnut growth on a poorly drained site. Tree Planters Notes 1980, 31, 17–19. [Google Scholar]
- Krohn, T.J. Fertilization of Eucalyptus tereticornis in Southern Guam. Tree Planters Notes 1981, 32, 26–28. [Google Scholar]
- Sundralingam, P. Some preliminary studies on the fertilizer requirements of teak. Malaysian Forest. 1982, 45, 361–366. [Google Scholar]
- El-Khateeb, M.A. Effect of Salinity Irrigation, Chemical Fertilization and Soil Media on Growth, Flowering, Chemical Composition and Essential Oil of Eucalyptus torquata and E. nagulosa. Ph.D. Thesis, Cairo University, Cairo, Egypt, 1983. [Google Scholar]
- Hassan, M.M.; Dey, H.B. Studies on the nutritional of forest tree optimum NPK doses for teak seedlings. Forest. Abst. 1984, 45, 318. [Google Scholar]
- Alberto, E.B. Growth response of Agoho Casuarina equisetifolia Forst. seedlings to soil treatments, fertilization and root nodule inoculations under nursery conditions. Master’s Thesis, University of the Philippines, Laguna, Philippines, 1984. [Google Scholar]
- Habba, E.E. Effect of Some Agricultural Treatments and Growth Regulators on Seed Germination and Seedling Growth of Melia azedarach L. and Peltophorum africanum L. Master’s Thesis, Cairo University, Cairo, Egypt, 1985. [Google Scholar]
- Krishnamurthy, R.; Vijayan, C. Response of Eucalyptus “hybrid” (Musore gum) to major nutrient elements. Soils Fertil. 1986, 50, 126–131. [Google Scholar]
- Nasr, M.H.; Hassan, M.T.; El-Sheemy, S.A. Response of different Atriplex species to fertilization in calcareous soil at Nubaria. For. Abst. 1987, 55, 24. [Google Scholar]
- Mohamed, S.H. Physiological Studies on Seedlings of Some Woody Trees Grown under the New Valley Conditions. Master’s Thesis, Minia University, Minia, Egypt, 1996. [Google Scholar]
- El-Kayal, W.E. Esponse of Seedlings Five Tree Species to Applications of Sewage Sludge and Chemical Fertilizer on Two Soil Types. Master’s Thesis, Alexandria University, Alexandria, Egypt, 1996. [Google Scholar]
- Kern, C.C.; Friend, A.L.; Johnson, J.M.F.; Coleman, M.D. Fine root dynamics in a developing Populus deltoides plantation. Tree Physiol. 2004, 24, 651–660. [Google Scholar] [CrossRef] [Green Version]
- López-Bucio, J.; Cruz-Ramírez, A.; Herrera-Estella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Woolfolk, W.T.M.; Friend, A.L. Growth response of cottonwood roots to varied NH4:NO3 ratios in enriched patches. Tree Physiol. 2003, 23, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Q.; Chen, F.; Zhang, F.; Mi, G. Possible involvement of cytokinin in nitrate-mediated root growth in maize. Plant Soil 2005, 277, 185–196. [Google Scholar] [CrossRef]
- Razaq, M.; Zhang, P.; Shen, H.L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 2017, 12, e0171321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salih, N.; Ågren, G.I.; Hallbãcken, L. Modeling response of N addition on C and N allocation in Scandinavian Norway spruce stands. Ecosystems 2005, 8, 373–381. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, J.C.; Zhuang, H.F.; Wang, Z.Q. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecol. Res. 2010, 25, 295–302. [Google Scholar] [CrossRef]
- Chaukiyal, S.P.; Mir, R.A.; Pokhriyal, T.C. Effect of nitrogen fertilizer on biomass production and nodulation behavior of Pongamia pinnata Pierre seedlings under nursery conditions. J. For. Res. 2013, 24, 531–538. [Google Scholar] [CrossRef]
- Negreiros, D.; Fernandes, G.W.; Silveira, F.A.; Chalub, C. Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecologica 2009, 35, 301–310. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Beltrán, G.; Sánchez-Zamora, M.A.; García-Novelo, J.; Aguilera, M.P.; Uceda, M. Olive oil quality decreases with nitrogen over-fertilization. HortScience 2006, 41, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.T.; Aly, M.K. Response of Acacia saligna seedlings to NPK fertilization and growth regulators. Egypt. J. Appl. Sci. 1998, 13, 290–313. [Google Scholar]
- Diwivedi, R.; Saravanan, S.; Shabi, M.; Kasera, S. Effect of organic and inorganic fertilizer on growth and flower yield of jasmine (Jasminum grandiflorum L.). Pharma Innov. J. 2018, 7, 683–686. [Google Scholar]
- Abd-Elaziz, M.F. Effect of Soil Types and NPK Fertilization Treatments on Azadirachta indica Seedlings. Master’s Thesis, Minia University, Minia, Egypt, 2000. [Google Scholar]
- Cooke, J.E.; Martin, T.A.; Davis, J.M. Short-term physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytol. 2005, 167, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, M.; Luo, J.; Cao, X.; Qu, L.; Gai, Y.; Jiang, X.; Liu, T.; Bai, H.; Janz, D.; et al. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow-and fast-growing Populus species. J. Exp. Bot. 2012, 63, 6173–6185. [Google Scholar] [CrossRef] [PubMed]
- Bojović, B.; Stojanović, J. Some wheat leaf characteristics in dependence of fertilization. Kragujevac J. Sci. 2006, 28, 139–146. [Google Scholar]
- Waraich, E.A.; Ahmad, Z.; Ahmad, R.; Saifullah; Ashraf, M.Y. Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.). J. Plant Nutr. 2015, 38, 1929–1943. [Google Scholar] [CrossRef]
- Dayal, J.; Goswami, C.L.; Munjal, R. Influence of phosphorus application on water relations, biochemical parameters and gum content in cluster bean under water deficit. Biol. Plant. 2004, 48, 445–448. [Google Scholar] [CrossRef]
N:P:K (g) | Nitrogen (%) | Phosphorus (%) | Potassium (%) | |||
---|---|---|---|---|---|---|
First Season | Second Season | First Season | Second Season | First Season | Second Season | |
Control | 1.62 c | 2.83 a | 0.25 a | 0.36 a | 1.2 c | 2.2 ab |
T1 | 2.07 a | 1.81 c | 0.30 a | 0.27 a | 2.1 a | 2.5 a |
T2 | 1.76 b | 1.77 c | 0.25 a | 0.27 a | 1.8 b | 2.1 b |
T3 | 1.61 c | 1.61 d | 0.25 a | 0.36 a | 1.2 c | 2.2 ab |
T4 | 1.82 b | 1.82 c | 0.28 a | 0.33 a | 2.5 a | 2.2 ab |
T5 | 1.95 b | 1.95 b | 0.30 a | 0.27 a | 2.1 a | 2.5 a |
T6 | 1.90 b | 1.90 b | 0.25 a | 0.27 a | 1.8 b | 2.1 b |
T7 | 1.80 b | 1.80 c | 0.25 a | 0.36 a | 1.2 c | 2.0 ab |
T8 | 1.87 b | 1.87 c | 0.26 a | 0.33 a | 1.5 a | 2.0 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasheen, F.F.; Negm, A.H.; Hassan, S.E.; Azab, E.; Gobouri, A.A.; Hewidy, M. Nitrogen, Phosphorous, and Potassium Application Rate on the Young Seedling Growth of Salvadora persica. Agriculture 2021, 11, 291. https://doi.org/10.3390/agriculture11040291
Lasheen FF, Negm AH, Hassan SE, Azab E, Gobouri AA, Hewidy M. Nitrogen, Phosphorous, and Potassium Application Rate on the Young Seedling Growth of Salvadora persica. Agriculture. 2021; 11(4):291. https://doi.org/10.3390/agriculture11040291
Chicago/Turabian StyleLasheen, Fawzy F., Ahmed H. Negm, Soheir E. Hassan, Ehab Azab, Adil A. Gobouri, and Mohammed Hewidy. 2021. "Nitrogen, Phosphorous, and Potassium Application Rate on the Young Seedling Growth of Salvadora persica" Agriculture 11, no. 4: 291. https://doi.org/10.3390/agriculture11040291
APA StyleLasheen, F. F., Negm, A. H., Hassan, S. E., Azab, E., Gobouri, A. A., & Hewidy, M. (2021). Nitrogen, Phosphorous, and Potassium Application Rate on the Young Seedling Growth of Salvadora persica. Agriculture, 11(4), 291. https://doi.org/10.3390/agriculture11040291