Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Cultural Practices
2.4. Data Collection
2.4.1. Agronomic Traits
2.4.2. Drought Tolerance Index (DTI)
2.5. Grain Quality Traits
2.5.1. Preparation of Samples
2.5.2. Chemical Characteristics of Grain
2.5.3. Elemental Composition of Grain
2.6. Statistical Analysis
3. Results and Discussion
3.1. Agronomic Traits
3.2. Yield Reductions and Drought Tolerance Index (DTI)
3.3. Chemical Constituents of Grain
3.4. Elemental Composition of Grain
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olaniyan, A.B. Maize panacea for hunger in Nigeria. Afr. J. Plant Sci. 2015, 9, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Bukhsh, M.A.A.H.A.; Ahmad, R.; Iqbal, J.; Maqbool, M.M.; Ali, A.; Ishaque, M.; Hussain, S. Nutritional and physiological significance of potassium application in maize hybrid crop production. Pak. J. Nutr. 2012, 11, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. J. Exp. Bot. 2014, 65, 6191–6204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badr, A.; El-Shazly, H.H.; Tarawneh, R.A.; Börner, A. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants 2020, 9, 565. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize a paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Pandey, P.; Stoerger, V.; Xu, Y.; Qiu, Y.; Ge, Y.; Schnable, J.C. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. GigaScience 2018, 7, gix117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Ren, J.; Yin, L.; Liu, Y.; Deng, X.; Liu, P.; Shiwen-Wang, S. Exogenous melatonin alleviates PEG induced short-term water deficiency in maize by increasing hydraulic conductance. BMC Plant Biol. 2020, 20, 218. [Google Scholar] [CrossRef] [PubMed]
- EL Sabagh, A.; Hossain, A.; Barutçular, C.; Islam, M.S.; Ahmad, Z.; Wasaya, A.; Meena, R.S.; Fahad, S.; Oksana, S.; Hafez, Y.M.; et al. Adverse Effect of Drought on Quality of Major Cereal Crops: Implications and Their Possible Mitigation Strategies; Hasanuzzaman, M., Ed.; Springer Nature Singapore Pte Ltd.: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Aqaei, P.; Weisany, W.; Diyanat, M.; Razmi, J.; Struik, P.C. Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. J. Plant Nutr. 2020, 43, 1205–1216. [Google Scholar] [CrossRef]
- Golbashy, M.; Ebrahimi, M.; Khavari Khorasani, S.; Choukan, R. Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. Afr. J. Agric. Res. 2010, 5, 2714–2719. [Google Scholar]
- Cornic, G.; Prioul, J.L.; Louason, G. Stomatal and non-stomatal contribution in the decline in leaf net CO2 uptake during rapid water stress. Physiol. Plant. 2010, 58, 295–301. [Google Scholar] [CrossRef]
- Gleason, S.M.; Wiggans, D.R.; Bliss, C.A.; Comas, L.H.; Cooper, M.; Dejonge, K.C.; Young, J.S.; Zhang, H. Coordinated decline in photosynthesis and hydraulic conductance during drought stress in Zea mays. Flora 2016, 227, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P.; Colla, G. Effects of drought on nutrient uptake and assimilation in vegetable crops. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2012; pp. 171–195. [Google Scholar]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.G.; Lee, J.; Bae, H.H.; Kim, J.; Son, B.; Kim, S.; Baek, S.; Shin, S.; Jeon, W. Physiological and proteomic analyses of Korean F1 maize (Zea mays L.) hybrids under water-deficit stress during flowering. Appl. Biol. Chem. 2019, 62, 32. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.A.; Ashraf, U.; Tanveer, M.; Khan, I.; Hussain, S.; Shahzad, B.; Zohaib, A.; Abbas, F.; Saleem, M.F.; Ali, I.; et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 2017, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Jin, J.; He, J. 2019. Effects of severe water stress on maize growth processes in the field. Sustainability 2019, 11, 5086. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Han, M.; Comas, L.H.; DeJonge, K.C.; Gleason, S.M.; Trout, T.J.; Ma, L. Response of maize yield components to growth stage-based deficit irrigation. Agron. J. 2019, 111, 3244–3252. [Google Scholar] [CrossRef] [Green Version]
- Barutcular, C.; Dizlek, H.; EL Sabagh, A.; Sahin, T.; EL-Sabagh, M.; Islam, M.S. Nutritional quality of maize in response to drought stress during grain-filling stages in Mediterranean climate condition. J. Exp. Biol. Agric. Sci. 2016, 4, 644–652. [Google Scholar] [CrossRef]
- Balla, K.; Rakszegi, M.; Li, Z.; Békés, F.; Bencze, S.; Veisz, O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Sanders, D.; Pelloux, J.; Brownlee, C.; Harper, J.F. Calcium at the crossroads of signaling. Plant Cell 2002, 14 (Suppl. 1), 401–417. [Google Scholar] [CrossRef] [Green Version]
- Hetherington, A.M.; Brownlee, C. The generation of Ca2+ signals in plants. Annu. Rev. Plant Biol. 2004, 55, 401–427. [Google Scholar] [CrossRef] [Green Version]
- Hochmal, A.K.; Schulze, S.; Trompelt, K.; Hippler, M. Calcium-dependent regulation of photosynthesis. Biochim. Biophys. Acta 2015, 1847, 993–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapilan, R.; Vaziri, M.; Zwiazek, J.J. Regulation of aquaporins in plants under stress. Biol. Res. 2018, 51, 4. [Google Scholar] [CrossRef]
- Kong, X.; Lv, W.; Jiang, S.; Dan, Z.; Cai, G.; Pan, J.; Li, D. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom. 2013, 14, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, H.B.; Song, W.Y.; Chu, L.Y. Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biol. 2008, 331, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Hayat, K.; Iqbal, A.; Xie, L. Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 2020, 10, 1323. [Google Scholar] [CrossRef]
- Cardoso, A.A.; Gori, A.; Da-Silva, C.J.; Brunetti, C. Abscisic acid biosynthesis and signaling in plants: Key targets to improve water use efficiency and drought tolerance. Appl. Sci. 2020, 10, 6322. [Google Scholar] [CrossRef]
- Naeem, M.; Naeem, M.S.; Ahmad, R.; Ihsan, M.Z.; Ashraf, M.Y.; Hussain, Y.; Fahad, S. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Arch. Agron. Soil Sci. 2018, 64, 116–131. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Réthoré, E.; Pluchon, S.; Ali, N.; Billiot, B.; Yvin, J.C. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. Int. J. Mol. Sci. 2019, 20, 3777. [Google Scholar] [CrossRef] [Green Version]
- Nayyar, H.; Kaushal, S. Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. Biol. Plant. 2002, 45, 65–70. [Google Scholar] [CrossRef]
- Upadhyaya, H.; Panda, S.K.; Dutta, B.K. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Rep. 2011, 30, 495–503. [Google Scholar] [CrossRef]
- Fan, D. The effect of calcium to maize seedlings under drought stress. Am. J. Plant Sci. 2019, 10, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Naeem, M.S.; Ahmad, R.; Ahmad, R. Foliar-applied calcium induces drought stress tolerance in maize by manipulating osmolyte accumulation and antioxidative responses. Pak. J. Bot. 2017, 49, 427–434. [Google Scholar] [CrossRef]
- Gleason, S.M. Evolutionary outcomes should inform strategies to increase drought tolerance. Nat. Plants 2015, 1, 15114. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Muhammad, A.M.; Cengiz, R. Drought Stress in Maize (Zea mays L.) Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–79. [Google Scholar]
- Al-Shaheen, M.R.; Soh, A. Effect of proline and gibberellic acid on the qualities and qualitative of corn (Zea mays L.) under the influence of different levels of the water stress. Int. J. Sci. Res. 2016, 6, 752–756. [Google Scholar]
- EL Sabagh, A.; Hossain, A.; Barutçular, C.; Khaled, A.A.A.; Fahad, S.; Anjorin, F.B.; Islam, M.S.; Ratnasekera, D.; Kizilgeçi, F.; Yadav, G.S.; et al. Sustainable maize (Zea mays l.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. J. Exp. Biol. Agric. Sci. 2018, 6, 282–295. [Google Scholar] [CrossRef]
- Naghavi, M.R.; Pour-Aboughadareh, A.R.; Khalili, M. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Not. Sci. Biol. 2013, 5, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Klute, A. Methods of Soil Analysis. Part-I: Physical and Mineralogical Methods, 2nd ed.; American Society of Agronomy Madison: Madison, WI, USA, 1986. [Google Scholar]
- Mclean, E.O. Soil pH and Lime Requirement. In Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties-Agronomy Monograph no. 9; Page, A.L., Ed.; ASA-SSSA: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Rhoades, J.D. Soluble Salts. In Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties-Agronomy Monograph no. 9; Page, A.L., Ed.; ASA-SSSA: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties-Agronomy Monograph no. 9; Page, A.L., Ed.; ASA-SSSA: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties-Agronomy Monograph no. 9; Page, A.L., Ed.; ASA-SSSA: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties-Agronomy Monograph no. 9; Page, A.L., Ed.; ASA-SSSA: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, Sodium, and Potassium. In Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties-Agronomy Monograph no. 9; Page, A.L., Ed.; ASA-SSSA: Madison, WI, USA, 1983. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, M.; Camerlgnck, R. Chemical Analysis of Plant and Soil; Laboratory Analytical Agrochemistry, State University of Ghent: Ghent, Belgium, 1982; pp. 100–129. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Fageria, N.K. Maximizing Crop Yields; Marcel Dekker, Inc.: New York, NY, USA, 1992. [Google Scholar]
- A.O.A.C. Official Methods of Analysis of Association of Official Agricultural Chemists, 17th ed.; Suitem, H.W., Ed.; A.O.A.C.: Rockville, MD, USA, 2000; Volume 2, pp. 66–68. [Google Scholar]
- Fraser, J.R.; Holmes, D.C. Proximate analysis of wheat flour carbohydrates. IV.—Analysis of whole meal flour and some of its fractions. J. Sci. Food Agric. 1959, 10, 506–512. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Fred, S. Colorimetric method for determination of sugars and related substance. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Rasmussen, T.S.; Henry, R.J. Starch determination in horticultural plant- material by an enzymatic- colorimetric procedure. J Sci. Food Agric. 1990, 52, 159–170. [Google Scholar] [CrossRef]
- Mohan, S.B.; Rajinder, K.G. Bread (composite flour) formulation and study of its nutritive, phytochemical and functional properties. J. Pharmacogn. Phytochem. 2015, 4, 254–268. [Google Scholar]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extract. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Jones, J.B., Jr.; Wolf, B.; Mills, H.A. Plant analysis handbook. In A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing, Inc.: Athens, GA, USA, 1991; pp. 30–34. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. Analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- SPSS. SPSS Statistics 17.0. SPSS for Windows; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 9th ed.; Iowa State Univ. Press: Ames, IA, USA, 1994. [Google Scholar]
- Freed, R.; Einensmith, S.P.; Gutez, S.; Reicosky, D.; Smail, V.W.; Wolberg, P. User’s Guide to MSTAT-C Analysis of Agronomic Research Experiments; Michigan State University: East Lansing, MI, USA, 1989. [Google Scholar]
- Abdelaal, K.A.A.; Hafez, Y.M.; EL Sabagh, A.; Saneoka, H. Ameliorative effects of abscisic acid and yeast on morpho-physiological and yield characters of maize (Zea mays L.) plants under water deficit conditions. Fresenius Environ. Bull. 2017, 26, 7372–7383. [Google Scholar]
- EL Sabagh, A.; Barutçular, C.; Islam, M.S. Relationships between stomatal conductance and yield under deficit irrigation in maize (Zea mays L.). J. Exp. Biol. Agric. Sci. 2017, 5, 15–21. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.C.; Farooq, M.; Hussain, M.; Xue, L.L.; Zou, C.M. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 2011, 197, 177–185. [Google Scholar] [CrossRef]
- Brown, C.E.; Pezeshki, S.R.; DeLaune, R.D. The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environ. Exp. Bot. 2006, 58, 140–148. [Google Scholar] [CrossRef]
- Aliniaeifard, S.; Shomali, A.; Seifikalhor, M.; Lastochkina, O. Calcium signaling in plants under drought. In Salt and Drought Stress Tolerance in Plants; Signaling and Communication in Plants; Hasanuzzaman, M., Tanveer, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kudla, J.; Batistic, O.; Hashimoto, K. Calcium signals: The lead currency of plant information processing. Plant Cell 2010, 22, 541–563. [Google Scholar] [CrossRef]
- Reddy, A.S.; Ali, G.S.; Celesnik, H.; Day, I.S. Coping with stresses: Roles of calcium and calcium/calmodulin-regulated gene expression. Plant Cell 2011, 23, 2010–2032. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.J.; Ferreira, M.M.; Lobato, A.K.D.; de Freitas, W.A.; Carvalho, J.D.A.; Ferreira, E.D.; Broetto, F. Potential of calcium silicate to mitigate water deficiency in maize. Bragantia Campinas 2016, 75, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Del-Amor, F.; Marcelis, L. Regulation of nutrient uptake, water uptake and growth under calcium starvation and recovery. J. Hort. Sci. Biotechnol. 2003, 78, 343–349. [Google Scholar] [CrossRef]
- Al-Naggar, A.M.M.; Shafik, M.M.; Elsheikh, M.O.A. Putative mechanisms of drought tolerance in maize (Zea mays L.) via root system architecture traits. Annu. Res. Rev. Biol 2019, 32, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Plant Breeding for Stress Environment; CRC Press Inc.: Boca Raton, FL, USA, 1988. [Google Scholar]
- Pandey, R.K.; Maranville, J.W.; Admou, A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. grain yield and yield components. Agric. Water Manag. 2000, 46, 1–13. [Google Scholar] [CrossRef]
- Al-Naggar, A.M.M.; Soliman, S.M.; Hashimi, M.N. Tolerance to drought at flowering stage of 28 maize hybrids and populations. Egypt. J. Plant Breed. 2011, 15, 69–87. [Google Scholar]
- Al-Naggar, A.M.M.; Atta, M.M.M.; Ahmed, M.A.; Younis, A.S.M. Influence of deficit irrigation at silking stage and genotype on maize (Zea mays L.) agronomic and yield characters. Inter. J. Plant Soil Sci. 2016, 7, 1–16. [Google Scholar] [CrossRef]
- Atta, M.M.M.; Hamza, M.; Gohar, A.M. Tolerance of ten yellow corn hybrids to water deficit at flowering and grain filling. Egypt. J. Plant Breed. 2017, 21, 179–198. [Google Scholar] [CrossRef]
- Garba, I.I.; Adnan, A.A.; Shaibu, A.S. Quantifying the response of different maturity groups of maize (Zea mays L.) supplementary irrigation in the Sudan Savannah of Nigeria. Afr. J. Agric. Res 2019, 14, 1415–1420. [Google Scholar] [CrossRef]
- Oluwaranti, A.; Ajani, Q.T. Evaluation of drought tolerant maize varieties under drought and rain-fed conditions: A rainforest location. J. Agric. Sci. 2016, 8, 153–162. [Google Scholar] [CrossRef]
- Mubarik, N.; Iqbal, A.; Munir, I.; Arif, M. Alleviation of adverse effects of water stress on Zea mays (Cv Azam) by exogenous application of CaCl2. Sarhad. J. Agric 2018, 34, 327–333. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nut. 2012, 12, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.N. Modulating plant calcium for better nutrition and stress tolerance. ISRN Botany 2013, 2013, 952043. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.X.; He, M.R.; Wang, Z.L.; Wang, Y.F.; Lin, Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Comptes Rendus Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, D.A. Impact of drought stress on maize (Zea mays) plant in presence or absence of salicylic acid spraying. J. Soil Sci. and Agric. Eng. Mansoura Univ. 2017, 8, 223–229. [Google Scholar] [CrossRef]
- Dubey, R.S.; Pessarakli, M. Physiological mechanisms of nitrogen absorption and assimilation. In plants under stressful conditions. In Handbook of Plant and Crop Physiology, 2nd ed.; Passarakli, M., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2001; pp. 636–655. [Google Scholar]
- Neslihan-Ozturk, Z.; Talam, V.; Deyholos, M.; Michalowski, C.B.; Galbraith, D.M.; Gozukirmizi, N.; Tuberosa, R.; Bohnert, H.J. Monitoring large-scale changes in transcript abundance in drought- and salt stressed barley. Plant Mol. Biol. 2002, 48, 551–573. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jensen, C.R.; Andersen, M.N. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Res. 2004, 86, 1–13. [Google Scholar] [CrossRef]
- Ali, Q.; Ashraf, M. Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ. Exp. Bot. 2011, 71, 249–259. [Google Scholar] [CrossRef]
- Kresović, B.; Gajić, B.; Tapanarova, A.; Dugalić, G. How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a Temperate Climate. Pol. J. Environ. Stud. 2018, 27, 1123–1131. [Google Scholar] [CrossRef]
- Lu, D.; Cai, X.; Zhao, J.; Shen, X.; Lu, W. Effects of drought after pollination on grain yield and quality of fresh waxy maiz. J. Sci. Food Agric. 2015, 95, 210. [Google Scholar] [CrossRef] [PubMed]
- Ge, T.D.; Sui, F.G.; Nie, S.; Sun, N.B.; Xiao, H.; Tong, C.L. Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. J. Plant. Nutr. 2010, 33, 1811–1818. [Google Scholar] [CrossRef]
Month | 2018 | 2019 | ||||
---|---|---|---|---|---|---|
Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | |
May | 28.2 | 43.3 | 0.00 | 27.6 | 34.9 | 0.00 |
June | 29.9 | 45.4 | 0.00 | 29.9 | 47.1 | 0.00 |
July | 30.7 | 52.9 | 0.00 | 30.6 | 50.3 | 0.00 |
August | 30.5 | 56.0 | 0.00 | 30.8 | 51.4 | 0.00 |
September | 29.4 | 54.7 | 0.00 | 28.5 | 56.2 | 0.00 |
Soil Analysis | 2018 | 2019 |
---|---|---|
Physical properties | ||
Fine Sand (%) | 27 | 21 |
Silt (%) | 29 | 26 |
Clay (%) | 44 | 53 |
Texture | Clay | Clay |
Chemical properties | ||
pH(1:1) | 7.21 | 7.41 |
EC(1:1) (dS m−1) | 0.92 | 0.75 |
Organic matter (%) | 2.43 | 2.12 |
Available N (mg kg−1) | 12.3 | 10.7 |
Available P (mg kg−1) | 19.5 | 14.3 |
Available K (mg kg−1) | 76.0 | 91.0 |
Irrigation system | Surface irrigation | Surface irrigation |
Season | pH | EC (ds m−1) | Soluble Ions (meq/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
HCO3− | CL− | SO4− | Ca+ | Mg+ | Na+ | K+ | |||
2018 | 7.02 | 0.78 | 4.78 | 0.92 | 1.09 | 3.6 | 3.12 | 0.59 | 0.11 |
2019 | 7.37 | 0.86 | 5.12 | 1.04 | 1.28 | 4.3 | 2.60 | 0.90 | 0.18 |
Date | Day | Stage | No. of Irrigation | Gross (m3/ha) | ||||
---|---|---|---|---|---|---|---|---|
mm * | 100% Irrigation | 75% Irrigation | 50% Irrigation | |||||
23 | May | 9 | Init | 1 | 28 | 286 | 215 | 143 |
1 | June | 18 | Init | 3 | 30 | 304 | 228 | 152 |
13 | June | 30 | Dev | 61 | 610 | 457 | 305 | |
22 | June | 39 | Dev | 73 | 732 | 549 | 366 | |
30 | June | 47 | Dev | 82 | 829 | 621 | 414 | |
9 | July | 56 | Mid | 3 | 115 | 1161 | 871 | 581 |
18 | July | 65 | Mid | 119 | 1202 | 901 | 601 | |
27 | July | 74 | Mid | 116 | 1173 | 880 | 587 | |
5 | August | 83 | Mid | 2 | 113 | 1139 | 854 | 570 |
14 | August | 92 | Mid | 109 | 1094 | 820 | 547 | |
25 | August | 103 | End | 114 | 1151 | 863 | 576 | |
7 | September | 116 | End | 1 | 92 | 930 | 698 | 465 |
16 | September | End | End | Harvest | ||||
Total uptake of water during season (m3/ha) | 10,611 | 7958 | 5306 |
Water Stress | Ca Levels (mg/L) | Cultivars | Ear Length (cm) | No. of Rows | No. of Grains/ Row | Ear Weight/Plant (g) | 100-Grain Weight (g) | Grain Yield/ha (kg) |
---|---|---|---|---|---|---|---|---|
100% Irrigation | 50 | SC-P3444 | 19.2 | 14.0 | 36.5 | 171.4 | 33.5 | 8061 |
Sammaz-35 | 17.0 | 14.0 | 37.0 | 159.2 | 33.6 | 7570 | ||
EVDT | 18.0 | 12.7 | 37.8 | 143.6 | 28.0 | 7191 | ||
0 | SC-P3444 | 15.8 | 14.0 | 34.0 | 148.1 | 31.1 | 7676 | |
Sammaz-35 | 17.5 | 14.7 | 30.5 | 129.8 | 28.6 | 6670 | ||
EVDT | 17.3 | 13.0 | 35.2 | 115.7 | 26.1 | 6718 | ||
75% Irrigation | 50 | SC-P3444 | 13.2 | 12.7 | 31.2 | 121.3 | 30.6 | 6588 |
Sammaz-35 | 15.5 | 12.7 | 28.0 | 95.8 | 27.3 | 5518 | ||
EVDT | 15.7 | 12.3 | 27.3 | 88.1 | 25.5 | 5079 | ||
0 | SC-P3444 | 11.7 | 12.0 | 29.7 | 97.2 | 27.4 | 5518 | |
Sammaz-35 | 14.7 | 12.0 | 26.3 | 90.2 | 25.7 | 4779 | ||
EVDT | 16.3 | 13.3 | 24.8 | 73.8 | 24.9 | 4379 | ||
50% Irrigation | 50 | SC-P3444 | 15.0 | 12.0 | 22.2 | 63.6 | 23.7 | 4482 |
Sammaz-35 | 15.7 | 12.0 | 20.8 | 58.7 | 23.2 | 4006 | ||
EVDT | 14.8 | 12.0 | 19.7 | 54.2 | 22.8 | 3882 | ||
0 | SC-P3444 | 16.5 | 11.7 | 21.5 | 56.5 | 23.2 | 3733 | |
Sammaz-35 | 16.8 | 11.3 | 20.7 | 52.2 | 22.0 | 3364 | ||
EVDT | 18.0 | 11.7 | 17.3 | 42.7 | 21.1 | 3391 | ||
LSD p = 0.05 | 1.69 | 1.40 | 3.11 | 15.64 | 1.78 | 439.3 |
Cultivars | Mean | Change% | Drought Tolerance Index (DTI) | ||||
---|---|---|---|---|---|---|---|
100% Irrigation | 75% Irrigation | 50% Irrigation | 75% Irrigation | 50% Irrigation | 75% Irrigation | 50% Irrigation | |
SC-P3444 | 7868 | 6053 | 4108 | 23 | 62 | 1.23 (T) | 1.16 (T) |
Sammaz-35 | 7120 | 5149 | 3685 | 28 | 67 | 0.94 (S) | 0.94 (S) |
EVDT | 6955 | 4729 | 3636 | 32 | 70 | 0.85 (S) | 0.91 (S) |
Water Stress | Ca levels (mg/L) | Cultivars | Protein | Ash | Crude Fiber | Ether Extract | Carbohydrate | Starch | Total Sugar | Total Phenols * |
---|---|---|---|---|---|---|---|---|---|---|
100% Irrigation | 50 | SC-P3444 | 4.45 | 1.90 | 1.48 | 3.83 | 88.34 | 83.48 | 0.97 | 1319 |
Sammaz-35 | 4.95 | 1.59 | 1.17 | 3.56 | 88.73 | 84.53 | 1.64 | 1127 | ||
EVDT | 4.32 | 1.44 | 1.06 | 3.12 | 90.06 | 84.91 | 1.29 | 797 | ||
0 | SC-P3444 | 4.24 | 1.68 | 1.01 | 3.38 | 89.69 | 83.72 | 0.64 | 2025 | |
Sammaz-35 | 4.44 | 1.40 | 1.02 | 7.13 | 86.01 | 82.61 | 1.73 | 837 | ||
EVDT | 4.38 | 1.36 | 1.34 | 3.97 | 88.95 | 83.79 | 1.14 | 692 | ||
75% Irrigation | 50 | SC-P3444 | 4.62 | 1.61 | 0.98 | 3.36 | 89.43 | 83.46 | 1.20 | 1842 |
Sammaz-35 | 4.50 | 1.48 | 0.97 | 3.47 | 89.58 | 84.93 | 0.93 | 704 | ||
EVDT | 4.26 | 1.83 | 1.17 | 3.21 | 89.53 | 82.62 | 1.51 | 688 | ||
0 | SC-P3444 | 4.47 | 1.54 | 1.11 | 3.44 | 89.44 | 84.81 | 1.38 | 1932 | |
Sammaz-35 | 4.45 | 1.15 | 1.02 | 3.48 | 89.90 | 84.05 | 1.33 | 395 | ||
EVDT | 4.19 | 1.48 | 1.22 | 3.82 | 89.29 | 82.79 | 1.79 | 634 | ||
50% Irrigation | 50 | SC-P3444 | 4.69 | 2.16 | 1.54 | 3.95 | 87.66 | 83.34 | 1.31 | 1156 |
Sammaz-35 | 4.89 | 2.23 | 1.27 | 6.96 | 84.65 | 81.44 | 1.21 | 469 | ||
EVDT | 4.46 | 1.90 | 1.36 | 4.08 | 88.20 | 83.51 | 1.43 | 698 | ||
0 | SC-P3444 | 4.68 | 1.62 | 0.91 | 3.20 | 89.59 | 85.41 | 1.42 | 1412 | |
Sammaz-35 | 4.76 | 1.84 | 1.25 | 4.07 | 88.08 | 84.56 | 1.59 | 627 | ||
EVDT | 4.02 | 1.82 | 1.33 | 3.31 | 89.52 | 82.43 | 1.19 | 592 | ||
LSD p = 0.05 | 0.16 | 0.14 | 0.18 | 0.12 | 2.30 | 1.21 | 0.15 | 30.28 |
Water Stress | Ca Levels (mg/L) | Cultivars | N * | P | K | Mn | Fe |
---|---|---|---|---|---|---|---|
100% Irrigation | 50 | SC-P3444 | 740 | 3506 | 3055 | 62.1 | 37.9 |
Sammaz-35 | 850 | 3420 | 2570 | 59.8 | 31.5 | ||
EVDT | 752 | 3066 | 2446 | 62.9 | 79.5 | ||
0 | SC-P3444 | 730 | 3082 | 2904 | 46.8 | 27.6 | |
Sammaz-35 | 729 | 3164 | 2287 | 71.5 | 25.2 | ||
EVDT | 725 | 3404 | 2490 | 84.5 | 68.7 | ||
75% Irrigation | 50 | SC-P3444 | 787 | 3234 | 2605 | 48.8 | 33.1 |
Sammaz-35 | 853 | 4988 | 2946 | 44.6 | 60.6 | ||
EVDT | 838 | 3980 | 2478 | 90.5 | 178.9 | ||
0 | SC-P3444 | 705 | 3229 | 2480 | 46.3 | 28.5 | |
Sammaz-35 | 745 | 2819 | 2187 | 101.4 | 54.3 | ||
EVDT | 798 | 2969 | 2138 | 60.3 | 79.1 | ||
50% Irrigation | 50 | SC-P3444 | 832 | 4306 | 2985 | 76.5 | 32.1 |
Sammaz-35 | 851 | 4750 | 3020 | 100.6 | 64.8 | ||
EVDT | 853 | 4362 | 2366 | 89.4 | 96.8 | ||
0 | SC-P3444 | 791 | 3249 | 2500 | 54.8 | 22.0 | |
Sammaz-35 | 805 | 4132 | 2696 | 105.9 | 44.0 | ||
EVDT | 647 | 3782 | 2923 | 71.1 | 51.3 | ||
LSD p = 0.05 | 27 | 205 | 221 | 5.9 | 6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Abdel-Lattif, H.; Shahba, M. Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture 2021, 11, 285. https://doi.org/10.3390/agriculture11040285
Abbas M, Abdel-Lattif H, Shahba M. Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture. 2021; 11(4):285. https://doi.org/10.3390/agriculture11040285
Chicago/Turabian StyleAbbas, Mohamed, Hashim Abdel-Lattif, and Mohamed Shahba. 2021. "Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress" Agriculture 11, no. 4: 285. https://doi.org/10.3390/agriculture11040285
APA StyleAbbas, M., Abdel-Lattif, H., & Shahba, M. (2021). Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture, 11(4), 285. https://doi.org/10.3390/agriculture11040285