Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures
Abstract
:1. Introduction
- I.
- Diverse mixtures, including species rich in PSM and PPO-rich red clover (RC), will improve the protein use efficiency, thus increasing milk yields.
- II.
- The inclusion of PSM-rich legumes and herbs will reduce the methane intensity (g CH4 kg FCM−1) as a result of both the increased milk yield and the anti-methanogenic effect from polyphenols.
- III.
- Despite the increased species number, diverse mixtures would not decrease the energy yields compared to binary mixtures if the grazing intervals are short enough to provide only material with high digestibility.
2. Materials and Methods
2.1. Weather Conditions
2.2. Pasture and Grazing Management
2.3. Animals, Experimental Design, and Treatment
2.4. Herbage Measurements
2.5. Animal Measurements
2.6. Chemical Analysis
2.7. Statistical Analysis
3. Results
3.1. Methane Emissions and Sward Characteristics
3.2. Milk Yield, Milk Composition, and Methane Intensity
4. Discussion
4.1. Excellent Forage Quality Might Explain Generally High Milk Yields and Low Methane Intensities
4.2. Increasing Pasture Diversity Did Not Reduce Methane Emissions Further
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Plant Group | N | Mean | Range | SEC | R2 | SEP |
---|---|---|---|---|---|---|---|
ME (MJ/kg DM) | whole sward | 251 | 10.810 | 8.38–12.62 | 0.179 | 0.959 | 0.195 |
ME (MJ/kg DM) | Grasses | 248 | 10.806 | 8.38–12.62 | 0.173 | 0.956 | 0.194 |
Legumes | 168 | 10.737 | 8.55–12.41 | 0.15 | 0.961 | 0.196 | |
Herbs | 117 | 10.691 | 8.38–12.54 | 0.154 | 0.963 | 0.211 | |
NEL (MJ/kg DM) | whole sward | 249 | 6.567 | 4.79–7.81 | 0.138 | 0.955 | 0.173 |
NEL (MJ/kg DM) | Grasses | 250 | 6.569 | 4.79–7.87 | 0.136 | 0.949 | 0.193 |
Legumes | 167 | 6.512 | 4.92–7.77 | 0.106 | 0.965 | 0.152 | |
Herbs | 115 | 6.514 | 4.80–7.784 | 0.112 | 0.964 | 0.163 | |
DOM (g/kg DM) | whole sward | 249 | 809.45 | 642.6–919.0 | 8.85 | 0.967 | 9.14 |
DOM (g/kg DM) | Grasses | 248 | 821.04 | 632.1–918.8 | 10.83 | 0.956 | 10.97 |
Legumes | 173 | 803.63 | 657.6–902.6 | 10.36 | 0.944 | 12.96 | |
Herbs | 118 | 817.42 | 642.6–904.3 | 13.51 | 0.943 | 12.45 | |
N (g/kg DM) | whole sward | 268 | 26.69 | 8.7–54.2 | 0.951 | 0.991 | 1.071 |
N (g/kg DM) | Grasses | 277 | 22.59 | 9–54.9 | 0.802 | 0.991 | 0.914 |
legumes | 178 | 35.07 | 14.7–57.1 | 1.116 | 0.981 | 1.131 | |
herbs | 86 | 26.39 | 10.3–39.9 | 0.749 | 0.995 | 1.317 |
References
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef] [Green Version]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Orginazion of the United Nations (FAO): Rome, Italy, 2013; p. 139. Available online: http://www.fao.org/3/i3437e/i3437e.pdf (accessed on 6 November 2020).
- Thorpe, A. Enteric fermentation and ruminant eructation: The role (and control?) of methane in the climate change debate. Clim. Chang. 2009, 93, 407–431. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- O’Mara, F.P. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Technol. 2011, 166, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Fruet, A.P.B.; Trombetta, F.; Stefanello, F.S.; Speroni, C.S.; Donadel, J.Z.; De Souza, A.N.M.; Rosado Júnior, A.; Tonetto, C.J.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat Sci. 2018, 140, 112–118. [Google Scholar] [CrossRef]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef] [PubMed]
- Peyraud, J.L.; Pol, A.v.d.; Dillon, P.; Delaby, L. Producing milk from grazing to reconcile economic and environmental performances. In Proceedings of the 23th General Meeting of the European Grassland Federation, Kiel, Germany, 29 August–2 September 2010; pp. 163–164. Available online: https://www.europeangrassland.org/en/infos/printed-matter/proceedings.html (accessed on 6 November 2020).
- Thomet, P.; Cutullic, E.; Bisig, W.; Wuest, C.; Elsaesser, M.; Steinberger, S.; Steinwidder, A. Merits of full grazing systems as a sustainable and efficient milk production strategy. In Proceedings of the 16th Symposium of the European Grassland Federation, Gumpenstein, Austria, 29–31 August 2011; pp. 273–285. Available online: https://www.europeangrassland.org/en/infos/printed-matter/proceedings.html (accessed on 5 October 2020).
- Kühl, S.; Gassler, B.; Spiller, A. Labeling strategies to overcome the problem of niche markets for sustainable milk products: The example of pasture-raised milk. J. Dairy Sci. 2017, 100, 5082–5096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinrich, R.; Kühl, S.; Zühlsdorf, A.; Spiller, A. Consumer Attitudes in Germany towards Different Dairy Housing Systems and Their Implications for the Marketing of Pasture Raised Milk. Int. Food Agribus. Manag. Rev. 2014, 17, 205–222. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Buldgen, A.; Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 2009, 13, 559–573. Available online: https://popups.uliege.be/1780-4507/index.php?id=4757 (accessed on 10 December 2020).
- Holter, J.B.; West, J.W.; McGilliard, M.L. Predicting Ad Libitum Dry Matter Intake and Yield of Holstein Cows1. J. Dairy Sci. 1997, 80, 2188–2199. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting Intake and Digestibility Using Mathematical Models of Ruminal Function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, K.; Mitani, T.; Kondo, S. Herbage intake and ruminal digestion of dairy cows grazed on perennial ryegrass pasture either in the morning or evening. Anim. Sci. J. 2016, 87, 997–1004. [Google Scholar] [CrossRef]
- Vazquez, O.P.; Smith, T.R. Factors Affecting Pasture Intake and Total Dry Matter Intake in Grazing Dairy Cows. J. Dairy Sci. 2000, 83, 2301–2309. [Google Scholar] [CrossRef]
- Peyraud, J.L.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachendorf, M.; Büchter, M.; Trott, H.; Taube, F. Performance and environmental effects of forage production on sandy soils. II. Impact of defoliation system and nitrogen input on nitrate leaching losses. Grass Forage Sci. 2004, 59, 56–68. [Google Scholar] [CrossRef]
- Muñoz, C.; Letelier, P.A.; Ungerfeld, E.M.; Morales, J.M.; Hube, S.; Pérez-Prieto, L.A. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows. J. Dairy Sci. 2016, 99, 7945–7955. [Google Scholar] [CrossRef] [Green Version]
- Wims, C.M.; Deighton, M.H.; Lewis, E.; O’Loughlin, B.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period1. J. Dairy Sci. 2010, 93, 4976–4985. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, H.; Reinsch, T.; Hess, S.; Taube, F. Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems. J. Clean. Prod. 2019, 211, 161–170. [Google Scholar] [CrossRef]
- Leip, A.; Weiss, F.; Wasenaar, T.; Perez, I.; Fellmann, T.; Loudjami, P.; Tuiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS)—Final Report; European Commission, Joint Research Centre: Ispra, Italy, 2010; Available online: https://op.europa.eu/s/oMkr (accessed on 5 January 2021).
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S.; Waldrip, H.M.; Parker, D.; Todd, R.W.; Brauer, D. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk, B.; Karonen, M.; Adamczyk, S.; Engström, M.T.; Laakso, T.; Saranpää, P.; Kitunen, V.; Smolander, A.; Simon, J. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol. Biochem. 2017, 107, 60–67. [Google Scholar] [CrossRef]
- Kagiya, N.; Reinsch, T.; Taube, F.; Salminen, J.-P.; Kluß, C.; Hasler, M.; Malisch, C.S. Turnover rates of roots vary considerably across temperate forage species. Soil Biol. Biochem. 2019, 139, 107614. [Google Scholar] [CrossRef]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.-P.; et al. Benefits of Condensed Tannins in Forage Legumes Fed to Ruminants: Importance of Structure, Concentration, and Diet Composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Aerts, R.J.; Barry, T.N.; McNabb, W.C. Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ. 1999, 75, 1–12. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Lee, M.R.F. Forage polyphenol oxidase and ruminant livestock nutrition. Front. Plant Sci. 2014, 5, 694. [Google Scholar] [CrossRef] [PubMed]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Luscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Haughey, E.; Finn John, A.; Hoekstra Nyncke, J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Hungate, B.A.; Barbier, E.B.; Ando, A.W.; Marks, S.P.; Reich, P.B.; van Gestel, N.; Tilman, D.; Knops, J.M.H.; Hooper, D.U.; Butterfield, B.J.; et al. The economic value of grassland species for carbon storage. Sci. Adv. 2017, 3, e1601880. [Google Scholar] [CrossRef] [Green Version]
- Naumann, H.; Sepela, R.; Rezaire, A.; Masih, S.E.; Zeller, W.E.; Reinhardt, L.A.; Robe, J.T.; Sullivan, M.L.; Hagerman, A.E. Relationships between Structures of Condensed Tannins from Texas Legumes and Methane Production During In Vitro Rumen Digestion. Molecules 2018, 23, 2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboagye, I.A.; Oba, M.; Castillo, A.R.; Koenig, K.M.; Iwaasa, A.D.; Beauchemin, K.A. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet1,2. J. Anim. Sci. 2018, 96, 5276–5286. [Google Scholar] [CrossRef]
- Gere, J.I.; Gratton, R. Simple, low-cost flow controllers for time averaged atmospheric sampling and other applications. Lat. Am. Appl. Res. 2010, 40, 377–381. Available online: https://www.researchgate.net/publication/258311874 (accessed on 12 June 2019).
- Belanche, A.; Kingston-Smith, A.H.; Griffith, G.W.; Newbold, C.J. A Multi-Kingdom Study Reveals the Plasticity of the Rumen Microbiota in Response to a Shift From Non-grazing to Grazing Diets in Sheep. Front. Microbiol. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, L.; Schwarz, F.; Erdin, D.; Fischer, B.; Spiekers, H.; Steingass, H.; Meyer, U.; Chassot, A.; Jilg, T.; Obermaier, A. Vorhersage der Futteraufnahme von Milchkühen–Datenbasis von 10 Forschungs-und Universitätsinstituten Deutschlands, Österreichs und der Schweiz. VDLUFA-Schriftenreihe 2004, 60, 484–504. [Google Scholar]
- Jensen, L.M.; Nielsen, N.I.; Nadeau, E.; Markussen, B.; Nørgaard, P. Evaluation of five models predicting feed intake by dairy cows fed total mixed rations. Livest. Sci. 2015, 176, 91–103. [Google Scholar] [CrossRef]
- Sjaunja, L. A Nordic proposal for an energy-corrected milk (ECM) formula. In Proceedings of the 27th Session International Committee for Recording and Productivity of Milk Animals, Paris, France, 2–6 July 1990; Available online: https://popups.uliege.be/1780-4507/index.php?id=4757 (accessed on 3 June 2020).
- Berndt, A.; Boland, T.M.; Deighton, M.H.; Gere, J.I.; Grainger, C.; Hegarty, R.S.; Iwaasa, A.D.; Koolaard, J.P.; Lassey, K.R.; Luo, D.; et al. Guidelines for Use of Sulphur Hexafluoride (SF 6) Tracer Technique to Measure Enteric Methane Emissions from Ruminants; New Zealand Agricultural Greenhouse Gas Research Centre: Palmerston North, New Zealand, 2014; p. 166. [Google Scholar] [CrossRef]
- De Boever, J.L.; Cottyn, B.G.; Andries, J.I.; Buysse, F.X.; Vanacker, J.M. The use of a cellulase technique to predict digestibility, metabolizable and net energy of forages. Anim. Feed Sci. Technol. 1988, 19, 247–260. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Münger, A.; Kreuzer, M. Methane emission as determined in contrasting dairy cattle breeds over the reproduction cycle. Int. Congr. Ser. 2006, 1293, 119–122. [Google Scholar] [CrossRef]
- van Wyngaard, J.D.V.; Meeske, R.; Erasmus, L.J. Effect of concentrate feeding level on methane emissions, production performance and rumen fermentation of Jersey cows grazing ryegrass pasture during spring. Anim. Feed Sci. Technol. 2018, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Olijhoek, D.W.; Løvendahl, P.; Lassen, J.; Hellwing, A.L.F.; Höglund, J.K.; Weisbjerg, M.R.; Noel, S.J.; McLean, F.; Højberg, O.; Lund, P. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J. Dairy Sci. 2018, 101, 9926–9940. [Google Scholar] [CrossRef] [Green Version]
- Jonker, A.; Molano, G.; Sandoval, E.; Taylor, P.S.; Antwi, C.; Olinga, S.; Cosgrove, G.P. Methane emissions differ between sheep offered a conventional diploid, a high-sugar diploid or a tetraploid perennial ryegrass cultivar at two allowances at three times of the year. Anim. Prod. Sci. 2016, 58, 1043–1048. [Google Scholar] [CrossRef]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014, 69, 32–48. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Durmic, Z.; Moate, P.J.; Jacobs, J.L.; Vadhanabhuti, J.; Vercoe, P.E. In vitro fermentability and methane production of some alternative forages in Australia. Anim. Prod. Sci. 2016, 56, 641–645. [Google Scholar] [CrossRef]
- Jonker, A.; Farrell, L.; Scobie, D.; Dynes, R.; Edwards, G.; Hague, H.; McAuliffe, R.; Taylor, A.; Knight, T.; Waghorn, G. Methane and carbon dioxide emissions from lactating dairy cows grazing mature ryegrass/white clover or a diverse pasture comprising ryegrass, legumes and herbs. Anim. Prod. Sci. 2018, 59, 1063–1069. [Google Scholar] [CrossRef]
- Bruinenberg, M.H.; Valk, H.; Korevaar, H.; Struik, P.C. Factors affecting digestibility of temperate forages from seminatural grasslands: A review. Grass Forage Sci. 2002, 57, 292–301. [Google Scholar] [CrossRef]
- Boadi, D.A.; Wittenberg, K.M. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 2002, 82, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Totty, V.K.; Greenwood, S.L.; Bryant, R.H.; Edwards, G.R. Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures. J. Dairy Sci. 2013, 96, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mean Temp (°C) | Rain (mm) | |||
---|---|---|---|---|
2019 | 1981–2010 | 2019 | 1981–2010 | |
May (P1) | 10.6 | 11.9 | 70.4 | 54.0 |
August (P2) | 17.0 | 18.3 | 74.0 | 82.5 |
Species | Variety | Ploidy | Seed Mixture | ||
---|---|---|---|---|---|
Abbr 1 | Binary | Diverse | |||
Perennial ryegrass (Lolium perenne) | Discus | 2n 2 | PRG | 6.0 | 4.0 |
Calvano1 | 2n | PRG | 6.0 | 4.0 | |
Astonenergy | 4n 3 | PRG | 6.0 | 4.0 | |
Astonhockey | 4n | PRG | 6.0 | 4.0 | |
White clover (Trifolium repens) | Vysocan | WC | 2.0 | 0.65 | |
Liflex | WC | 2.0 | 0.65 | ||
Red clover (Trifolium pratense) | Harmonie | 2n | RC | --- | 1.5 |
Larus | 4n | RC | --- | 1.5 | |
Ribwort plantain (Plantago lanceolata) | “native” | LP | --- | 1.0 | |
Chicory (Cichorium intybus) | Spadona | CI | --- | 2.0 | |
Salad burnet (Sanguisorba minor) | Burnet | SB | --- | 2.0 | |
Caraway (Carum carvi) | Volhouden | CC | --- | 2.0 | |
Birdsfoot trefoil (Lotus corniculatus) | Lotanava | BFT | --- | 3.0 |
P1 (2–8 May 2019) | P2 (15–30 August 2019) | |||
---|---|---|---|---|
Binary | Diverse | Binary | Diverse | |
Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | |
Forage characteristics | ||||
HM (kg DM ha−1) | 2460 (177) Aa | 2157 (68) Aa | 677 (95) Bb | 1218 (151) Aa |
OM digestibility | 87.6 (0.25) Aa | 84.4 (0.17) Ba | 80.2 (0.36) Ab | 77.9 (0.44) Bb |
ME (MJ kg DM−1) | 12.5 (0.03) Aa | 12.1 (0.01) Ba | 11.3 (0.09) Ab | 11.1 (0.05) Bb |
NEL (MJ kg DM−1) | 7.7 (0.01) Aa | 7.5 (0.01) Ba | 6.9 (0.06) Ab | 6.7 (0.03) Bb |
Chemical composition (g kg−1) | ||||
CP | 11.5 (0.52) Ba | 15.6 (0.14) Aa | 18.5 (0.79) Bb | 20.3 (0.51) Ab |
NDF | 35.5 (0.29) Ba | 38 (0.30) Aa | 49.9 (0.66) Bb | 45.3 (0.46) Ab |
ADF | 16.6 (0.20) Ba | 19.5 (0.17) Aa | 22.8 (0.40) Bb | 26.7 (0.33) Ab |
Fat | 2.7 (0.1) Bb | 3.1 (0.05) Aa | 4.1(0.08) Aa | 3.6 (0.06) Ba |
Milk production | ||||
Days in milk | 49 (28) | 49 (28) | 154 (26) | 154 (26) |
Milk yield (kg cow−1 day−1) | 23.4 (0.77) Ba | 24.9 (0.86) Aa | 18.6 (0.71) Bb | 19.8 (0.66) Ab |
ECM yield (kg cow−1 day−1) | 29.4 (0.91) Ba | 30.3 (0.98) Aa | 22.1 (0.61) Bb | 23.5 (0.64) Ab |
Milk composition | ||||
Fat content (g kg DM−1) | 59.2 (1.09) Aa | 56.6 (1.08) Ba | 53.6 (1.19) Bb | 53.7 (1.08) Ab |
Protein content (g kgDM−1) | 35.7 (0.60) Ab | 35.1 (0.51) Bb | 38.0 (0.71) Aa | 36.8 (0.66) Ba |
Lactose content (g kgDM−1) | 47.9 (0.19) Aa | 46.0 (0.21) Ba | 45.8 (0.17) Ab | 44.7 (0.17) Bb |
Fat yield (kg day−1) | 1.38 (0.05) Ba | 1.41(0.05) Aa | 0.98 (0.03) Ba | 1.05 (0.03) Ba |
Protein yield (kg day−1) | 0.83 (0.02) Ba | 0.87 (0.03) Aa | 0.69 (0.02) Ba | 0.71 (0.02) Ba |
Lactose yield (kg day−1) | 1.12 (0.04) Ba | 1.15 (0.04) Aa | 0.85 (0.03) Ba | 0.89 (0.03) Ba |
Target DHA | 18 | 18 | 14 | 14 |
(kg DM cow day−1) | ||||
DMI | 16.7 | 16.8 | 11.5 | 11.5 |
(kg DM cow day−1) 1 | ||||
DMI (kg DM cow day−1) 2 | 13.0 | 15.0 | 10.6 | 13.0 |
FUE (%) | 58 | 66 | 69 | 77 |
Methane emissions | ||||
g CH4 cow−1 day−1 | 239 (8) Bb | 277 (11) Aa | 203 (8) Bb | 242 (15) Aa |
g CH4 kg milk−1 | 10.4 (0.4) Ba | 11.2 (0.4) Aa | 11.2 (0.4) Ba | 12.6 (0.8) Aa |
g CH4 kg ECM−1 | 8.3 (0.4) Bb | 9.2 (0.3) Aa | 9.3 (0.6) Bb | 10.4 (0.3) Aa |
g CH4 kg DMI−1 | 14.3 | 16.5 | 17.7 | 21 |
BW variation (kg day−1) | −0.2 Aa | −0.3 Aa | 0.1 Aa | 0.3 Aa |
P1 (2–18 May 2019) | P2 (15–30 August 2019) | |||||||
---|---|---|---|---|---|---|---|---|
Binary | Diverse | Binary | Diverse | |||||
Offer | Rest | Offer | Rest | Offer | Rest | Offer | Rest | |
Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | Mean (SEM) | |
PRG | 87.1 (2.0) aBx | 96.4 (0.6) aBy | 43.1 (2.2) aAx | 74.0 (1.2) aAy | 51.6 (3.3) aBx | 61.1 (3.4) aBy | 25.4 (2.2) aAx | 36.8 (2.6) aAx |
WC | 12.5 (2.0) aAx | 3.1 (0.5) aBy | 15.0 (1.5) aAx | 7.5 (0.7) aAy | 47.6 (3.2) aBx | 36.9 (3.3) aBy | 20.4 (2.0) aAx | 17.9 (1.7) aAx |
RC | --- | --- | 18.0 (1.8) ax | 9.9 (1.0) ay | --- | --- | 40.4 (2.5) ax | 36.5 (2.9) ax |
BFT | --- | --- | 7.0 (0.9) ax | 2.2 (0.4) ay | --- | --- | 3.6 (0.8) ax | 2.6 (0.5) ax |
LP | --- | --- | 8.6 (1.0) ax | 3.8 (0.6) ay | --- | --- | 4.0 (0.7) ax | 2.6 (0.7) ax |
CI | --- | --- | 7.5 (1.3) ax | 1.9 (0.3) ay | --- | --- | 5.6 (1.2) ax | 3.4 (1.3) ax |
Other forbs 1 | --- | --- | 0.1 (0.1) ax | 0.1 (0.1) ax | --- | --- | 0.2 (0.1) ax | 0.0 (0.0) ax |
others | 0.3 (0.1) aAx | 0.6 (0.4) aAx | 0.7 (0.2) aAx | 0.6 (0.2) aAx | 0.8 (0.3) aAx | 2.0 (0.7) aBx | 0.3 (0.2) aAx | 0.2 (0.1) aAx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loza, C.; Reinsch, T.; Loges, R.; Taube, F.; Gere, J.I.; Kluß, C.; Hasler, M.; Malisch, C.S. Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures. Agriculture 2021, 11, 175. https://doi.org/10.3390/agriculture11020175
Loza C, Reinsch T, Loges R, Taube F, Gere JI, Kluß C, Hasler M, Malisch CS. Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures. Agriculture. 2021; 11(2):175. https://doi.org/10.3390/agriculture11020175
Chicago/Turabian StyleLoza, Cecilia, Thorsten Reinsch, Ralf Loges, Friedhelm Taube, José Ignacio Gere, Christof Kluß, Mario Hasler, and Carsten S. Malisch. 2021. "Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures" Agriculture 11, no. 2: 175. https://doi.org/10.3390/agriculture11020175