Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Field Experiment Description
2.3. Field Measurements
2.4. Physical and Chemical Analyses of Marketable Tomato Fruits
2.5. Data Handling and Statistical Analysis
3. Results
3.1. Tomato Fruits at Harvesting
3.2. Marketable Fruit Physical Characteristics
3.3. Marketable Fruit Chemical Characteristics
3.4. Overview of the Marketable Tomato Fruit Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallmann, E.; Lipowski, J. The Seasonal Variation in Bioactive Compounds Content in Juice from Organic and Non-organic Tomatoes. Plant Food Hum. Nutr. 2013, 68, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Towards a more sustainable fertilization: Combined use of compost and inorganic fertilization for tomato cultivation. Agric. Ecosyst. Environ. 2014, 196, 178–184. [Google Scholar] [CrossRef]
- Abdul-Baki, A.; Teasdale, J. Fresh-market tomato production in a low-input alternative system using cover-crop mulch. HortScience 1996, 31, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Adetunjia, A.T.; Ncubeb, B.; Muliddzic, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Till. Res. 2020, 204, 104707. [Google Scholar] [CrossRef]
- Kocira, A.; Staniak, M.; Tomaszewska, M.; Kornas, R.; Cymerman, J.; Panasiewicz, K.; Lipinska, H. Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review. Agriculture 2020, 10, 394. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, I.; Munkholm, I.J. Tillage system and cover crop effects on soil quality: I. Chemical, mechanical and biological properties. J. Soil Water Conser. 2014, 78, 262–270. [Google Scholar] [CrossRef]
- Tebrugge, F. No-tillage visions—Protection of soil, water and climate and influence on management and farm income. Conserv. Agric. 2001, 1, 303–316. [Google Scholar]
- Radicetti, E.; Massantini, R.; Campiglia, E.; Mancinelli, R.; Ferri, S.; Moscetti, R. Yield and quality of eggplant (Solanum melongena L.) as affected by cover crop species and residue management. Sci. Hortic. 2016, 204, 161–171. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Cover crops and mulches influence weed management and weed flora composition in strip-tilled tomato (Solanum lycopersicum). Weed Res. 2015, 55, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Mancinelli, R.; Radicetti, E. Influence of no-tillage and organic mulching on tomato (Solanum lycopersicum L.) production and nitrogen use in the Mediterranean environment of Central Italy. Sci. Hortic. 2011, 130, 588–598. [Google Scholar] [CrossRef]
- Radicetti, E.; Campiglia, E.; Marucci, A.; Mancinelli, R. How winter cover crops and tillage intensities affect nitrogen availability in eggplant. Nutr. Cycl. Agroecosys. 2017, 108, 177–194. [Google Scholar] [CrossRef]
- Ruis, S.J.; Blanco-Canqui, H. Cover crops could offset crop residue removal effects on soil carbon and other properties: A review. Agron. J. 2017, 109, 1785–1805. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop requirements. FAO Irrig. Drain. 1998, 56, 1–15. [Google Scholar]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Kumar, P.S.; Singh, Y.; Nangare, D.D.; Bhagat, K.; Kumar, M.; Taware, P.B.; Kumari, A.; Minhas, P.S. Influence of growth stage specific water stress on the yield, physico-chemical quality and functional characteristics of tomato grown in shallow basaltic soils. Sci. Hortic. 2015, 197, 261–271. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Nardella, E.; Gagliardi, A.; Gatta, G. Deficit irrigation and partial root-zone drying techniques in processing tomato cultivated under Mediterranean climate conditions 2020. Sustainability 2017, 9, 2197. [Google Scholar] [CrossRef] [Green Version]
- Kenkel, N.C.; Derksen, D.A.; Thomas, A.G.; Watson, P.R. Multivariate analysis in weed science research. Weed Sci. 2002, 50, 281–292. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophys. 2018, 32, 287–302. [Google Scholar]
- Chahal, I.; Van Eerd, L.L. Cover crop and crop residue removal effects on temporal dynamics of soil carbon and nitrogen in a temperate, humid climate. PLoS ONE 2020, 15, e0235665. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Kiassen, W.; Li, Y.; Codallo, M. Influence of cover crops and irrigation rates on tomato yields and quality in a subtropical region. HortScience 2005, 40, 2125–2131. [Google Scholar] [CrossRef] [Green Version]
- Akbari, P.; Herbert, S.J.; Hashemi, M.; Barker, A.V.; Zandvakili, O.R. Role of Cover Crops and Planting Dates for Improved Weed Suppression and Nitrogen Recovery in No till Systems. Commun. Soil Sci. Plant. 2019, 50, 1722–1731. [Google Scholar] [CrossRef]
- Muchanga, R.A.; Hirata, T.; Uchida, Y.; Hatano, R.; Araki, H. Soil carbon and nitrogen and tomato yield response to cover crop management. Agron. J. 2020, 112, 1636–1648. [Google Scholar] [CrossRef] [Green Version]
- Parisi, M.; Giordano, I.; Pentangelo, A.; D’Onofrio, B.; Villari, G. Effects of different levels of nitrogen fertilization on yield and fruit quality in processing tomato. Acta Hortic. 2006, 700, 19. [Google Scholar] [CrossRef]
- Ronga, D.; Pentangelo, A.; Parisi, M. Optimizing N fertilization to improve yield, technological and nutritional quality of tomato grown in high fertility soil conditions. Plants 2020, 9, 575. [Google Scholar] [CrossRef]
- Jędrszczyk, E.; Skowera, B.; Gawęda, M.; Libik, M. The effect of temperature and precipitation conditions on the growth and development dynamics of five cultivars of processing tomato. J. Hortic. Sci. 2016, 24, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Zhang, W.; Du, T.; Kang, S.; Davies, J.D. Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. J. Exp. Bot. 2020, 71, 1249–1264. [Google Scholar] [CrossRef]
- Knee, M. Fruit Quality and Its Biological Basis; Sheffield Academic Press: Sheffield, UK, 2002; p. 279. [Google Scholar]
- Arias, R.; Lee, T.C.; Logendra, L.; Janes, H. Correlation of Lycopene Measured by HPLC with the L *, a *, b * Color Readings of a Hydroponic Tomato and the Relationship of Maturity with Color and Lycopene Content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
Months | Air Temperatures | Rainfall (mm) | ||||
---|---|---|---|---|---|---|
Minimum (°C) | Maximum (°C) | |||||
2014 | 2015 | 2014 | 2015 | 2014 | 2015 | |
March | 4.5 | 4.9 | 15.7 | 14.6 | 77 | 71 |
April | 7.1 | 6.1 | 19.2 | 19.0 | 85 | 19 |
May | 9.2 | 10.5 | 21.8 | 24.5 | 14 | 1 |
June | 14.3 | 15.0 | 27.7 | 28.9 | 140 | 22 |
July | 15.7 | 18.9 | 27.8 | 32.8 | 77 | 23 |
August | 16.0 | 18.5 | 29.0 | 32.0 | 51 | 14 |
September | 14.6 | 14.8 | 25.6 | 26.2 | 59 | 52 |
Tomato Fruit | ||||
---|---|---|---|---|
Marketable | Rotten | Green | ||
(Number Plant−1) | (g of Dry Matter Plant−1) | (Number Plant−1) | ||
Growing season | ||||
2014 | 20.2 b | 148.0 b | 2.8 a | 6.6 a |
2015 | 25.2 a | 201.0 a | 1.8 b | 6.2 a |
Cover crop | ||||
Hairy vetch | 34.0 a | 257.7 a | 4.0 a | 5.2 b |
Subclover | 17.7 b | 130.7 c | 1.5 b | 6.4 ab |
Black Oat | 17.3 b | 131.0 c | 1.3 b | 7.6 a |
Bare soil | 21.7 b | 178.3 b | 2.5 ab | 6.6 ab |
Soil Tillage | ||||
NT | 22.1 a | 166.7 a | 2.0 b | 8.3 a |
T | 23.3 a | 182.0 a | 2.6 a | 4.6 b |
N fertilization | ||||
N0 | 18.2 c | 135.7 c | 2.1 b | 5.6 b |
N75 | 23.0 b | 176.3 b | 2.4 ab | 6.9 a |
N150 | 26.8 a | 211.0 a | 2.5 a | 6.8 a |
Equatorial Diameter (cm) | Longitudinal Diameter (cm) | Firmness (N) | |
---|---|---|---|
Growing season | |||
2014 | 4.94 b | 6.32 b | 6.68 b |
2015 | 5.28 a | 6.63 a | 7.82 a |
Cover crop | |||
Hairy vetch | 5.14 a | 6.43 ab | 6.63 b |
Subclover | 5.00 b | 6.28 b | 7.07 b |
Black Oat | 5.18 a | 6.67 a | 8.14 a |
Bare soil | 5.14 a | 6.53 ab | 7.18 b |
Soil Tillage | |||
NT | 5.12 a | 6.49 a | 7.34 a |
T | 5.09 a | 6.47 a | 7.17 b |
N fertilization | |||
N0 | 5.01 b | 6.41 b | 8.13 a |
N75 | 5.13 ab | 6.55 a | 7.19 b |
N150 | 5.18 a | 6.48 ab | 6.44 c |
L* | a* | b* | a*/b* | CI | |
---|---|---|---|---|---|
Growing season | |||||
2014 | 36.0 a | 34.4 a | 31.0 b | 1.11 a | 41.3 a |
2015 | 34.8 b | 34.0 a | 33.4 a | 1.02 b | 41.0 a |
Cover crop | |||||
Hairy vetch | 34.6 c | 35.7 a | 32.0 a | 1.12 a | 43.0 a |
Subclover | 35.2 b | 35.3 a | 32.6 a | 1.09 a | 41.8 b |
Black Oat | 35.8 ab | 32.8 b | 32.1 a | 1.02 b | 40.0 c |
Bare soil | 36.0 a | 33.1 b | 32.1 a | 1.04 b | 40.0 c |
Soil Tillage | |||||
NT | 35.7 a | 34.0 b | 32.4 a | 1.05 b | 40.6 b |
T | 35.1 b | 34.5 a | 32.0 b | 1.08 a | 41.7 a |
N fertilization | |||||
N0 | 36.1 a | 33.6 b | 33.1 a | 1.02 c | 39.5 c |
N75 | 35.6 b | 34.4 a | 32.3 b | 1.07 b | 41.0 b |
N150 | 34.6 c | 34.7 a | 31.2 c | 1.11 a | 43.0 a |
SSC (°Brix) | pH | TA (%) | SAR | |
---|---|---|---|---|
Growing season | ||||
2014 | 5.66 a | 4.28 b | 0.42 a | 13.16 a |
2015 | 5.32 b | 4.46 a | 0.40 a | 12.26 b |
Cover crop | ||||
Hairy vetch | 5.23 c | 4.42 a | 0.37 b | 13.21 a |
Subclover | 5.44 b | 4.38 ab | 0.40 ab | 12.97 a |
Black Oat | 5.76 a | 4.30 b | 0.44 a | 12.30 b |
Bare soil | 5.53 b | 4.35 ab | 0.43 a | 12.36 b |
Soil Tillage | ||||
NT | 5.44 a | 4.37 a | 0.39 a | 12.52 a |
T | 5.54 a | 4.35 a | 0.43 a | 12.90 a |
N fertilization | ||||
N0 | 5.68 a | 4.31 b | 0.43 a | 12.62 b |
N75 | 5.48 ab | 4.38 a | 0.41 ab | 12.74 a |
N150 | 5.31 b | 4.40 a | 0.39 b | 12.77 a |
2014 | 2015 | |||
---|---|---|---|---|
Cover Crop | T | p | T | p |
Bare soil vs. Hairy vetch | −8.0674 | <0.0001 | −10.8343 | <0.0001 |
Bare soil vs. Subclover | −3.9767 | 0.0061 | −7.9005 | 0.0002 |
Bare soil vs. Black Oat | −1.5314 | 0.0797 | −0.3263 | 0.2699 |
Hairy vetch vs. Subclover | −1.5790 | 0.0760 | −3.2065 | 0.1060 |
Hairy vetch vs. Black Oat | −13.6474 | <0.0001 | −18.5215 | <0.0001 |
Subclover vs. Black Oat | −8.7869 | <0.0001 | −11.3442 | <0.0001 |
Soil Tillage | ||||
T vs. NT | −2.8026 | 0.0224 | −3.0354 | 0.0184 |
N fertilization | ||||
N0 vs. N75 | −8.1257 | <0.0001 | −9.5142 | <0.0001 |
N0 vs. N150 | −21.5300 | <0.0001 | −23.6248 | <0.0001 |
N75 vs. N150 | −7.5466 | 0.0002 | −12.1054 | <0.0001 |
Pearsons’ r | TS | SSC | pH | TA | SAR | a*/b* | CI | Firmness |
---|---|---|---|---|---|---|---|---|
TS | --- | 0.570 *** | −0.587 *** | 0.214 * | 0.182 ns | 0.557 *** | 0.620 *** | −0.497 *** |
SSC | 0.256 * | --- | −0.595 *** | 0.243 * | 0.475 *** | 0.621 *** | 0.626 *** | −0.472 *** |
pH | −0435 *** | −0.610 *** | --- | −0.425 *** | −0.026 ns | −0.714 *** | −0.742 *** | 0.638 *** |
TA | 0.316 ** | 0.557 *** | −0.470 *** | --- | −0.725 *** | 0.265 ** | 0.475 *** | −0.388 *** |
SAR | −0.094 ns | 0.435 *** | −0.123 ns | −0.498 *** | --- | 0.148 ns | −0.029 ns | 0.038 ns |
a*/b* | 0.375 *** | 0.621 *** | −0.504 *** | 0.639 *** | −0.051 ns | --- | 0.831 *** | −0.638 *** |
CI | 0.438 *** | 0.412 *** | −0.413 *** | 0.525 *** | −0.118 ns | 0.783 *** | --- | −0.669 *** |
Firmness | −0.296 ** | −0.562 *** | 0.350 *** | −0.400 *** | −0.159 ns | −0.508 *** | −0.241 * | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massantini, R.; Radicetti, E.; Frangipane, M.T.; Campiglia, E. Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management. Agriculture 2021, 11, 106. https://doi.org/10.3390/agriculture11020106
Massantini R, Radicetti E, Frangipane MT, Campiglia E. Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management. Agriculture. 2021; 11(2):106. https://doi.org/10.3390/agriculture11020106
Chicago/Turabian StyleMassantini, Riccardo, Emanuele Radicetti, Maria Teresa Frangipane, and Enio Campiglia. 2021. "Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management" Agriculture 11, no. 2: 106. https://doi.org/10.3390/agriculture11020106
APA StyleMassantini, R., Radicetti, E., Frangipane, M. T., & Campiglia, E. (2021). Quality of Tomato (Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management. Agriculture, 11(2), 106. https://doi.org/10.3390/agriculture11020106