Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources
Abstract
:1. Introduction
2. Bee Products, Medicinal Plant, and Environment: An Overview
2.1. Beekeeping and the Impacts of Environmental Factors
2.2. The Role of Medicinal Plants for Bee Products: An Overview
- Bee pollen: is a product rich in B vitamins, minerals, and unsaturated fatty acids. Many metabolic difficulties may be overcome with bee pollen supplementation and also it counteracts harmful bacteria.
- Propolis: is effective against bacteria and purifies or disinfects. Its use is recommended for the treatment of colds, wounds, or ulcers, and diseases affecting the joints.
- Bee bread: is a bee pollen-derived product, which acts as an activator of beneficial properties for blood circulation, is capable of healing and strengthening the immune and nervous system, and enriches polyunsaturated fatty acids intake.
2.3. Definition and Categorization of Main Medicinal Bee Plants and Related Bee Products
3. Bee Products from Medicinal Plants: Antioxidant Properties Measurements
3.1. Study Approach of the Antioxidant Properties: Updates and Considerations
3.2. Antioxidant Properties Assessment: An Overview of Conventional and Innovative Assays
3.3. Antioxidant Properties of Bee Products Relates to Foraging on Medicinal Plants
3.3.1. Honey
3.3.2. Bee Pollen and Its Derivatives
3.3.3. Propolis
3.3.4. Royal Jelly
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal. 2007, 19, 1807–1819. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.; Giampieri, F.; Battino, M. Honey as a Source of Dietary Antioxidants: Structures, Bioavailability and Evidence of Protective Effects Against Human Chronic Diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Cicero, N.; Gabrielli, P.; Souto, E.B.; Dugo, G.; Santini, A. The Antioxidant Properties of Honey. In Search of Honey Authentication; Karabagias, I., Ed.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2021; ISBN (10): 1-5275-6712-5, ISBN (13): 978-1-5275-6712-2. [Google Scholar]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Inf. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. ISSI Newslett. 2011, 7, 50–54. [Google Scholar]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Robinson ACPeeler, J.L.; Prestby, T.; Goslee, S.C.; Anton, K.; Grozinger, C. Beescape: Characterizing user needs for environmental decision support in beekeeping. Ecol. Inform. 2021, 64, 101366. [Google Scholar] [CrossRef]
- Delaplane, K.S.; Mayer, D.F. Crop Pollination by Bees; CABI: Wallingford, UK, 2000. [Google Scholar]
- Dogantzis, K.A.; Zayed, A. Recent advances in population and quantitative genomics of honey bees. Curr. Opin. Insect Sci. 2019, 31, 93–98. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Bloch, G.; Francoy, T.M.; Wachtel, I.; Panitz-Cohen, N.; Fuchs, S.; Mazar, A. Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. Proc. Natl. Acad. Sci. USA 2010, 107, 11240–11244. [Google Scholar] [CrossRef] [Green Version]
- Crane, E. Honeybees. In Evolution of Domesticated Animals; Mason, I.L., Ed.; Longman Group: London, UK, 1984; pp. 403–415. [Google Scholar]
- Phillips, E.F. Beekeeping; Applewood Books: Carlisle, MA, USA, 1918. [Google Scholar]
- Bruckner, S.; Steinhauer, N.; Engelsma, J.; Fauvel, A.M.; Kulhanek, K.; Malcom, E.; Meredith, A.; Milbrath, M.; Nino, E.; Rangel, J.; et al. 2019–2020 Honey Bee Colony Losses in the United States: Preliminary Results. 2020, p. 5. Available online: https://beeinformed.org/wp-content/uploads/2020/06/BIP_2019_2020_Losses_Abstract.pdf (accessed on 28 October 2021).
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Tautz, J. The Buzz about Bees: Biology of a Superorganism; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ascher, J.S.; Pickering, J. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila). 2014. Available online: http://www.discoverlife.org/mp/20q?guide=Apoidea_species (accessed on 28 October 2021).
- Themudo, G.E.; Rey-Iglesia, A.; Tascón, L.R.; Jensen, A.B.; Da Fonseca, R.R.; Campos, P.F. Declining genetic diversity of European honeybees along the twentieth century. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Potts, S.G.; Roberts, S.P.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.; Folke, C. Navigating Social–Ecological Systems: Building Resilience for Complexity; Cambridge University Press: Cambridge, UK, 2003; pp. 1–30. [Google Scholar]
- Keune, H.; Dendoncker, N.; Jacobs, S. Ecosystem Service Practices. In Ecosystem Services; Elsevier: Amsterdam, The Netherlands, 2013; pp. 307–315. [Google Scholar]
- Martinello, M.; Manzinello, C.; Dainese, N.; Giuliato, I.; Gallina, A.; Mutinelli, F. The Honey Bee: An Active Biosampler of Environmental Pollution and a Possible Warning Biomarker for Human Health. Appl. Sci. 2021, 11, 6481. [Google Scholar] [CrossRef]
- Adeoye, O.T.; Pitan, O.R.; Olasupo, O.O.; Ayandokun, A.E.; Abudul-Azeez, F.I. Assessment of honeybees and bee honey as bioindicators of environmental pollution. Aust. J. Sci. Technol. 2021, 5, 460–465. [Google Scholar]
- Horcea-Milcu, A.-I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Peterson, G.; Gordon, L. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- FAO. Bees and their role in forest livelihoods. In A Guide to the Services Provided by Bees and the Sustainable Harvesting Processing and Marketing of Their Products; FAO: Rome, Italy, 2009. [Google Scholar]
- Michener, C.D. The Bees of the World; The John Hopkins University Press: Baltimore, MD, USA, 2000; p. 913. [Google Scholar]
- Michener, C.D. The Bees of the World, 2nd ed.; John Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Chinwuba Okoye, T.; Uzor, P.F.; Onyeto, C.A.; Okereke, E.K. Chapter 18-Safe African medicinal plants for clinical studies. In Toxicological Survey of African Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 535–555. [Google Scholar]
- Asadi, N.; Bahmani, M.; Shahsavari, S.; Asadi-Samani, M. Identification and introduction of the medicinal plants used by Honeybees in Markazi Province. IJPPR 2017, 7, 15–18. [Google Scholar]
- Bahmani, M.; Asadi-Samani, M. Native medicinal plants of Iran effective on peptic ulcer. J. Injury Inflam. 2016, 1, e05. [Google Scholar]
- Moradi, M.T.; Asadi-Samani, M.; Bahmani, M.; Shahrani, M. Medicinal plants used for liver disorders based on the ethnobotanical documents of Iran: A review. Int. J. PharmTech Res. 2016, 9, 407–415. [Google Scholar]
- Molan, P. Why honey is effective as a medicine: 2. The scientific explanation of its effects. Bee World 2001, 82, 22–40. [Google Scholar] [CrossRef]
- Verma, L.R. Beekeeping. In Integrated Mountain Development: Economic and Scientific Perspectives; International Centre for Integrated Mountain Development (ICIMOD): Patan, Nepal, 1990. [Google Scholar]
- Kaur, G.; Sihag, R.C. Bee flora of India: A review. Bee J. 1994, 56, 105–126. [Google Scholar]
- Partap, U. Bee Flora of the Hindu Kush-Himalayas: Inventory and Management; ICMOD: Kathmandu, Nepal, 1997. [Google Scholar]
- Harugade, S.; Gawate, A.; Shinde, B. Bee Floral Diversity of Medicinal Plants in Vidya Pratishthan Campus, Baramati, Pune, District (M.S.) India. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 425–431. [Google Scholar] [CrossRef]
- Mačukanović-Jocić, M.; Jarić, S.V. The melliferous potential of apiflora of southwestern Vojvodina (Serbia). Arch. Biol. Sci. 2016, 68, 81–91. [Google Scholar] [CrossRef]
- Bakour, M.; Laaroussi, H.; El Menyiy, N.; Elaraj, T.; El Ghouizi, A.; Lyoussi, B. The Beekeeping State and Inventory of Mellifero-Medicinal Plants in the North-Central of Morocco. Sci. World J. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. 2018, 2018, 1–29. [Google Scholar] [CrossRef]
- Feás, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic bee pollen: Botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Paulino, N.; Coutinho, L.A.; Coutinho, J.R.; Vilela, G.C.; da Silva Leandro, V.P.; Paulino, A.S. Antiulcerogenic effect of Brazilian propolis formulation in mice. Pharmacol. Pharm. 2015, 6, 580. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.; Karaoglu, O.; Eroglu, N.; Silici, S. Fatty Acid and proximate composition of bee bread. Food Technol. Biotechnol. 2016, 54, 497–504. [Google Scholar] [CrossRef]
- Shaddel-Telli, A.; Maheri, N.; Aghajanzade, G. Using medicinal plants for controlling Varrova Mite honeybee colonies. J. Anim. Vet. Adv. 2008, 7, 328–330. [Google Scholar]
- Bendifallah, L.; Belguendouz, R.; Hamoudi, L.; Arab, K. Biological Activity of the Salvia officinalis L. (Lamiaceae) Essential Oil on Varroa destructor Infested Honeybees. Plants 2018, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Topal, E.; Cıpcıgan, M.; İvgin Tunca, R.; Kösoğlu, M.; Mărgăoan, R. The Use of medicinal aromatic plants against bee diseases and pests. Bee Stud. 2020, 12, 5–11. [Google Scholar] [CrossRef]
- Khan, S.U.; Anjum, S.I.; Ansari, M.J.; Khan, M.H.U.; Kamal, S.; Rahman, K.; Shoaib, M.; Man, S.; Khan, A.J.; Khan, S.U.; et al. Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi J. Biol. Sci. 2019, 26, 1815–1834. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.L.; Panyoyai, N.; Paramita, V.D.; Mantri, N.; Kasapis, S. Physicochemical and viscoelastic properties of honey from medicinal plants. Food Chem. 2018, 241, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M. Editorial: The State of Science and Innovation of Bioactive Research and Applications, Health, and Diseases. Front. Nutr. 2019, 6, 178. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Piccinelli, R.; Mantur-Vierendeel, A.; Marletta, L.; Finglas, P.; Turrini, A.; Sette, S. Development of Dietary Supplement Label Database in Italy: Focus of FoodEx2 Coding. Nutrients 2019, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, D. Europe’s Medicinal and Aromatic Plants: Their Use, Trade and Conservation; Traffic International: Cambridge, UK, 1998. [Google Scholar]
- Diazgranados, M.; Allkin, B.; Black, N.; Cámara-Leret, R.; Canteiro, C.; Carretero, J.; Ulian, T. World Checklist of Useful Plant Species. Produced by the Royal Botanic Gardens, Kew. Knowledge Network for Biocomplexity. 2020. Available online: https://kew.iro.bl.uk/concern/datasets/7243d727-e28d-419d-a8f7-9ebef5b9e03e?locale=en (accessed on 28 October 2021).
- Dürbeck, K.; Hüttenhofer, T. International Trade of Medicinal and Aromatic Plants. Med. Aromat. Plants World 2015, 1, 375–382. [Google Scholar] [CrossRef]
- Allen, D.; Bilz, M.; Leaman, D.J.; Miller, R.M.; Timoshyna, A.; Window, J. European Red List of medicinal Plants; Publications Office of the European Union: Luxembourg, 2014; p. 63. [Google Scholar]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef]
- Bogdanov, S.; Ruoff, K.; Oddo, L.P. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35 (Suppl. 1), S4–S17. [Google Scholar] [CrossRef] [Green Version]
- Pita-Calvo, C.; Vázquez, M. Honeydew Honeys: A Review on the Characterization and Authentication of Botanical and Geographical Origins. J. Agric. Food Chem. 2018, 66, 2523–2537. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Nanda, V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- MLR-Ministerium für ländlichen Raum und Verbraucherschutz Baden-Württemberg. Bienenweidekatalog: Verbesserung der Bienenweide und des Artenreichtums.–Stuttgart. 129 S. 2018. Available online: https://mlr.baden-wuerttemberg.de/de/unsere-themen/biodiversitaet-und-landnutzung/bienenweidekatalog/ (accessed on 28 October 2021).
- MAA-Ministère de l’Agriculture et de l’Alimentation. Liste de plantes attractives pour les abeilles. 2017. Available online: https://www.franceagrimer.fr/content/download/51417/494444/file/290517-Plantes%20attractives-abeilles.pdf (accessed on 28 October 2021).
- Vöth, W. Lebensgeschichte und Bestäuber der Orchideen am Beispiel von Niederösterreich. Biologiezentrum des OÖ; Landesmuseums: Zürich, Switzerland, 1999; Volume 65, Biologiezentrum Linz/Austria. [Google Scholar]
- Kratochwil, A. Bees (Hymenoptera: Apoidea) as key-stone species: Specifics of resource and requisite utilisation in different habitat types. Ber. Der Reinhold-Tüxen-Ges. 2003, 15, 59–77. [Google Scholar]
- Wichtl, M. Teedrogen und Phytopharmaka; Wissenschaftiche Verlag GmbH: Stuttgart, Germany, 2002; Volume 4, p. 84. [Google Scholar]
- Barbieri, C.; Ferrazzi, P. Perilla frutescens: Interesting New Medicinal and Melliferous Plant in Italy. Nat. Prod. Commun. 2011, 6, 1461–1463. [Google Scholar] [CrossRef] [Green Version]
- Oddo, L.P.; Piro, R.; Bruneau, É.; Guyot-Declerck, C.; Ivanov, T.; Piskulová, J.; Flamini, C.; Lheritier, J.; Morlot, M.; Russmann, H.; et al. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35 (Suppl. 1), S38–S81. [Google Scholar] [CrossRef]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Boukraa, L.; Bellik, Y.; Abdellah, F.; Bakhotmah, B.A.; Kolayli, S.; Sahin, H. Evaluation of the Antioxidant Activity of Three Varieties of Honey from Different Botanical and Geographical Origins. Glob. J. Health Sci. 2012, 4, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Plant sources of propolis: An update from a chemist’s point of view. Nat. Prod. Commun. 2006, 1. [Google Scholar] [CrossRef]
- Velikova, M.; Bankova, V.; Sorkun, K.; Houcine, S.; Tsvetkova, I.; Kujumgiev, A. Propolis from the Mediterranean Region: Chemical Composition and Antimicrobial Activity. Z. Naturforschung C 2000, 55, 790–793. [Google Scholar] [CrossRef] [Green Version]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.; Rovere, A. Apitherapy. In American Cancer Society Complete Guide to Complementary and Alternative Cancer Therapies, 2nd ed.; American Cancer Society: Atlanta, GA, USA, 2009; pp. 704–708. [Google Scholar]
- Cassileth, B.R. Apitherapy. In The Complete Guide to Complementary Therapies in Cancer Care: Essential Information for Patients, Survivors and Health Professionals; World Scientific: Singapore, 2011; pp. 221–224. [Google Scholar]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M.; Santini, A. Nutraceuticals in Human Health. Foods 2020, 9, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M. A Current Shot and Re-thinking of Antioxidant Research Strategy. Braz. J. Anal. Chem. 2019, 5, 9–11. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Extractable and non-extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A. Extractable and non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; RSC Publishing: Cambridge, UK, 2018; pp. 37–45. ISBN 978-1-78801-447-2. [Google Scholar] [CrossRef]
- eBASIS—Bioactive Substances in Food Information System. Available online: http://ebasis.eurofir.org/Default.asp (accessed on 4 June 2021).
- Kiely, M.; on behalf of the EuroFIR consortium; Black, L.J.; Plumb, J.; Kroon, P.A.; Hollman, P.C.; Larsen, J.C.; Speijers, G.J.; Kapsokefalou, M.; Sheehan, D.; et al. EuroFIR eBASIS: Application for health claims submissions and evaluations. Eur. J. Clin. Nutr. 2010, 64, S101–S107. [Google Scholar] [CrossRef] [Green Version]
- Plumb, J.; Pigat, S.; Bompola, F.; Cushen, M.; Pinchen, H.; Nørby, E.; Astley, S.; Lyons, J.; Kiely, M.; Finglas, P. eBASIS (Bioactive Substances in Food Information Systems) and bioactive intakes: Major updates of the bioactive compound composition and beneficial bio effects database and the development of a probabilistic model to assess intakes in Europe. Nutrients 2017, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Plumb, J.; Durazzo, A.; Lucarini, M.; Camilli, E.; Turrini, A.; Marletta, L.; Finglas, P. Extractable and Non-Extractable Antioxidants Composition in the eBASIS Database: A Key Tool for Dietary Assessment in Human Health and Disease Research. Nutrients 2020, 12, 3405. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2020, 100, 5064–5078. [Google Scholar] [CrossRef]
- Apak, R. Current Issues in Antioxidant Measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef] [PubMed]
- Cömert, E.D.; Gökmen, V. Evolution of food antioxidants as a core topic of food science for a century. Food Res. Int. 2018, 105, 76–93. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Martinelli, E.; Granato, D.; Azevedo, L.; Gonçalves, J.E.; Lorenzo, J.M.; Munekata, P.E.; Simal-Gandara, J.; Barba, F.J.; Carrillo, C.; Rajoka, M.S.R.; et al. Current perspectives in cell-based approaches towards the definition of the antioxidant activity in food. Trends Food Sci. Technol. 2021, 116, 232–243. [Google Scholar] [CrossRef]
- Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food Chem. 2018, 244, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef]
- Apak, A.; Capanoglu, E.; Shahidi, F. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; Wiley: New York, NY, USA, 2018; ISBN 978-1-119-13535-7. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chem. 2021, 339, 128098. [Google Scholar] [CrossRef]
- Santos, J.S.; Deolindo, C.T.P.; Hoffmann, J.F.; Chaves, F.C.; Prado-Silva, L.D.; Sant’Ana, A.S.; Azevedo, L.; Carmo, M.A.V.D.; Granato, D. Optimized Camellia sinensis var. sinensis, Ilex paraguariensis, and Aspalathus linearis blend presents high antioxidant and antiproliferative activities in a beverage model. Food Chem. 2018, 254, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Nicewicz, A.W.; Nicewicz, Ł.; Pawłowska, P. Antioxidant capacity of honey from the urban apiary: A comparison with honey from the rural apiary. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Crane, E. Honey from honeybees and other insects. Ethol. Ecol. Evol. 1991, 3, 100–105. [Google Scholar] [CrossRef]
- Pećanac, M.; Janjić, Z.; Komarcević, A.; Pajić, M.; Dobanovacki, D.; Misković, S.S. Burns treatment in ancient times. Med. Pregl. 2013, 66, 263–267. [Google Scholar] [PubMed]
- Saikaly, S.K.; Khachemoune, A. Honey and Wound Healing: An Update. Am. J. Clin. Dermatol. 2017, 18, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Majtan, J.; Klaudiny, J.; Bohova, J.; Kohutova, L.; Dzurova, M.; Sediva, M.; Bartosova, M.; Majtan, V. Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: Possible therapeutic implications. Fitoterapia 2012, 83, 671–677. [Google Scholar] [CrossRef]
- Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial components of honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Dimitriou, E.; Kontakos, S.; Kontominas, M.G. Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur. Food Res. Technol. 2016, 242, 1201–1210. [Google Scholar] [CrossRef]
- Koca, I.; Tekguler, B.; Turkyilmaz, B.; Tasci, B. Some physical, chemical and antioxidant properties of chestnut (Castanea sativa Mill.) honey produced in Turkey. Acta Hortic. 2018, 1220, 227–234. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, A.X.-H.; Engeseth, N.J. Buckwheat Honey Increases Serum Antioxidant Capacity in Humans. J. Agric. Food Chem. 2003, 51, 1500–1505. [Google Scholar] [CrossRef]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache rugosa and its Correlation with Colour and Poly-Phenol Content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adgaba, N.; Al-Ghamdi, A.; Sharma, D.; Tadess, Y.; Alghanem, S.M.; Khan, K.A.; Ansari, M.J.; Mohamed, G.K.A. Physico-chemical, antioxidant and anti-microbial properties of some Ethiopian mono-floral honeys. Saudi J. Biol. Sci. 2020, 27, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D. Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabagias, V.K.; Gatzias, I.; Riganakos, K.A. Bio-Functional Properties of Bee Pollen: The Case of “Bee Pollen Yoghurt”. Coatings 2018, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Kieliszek, M.; Piwowarek, K.; Kot, A.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Aylanc, V.; Tomás, A.; Russo-Almeida, P.; Falcão, S.; Vilas-Boas, M. Assessment of Bioactive Compounds under Simulated Gastrointestinal Digestion of Bee Pollen and Bee Bread: Bioaccessibility and Antioxidant Activity. Antioxidants 2021, 10, 651. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.; Kafantaris, I.; Dimitriou, T.; Mitsagga, C.; Karatasou, K.; Giavasis, I.; Stagos, D.; Amoutzias, G.; Hatjina, F.; Mossialos, D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics 2021, 10, 555. [Google Scholar] [CrossRef]
- Boisard, S.; LE Ray, A.-M.; Gatto, J.; Aumond, M.-C.; Blanchard, P.; Derbré, S.; Flurin, C.; Richomme, P. Chemical Composition, Antioxidant and Anti-AGEs Activities of a French Poplar Type Propolis. J. Agric. Food Chem. 2014, 62, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- Mujica, V.; Orrego, R.; Pérez, J.; Romero, P.; Ovalle, P.; Zuñiga, J.; Arredondo, M.; Leiva, E. The Role of Propolis in Oxidative Stress and Lipid Metabolism: A Randomized Controlled Trial. Evidence-Based Complement. Altern. Med. 2017, 2017, 4272940. [Google Scholar] [CrossRef] [Green Version]
- Salmas, R.E.; Gulhan, M.F.; Durdagi, S.; Sahna, E.; Abdullah, H.I.; Selamoglu, Z. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem. Funct. 2017, 35, 304–314. [Google Scholar] [CrossRef]
- Jasprica, I.; Mornar, A.; Debeljak, Ž.; Smolčić-Bubalo, A.; Medić-Šarić, M.; Mayer, L.; Romić, Z.; Bućan, K.; Balog, T.; Sobočanec, S.; et al. In vivo study of propolis supplementation effects on antioxidative status and red blood cells. J. Ethnopharmacol. 2007, 110, 548–554. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Paşca, C.; Moise, A.R.; Bobiş, O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. Plants 2020, 10, 22. [Google Scholar] [CrossRef]
- Yosri, N.; El-Wahed, A.A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; et al. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021, 10, 1776. [Google Scholar] [CrossRef]
- Mesquita, R.D.C.G.; Franciscon, C.H. Flower Visitors of Clusia nemorosa G. F. W. Meyer (Clusiaceae) in an Amazonian White-Sand Campina. Biotropica 1995, 27, 254. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; García-Viguera, C.; Vit-Oliviera, P.; Ferreres, F.; Tomás-Lorente, F. Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry 1993, 34, 191–196. [Google Scholar] [CrossRef]
- Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montenegro, G.; Mujica, A.M.; Peña, R.C.; Gómez, M.; Serey, I.; Timmermann, B.N. Similitude pattern and botanical origin of the Chilean propolis. Phyton 2004, 73, 145–154. [Google Scholar]
- Park, Y.K.; de Alencar, S.M.; Aguiar, C.L. Botanical Origin and Chemical Composition of Brazilian Propolis. J. Agric. Food Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef] [PubMed]
- López-Gutiérrez, N.; del Mar Aguilera-Luiz, M.; Romero-González, R.; Vidal, J.L.M.; Frenich, A.G. Fast analysis of polyphenols in royal jelly products using automated TurboFlow™-liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chrom. B 2014, 973, 17–28. [Google Scholar] [CrossRef]
- Liu, J.-R.; Yang, Y.-C.; Shi, L.-S.; Peng, C.-C. Antioxidant Properties of Royal Jelly Associated with Larval Age and Time of Harvest. J. Agric. Food Chem. 2008, 56, 11447–11452. [Google Scholar] [CrossRef]
- Guo, H.; Kouzuma, Y.; Yonekura, M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 2009, 113, 238–245. [Google Scholar] [CrossRef]
- Pourmoradian, S.; Mahdavi, R.; Mobasseri, M.; Faramarzi, E.; Mobasseri, M. Effects of royal jelly supplementation on glycemic control and oxidative stress factors in type 2 diabetic female: A randomized clinical trial. Chin. J. Integr. Med. 2014, 20, 347–352. [Google Scholar] [CrossRef]
- Mohamed, A.A.-R.; Galal, A.; Elewa, Y.H. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem. 2015, 117, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.; Cemek, M.; Buyukokuroglu, M.E.; Altunbas, K.; Bas, O.; Yurumez, Y. Royal jelly can diminish secondary neuronal damage after experimental spinal cord injury in rabbits. Food Chem. Toxicol. 2012, 50, 2554–2559. [Google Scholar] [CrossRef]
- Xue, X.; Wu, L.; Wang, K. Chemical Composition of Royal Jelly. In Bee Products-Chemical and Biological Properties; Springer Science and Business Media, LLC: Berlin, Germany, 2017; pp. 181–190. [Google Scholar]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I—Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics 2020, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II—Production Scales and Clinically Compliant Production Methods. Nanomaterials 2020, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Neupane, B.P.; Chaudhary, D.; Paudel, S.; Timsina, S.; Chapagain, B.; Jamarkattel, N.; Tiwari, B.R. Himalayan honey loaded iron oxide nanoparticles: Synthesis, characterization and study of antioxidant and antimicrobial activities. Int. J. Nanomed. 2019, 14, 3533–3541. [Google Scholar] [CrossRef] [Green Version]
- Sarhan, W.A.; Azzazy, H.M. High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym. 2015, 122, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Lucini, L.; Aromolo, R.; Martinelli, E.; Souto, E.B.; Santini, A.; Pignatti, G. Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life 2021, 11, 970. [Google Scholar] [CrossRef]
- De Carvalho, F.M.d.A.; Schneider, J.K.; de Jesus, C.V.F.; de Andrade, L.N.; Amaral, R.G.; David, J.M.; Krause, L.C.; Severino, P.; Soares, C.M.F.; Caramão Bastos, E.; et al. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020, 10, 726. [Google Scholar] [CrossRef]
- De Mendonça, M.A.A.; Ribeiro, A.R.S.; De Lima, A.K.; Bezerra, G.B.; Pinheiro, M.S.; De Albuquerque-Júnior, R.L.C.; Gomes, M.Z.; Padilha, F.F.; Thomazzi, S.M.; Novellino, E.; et al. Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients 2020, 12, 2951. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Kunugi, H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef] [PubMed]
Genus | Species of Honeybees |
---|---|
Apis | Apis andreniformis |
Apis binghami | |
Apis breviligula | |
Apis cerana | |
Apis dorsata | |
Apis florea | |
Apis koschevnikovi | |
Apis laboriosa | |
Apis mellifera | |
Apis nigrocincta | |
Apis nuluensis |
Plant Family | N. | Nectar | N. | Pollen | Honeydew | N. | Wild Bees |
---|---|---|---|---|---|---|---|
AMARYLLIDACEAE | 2 | Allium | 2 | Allium | 2 | W | |
ANACARDIACEAE | 1 | Cotinus | 1 | Pistacia | |||
BETULACEAE | 2 | Betula | Betula | ||||
BORAGINACEAE | 3 | Borago, Symphytum, Pulmonaria | 3 | Borago, Symphytum, Pulmonaria | 3 | W | |
CAPRIFOLIACEAE | 4 | Valeriana, Viburnum, Sambucus | 4 | Valeriana, Viburnum, Sambucus | 2 | W | |
ASTERACEAE | 13 | Arctium, Aster, Cichorium, Taraxacum, Achillea, Inula, Matricaria, Silybum, Solidago, Tanacetum, Tussilago | 15 | Arctium, Aster, Cichorium, Taraxacum, Achillea, Inula, Matricaria, Silybum, Solidago, Tanacetum, Tussilago, Helichrysum | 8 | W | |
CRUCIFERAE | 1 | Brassica | 3 | Brassica, Capsella, Lepidium | 3 | W | |
CUPRESSACEAE | 4 | Juniperus | |||||
ERICACEAE | 7 | Calluna, Erica, Vaccinium, Arbutus, Rhododendron | 6 | Calluna, Erica, Vaccinium, Rhododendron | 1 | W | |
FAGACEAE | 1 | Castanea | 4 | Castanea, Quercus | Castanea, Quercus | 3 | W |
IRIDACEAE | 7 | Iris | 7 | W | |||
LAMIACEAE | 34 | Hyssopus, Lavandula, Thymus, Glechoma, Nepeta, Origanum, Prunella, Rosmarinus, Salvia, Teucrium, Galeopsis, Lamium, Leonurus, Melissa, Satureja, Stachys, Mentha | 34 | Hyssopus, Lavandula, Thymus, Glechoma, Nepeta, Origanum, Prunella, Rosmarinus, Salvia, Teucrium, Galeopsis, Lamium, Leonurus, Melissa, Satureja, Stachys, Mentha, Clinopodium, Ballota | Thymus | 34 | W |
LEGUMINOSAE | 7 | Melilotus, Trifolium, Medicago, Astragalus, Ononis, Pisum | 6 | Melilotus, Trifolium, Medicago, Ononis, Pisum | 7 | W | |
MALVACEAE | 3 | Malva, Althaea | 3 | Malva, Althaea | 1 | W | |
OLEACEAE | 3 | Fraxinus, Olea | Fraxinus | ||||
ORCHIDACEAE | 30 | W | |||||
PAEONIACEAE | 3 | Paeonia | 3 | Paeonia | |||
PAPAVERACEAE | 3 | Papaver, Chelidonium | 3 | W | |||
PINACEAE | 4 | Pinus, Abies, Larix | Pinus, Abies | ||||
PLANTAGINACEAE | 6 | Plantago | 5 | W | |||
POLYGONACEAE | 1 | Polygonum | 4 | Polygonum, Rumex | |||
PRIMULACEAE | 3 | Primula | 3 | Primula | 2 | W | |
RANUNCULACEAE | 7 | Aquilegia, Helleborus, Aconitum, Ficaria, Pulsatilla | 8 | Aquilegia, Helleborus, Aconitum, Ficaria, Pulsatilla, Hepatica | 2 | W | |
ROSACEAE | 15 | Malus, Prunus, Rubus, Agrimonia, Crataegus, Geum | 25 | Malus, Prunus, Rubus, Agrimonia, Crataegus, Geum, Rosa, Filipendula | 7 | W | |
RUBIACEAE | 3 | Galium | 3 | Galium | |||
SALICACEAE | 4 | Salix | 5 | Salix, Populus | Salix | 4 | W |
SCROPHULARIACEAE | 5 | Digitalis, Veronica, Verbascum | 7 | Digitalis, Veronica, Verbascum | 7 | W | |
TILIACEAE | 3 | Tilia | 3 | Tilia | Tilia | 3 | W |
APIACEAE | 5 | Foeniculum, Eryngium, Daucus, Angelica | 6 | Foeniculum, Eryngium, Daucus, Angelica, Carum | 5 | W | |
VIOLACEAE | 4 | Viola | 4 | Viola | 3 | W |
Plant Family | Nectar and Pollen Sources |
---|---|
AMARYLLIDACEAE | Allium, Galanthus |
BORAGINACEAE | Echium, Lithospermum, Anchusa |
ASTERACEAE | Carlina, Centaurea, Helianthus, Calendula, Eupatorium, Hieracium, Tanacetum, Artemisia, Bellis |
CRUCIFERAE | Iberis, Isatis, Erysimum |
CUCURBITACEAE | Cucurbita, Bryonia |
FABACEAE | Anthyllis, Lotus, Hedysarum, Cytisus |
IRIDACEAE | Crocus, Iris |
LAMIACEAE | Lavandula, Teucrium, Mentha, Satureja |
MYRTACEAE | Eucalyptus |
ONAGRACEAE | Epilobium |
PLANTAGINACEAE | Linaria, Plantago |
RANUNCULACEAE | Helleborus, Nigella, Consolida |
RHAMNACEAE | Rhamnus |
ROSACEAE | Prunus, Geum |
RUTACEAE | Citrus |
APIACEAE | Coriandrum, Pimpinella, Levisticum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durazzo, A.; Lucarini, M.; Plutino, M.; Pignatti, G.; Karabagias, I.K.; Martinelli, E.; Souto, E.B.; Santini, A.; Lucini, L. Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture 2021, 11, 1136. https://doi.org/10.3390/agriculture11111136
Durazzo A, Lucarini M, Plutino M, Pignatti G, Karabagias IK, Martinelli E, Souto EB, Santini A, Lucini L. Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture. 2021; 11(11):1136. https://doi.org/10.3390/agriculture11111136
Chicago/Turabian StyleDurazzo, Alessandra, Massimo Lucarini, Manuela Plutino, Giuseppe Pignatti, Ioannis K. Karabagias, Erika Martinelli, Eliana B. Souto, Antonello Santini, and Luigi Lucini. 2021. "Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources" Agriculture 11, no. 11: 1136. https://doi.org/10.3390/agriculture11111136
APA StyleDurazzo, A., Lucarini, M., Plutino, M., Pignatti, G., Karabagias, I. K., Martinelli, E., Souto, E. B., Santini, A., & Lucini, L. (2021). Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture, 11(11), 1136. https://doi.org/10.3390/agriculture11111136