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Abstract: Due the implementation of nanotechnologies in the pharmaceutical industry over the last few
decades, new type of cutting-edge formulations—nanopharmaceutics—have been proposed. These
comprise pharmaceutical products at the nanoscale, developed from different types of materials with
the purpose to, e.g., overcome solubility problems of poorly water-soluble drugs, the pharmacokinetic
and pharmacodynamic profiles of known drugs but also of new biomolecules, to modify the release
profile of loaded compounds, or to decrease the risk of toxicity by providing site-specific delivery
reducing the systemic distribution and thus adverse side effects. To succeed with the development
of a nanopharmaceutical formulation, it is first necessary to analyze the type of drug which is to
be encapsulated, select the type matrix to load it (e.g., polymers, lipids, polysaccharides, proteins,
metals), followed by the production procedure. Together these elements have to be compatible
with the administration route. To be launched onto the market, the selected production method
has to be scaled-up, and quality assurance implemented for the product to reach clinical trials,
during which in vivo performance is evaluated. Regulatory issues concerning nanopharmaceutics
still require expertise for harmonizing legislation and a clear understanding of clinically compliant
production methods. The first part of this study addressing “Nanopharmaceutics: Part I—Clinical
trials legislation and Good Manufacturing Practices (GMP) of nanotherapeutics in the EU” has been
published in Pharmaceutics. This second part complements the study with the discussion about the
production scales and clinically compliant production methods of nanopharmaceutics.

Keywords: nanopharmaceutics; nanonutraceutics; legislation; lipid-based; polymer-based;
metal-based; clinical requirements

1. Introduction

A number of emerging nanotechnologies are being exploited in medicine to improve the therapeutic
outcome of several drugs and biomolecules and to address unmet medical needs. European Commission
aims to lead innovation towards the development of these nanopharmaceutics by launching several

Nanomaterials 2020, 10, 455; doi:10.3390/nano10030455 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-9737-6017
https://orcid.org/0000-0001-9386-9722
https://orcid.org/0000-0002-8502-8701
https://orcid.org/0000-0003-2603-1377
https://orcid.org/0000-0002-5699-0387
https://orcid.org/0000-0002-7747-9107
https://orcid.org/0000-0001-5505-3327
http://dx.doi.org/10.3390/nano10030455
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/3/455?type=check_update&version=2


Nanomaterials 2020, 10, 455 2 of 16

funding opportunities within Member States, Associated Countries and Third Countries. The strategic
plan for the next Horizon Europe framework programme has clearly set nanomedicines and advanced
therapies as priorities. To succeed, the nanoproduct needs to be manufacturable at large scale and its
quality assured in order to reach clinical trials. The topic is indeed of high scientific interest considering
the number of scientific papers dealing with clinical trials and nanoparticles over the last twenty years
(Figure 1).
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a centralized procedure [2,3]. This implies harmonization and, thus, confidence in the quality and 
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To measure the maturity of the development of a product, Technology Readiness Levels (TRL) 
can be used (Figure 2). This system estimates the stage of technical development based on quality 
parameters and is ranked in nine levels. TRL1 and TRL2 are related to basic research and to a very 
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clinical trials and market introduction authorization, and TRL9 refers to actions after the approval. 
The product is officially on the market [7,8].  

Figure 1. Distribution per scientific category of 2332 scientific works published between 2000 and 2020
using “clinical trials” and “nanoparticles” as keywords. 1274 research articles, 1001 reviews, 88 book
chapters, 53 proceedings, 22 early accesses, 20 editorials, 11 meeting abstracts, 1 corrigendum. A total
of 2341 publications are indexed in the Web of Knowledge (search on the 20 January 2020).

The scientific category “Pharmacology Pharmacy” clearly dominates with 31.432% followed
by the “Nanoscience Nanotechnology” with 17.925%. Regulating nanopharmaceutics is a challenge
since the selection of the regulatory pathway is governed by the classification of the product which
is defined by its type of action [1]. If the nanopharmaceutical product is defined as a product for
advanced therapy, the procedure of marketing introduction authorization shall be submitted through
a centralized procedure [2,3]. This implies harmonization and, thus, confidence in the quality and
safety of the products.

To measure the maturity of the development of a product, Technology Readiness Levels (TRL)
can be used (Figure 2). This system estimates the stage of technical development based on quality
parameters and is ranked in nine levels. TRL1 and TRL2 are related to basic research and to a very low
level of experimental work. According to the needs and if studies of analytical and laboratorial nature
are employed with a parallel settling of a model of proof-of-concept, the TRL3 is achieved. When the
demonstration of efficacy of the process is set in vivo, the process is defined as optimized and achieves
TRL4. The next transition occurs after implementation of Good Manufacturing Practices (GMP) which
is realized by strict and precise tests undergone under a similar-to-reality milieu since there is a high
probability of the nanopharmaceutical to get into the clinical trials phase (TRL5). TRL6 comprises
the production of a batch according to GMP requirements to be available for Phase 1 of clinical
trials [4]. In this case, an evaluation of some parameters as pharmacokinetics and pharmacodynamics
is performed and the nanopharmaceutics are defined as a drug system model, being given the second
proof-of-concept. Once entered the clinical trial phase, the model cannot be modified. Regarding
TRL7, a scale-up process is needed to be structured according to GMP to be accepted in a Phase 2 of
clinical trials related to safety evaluation [5,6]. TRL8 refers to Phase 3 of clinical trials and market
introduction authorization, and TRL9 refers to actions after the approval. The product is officially on
the market [7,8].
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a pharmaceutical product.

2. Production Scales of Clinically Compliant Nanopharmaceutics

The number of nanopharmaceutics currently on the market is still limited. This is mainly due
to difficulties encountered during the processes of scaling-up which reflects on the quantity and
even quality of products reaching clinical trials. The transition between the laboratory experimental
production to the industry large-scale production is still a challenge in nanopharmaceutics.

The laboratory-scale batches produced at the early stage of the developmental process are of
very small size (usually 100–1000-times less than the industrial scale), and commonly result from
pre-formulation studies, help to define the qualitative and quantitative formulation, and set the
production parameters for medium/large scale. Such small batches supply the pre-clinical and/or
clinical studies. The pilot scale batches are larger than the laboratory batches and usually support
stability studies, and help to optimize production parameters and appropriate equipment. Pilot batches
may also supply clinical trials. Industrial scale batches are those produced over the course of the
marketing process. The scale-up of nanopharmaceutics may be a little more tricky as the process
may affect the properties of the particles which make them singular in comparison to their bulk
counterparts, e.g., colloidal stability, the drug loading, the mean particle size, the morphology, and
surface properties [9]. The control of these properties is instrumental to ensure that the industrial
batch will have the same physicochemical, pharmacokinetic and biopharmaceutical properties as the
laboratory-scale batch. As these properties are strongly dependent on the production process, any
deviation is only noted when the volume of batches is amplified. Good Manufacturing Practices (GMP)
must be ensured over the course of the scaling-up [10] and the production process optimized to limit
substantial differences between batches. The selection of the production process is governed by the
type of nanomaterial, which is then dependent on the drug to be loaded and on the administration
route. Besides, the low toxicological risk of the product must also be ensured before it gets into clinical
trials [11].

3. Production Methods of Clinically Compliant Nanopharmaceutics

The production methods of nanopharmaceutics should ensure that the product has at least one
dimension in the nanoscale—from 1 nanometer to 100 nanometers—to conform with the definition [9,12].
Regarding the breakthrough that nanomaterials represent to pharmaceutical industry, the investment
in novel approaches to develop improved pharmaceuticals is considered of high value. The main types
of nanoparticles with potential to reach clinical trials are those composed of polymers, lipids and metals.
Figure 3 shows the publication trends on these types of nanoparticles over the last twenty years.
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Figure 3. Publication trends on the types of nanoparticles being developed for clinical trials from 2000
to 2020. Source: Web of Knowledge, keywords: “lipid nanoparticles” or “polymeric nanoparticles” or
“metal nanoparticles” and “clinical trials” (search on 20 January 2020).

Lipid nanoparticles can be of different types (e.g., liposomes [13–16], nanoemulsions [14,17,18],
solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) [19–24]), each produced from
very different lipids (e.g., phospholipids, synthetic oils, essential oils from plants, fatty acids, di-,
mono-, and triglycerides, cholesterol), commonly resembling those existing in the human body and
also in food. Due to their lipid composition, these particles are usually referred to as biocompatible,
biodegradable and are generally recognized as safe [25–27]. These particles are specifically tailored
to load lipophilic drugs [28], but the number of examples of hydrophilic including peptides and
proteins [29,30], and amphiphilic compounds loaded in lipid nanoparticles is impressive. SLN and NLC
receive special attention as, due to their solid matrix, they usually show modified release profile [31–34],
and can be surface-tailored for site-specific targeted delivery [35,36].

Polymeric nanoparticles can be obtained from natural, semi-synthetic or synthetic polymers
(e.g., chitosan [37–39], polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA) [40–43]), which will
then govern the way the drugs are encapsulated inside the matrix (dissolved or dispersed) or attached
onto the nanoparticle’ surface (chemically bound or adsorbed), and how the drug is released [44].
Polymeric nanoparticles can be produced with a variety of sizes and shapes, with high drug payload
for both hydrophilic and lipophilic molecules, can be surface-modified to increase the plasma half-life
(e.g., PEGylation [45,46]) to have site-specific targeted delivery [47], and release the drug in a controlled
fashion [48–50].

Metal nanoparticles are commonly employed in medical imaging and diagnostics, but also as
a theragnostic approach (i.e., combination of therapy and diagnosis). Besides, some metal nanoparticles
exhibit antimicrobial activity being commonly applied in coatings for wound treatment [51,52].

This section details the most commonly used methods for the production of each type of
nanoparticles illustrated in Figure 4.



Nanomaterials 2020, 10, 455 5 of 16

Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 17 

 

 
Figure 4. Most commonly used methods for the production lipid-, polymeric-, and metal-based 
nanopharmaceutics, and the critical factors determining their choice. 

3.1. Lipid-Based Nanopharmaceutics 

3.1.1. High-Pressure Homogenization 

High-pressure homogenization (HPH) is a technique with recognized advantage for large-scale 
production of lipid nanoparticles. Hot homogenization or cold homogenization can be used [53]. In 
the hot homogenization process, first the lipid is melted (in which the drug is dissolved or dispersed) 
and then, under mechanical stirring, is added to an aqueous surfactant solution at identical 
temperature [54]. The obtained emulsion is poured into the high-pressure homogenizer at a certain 
pressure (usually 500–600 bar) for some minutes (c. 3–5 min) and homogenized at high temperature 
(usually 5–10 °C above the melting point of the solid lipid). The resulting oil/water (O/A) 
nanoemulsion is cooled down to room temperature in order to crystallize the liquid lipid to solid 
lipid and generate the lipid nanoparticles [55–58]. For thermo-sensitive or hydrophilic drugs, the cold 
homogenization process is usually recommended. In this approach, a first step to melt the lipid is 
also needed in order to disperse the drug followed the fast cooling of the mixture. The obtained solid 
mixture is then ground in a mortar mill to obtain lipid particles. These are dispersed in an aqueous 
surfactant solution at room or lower temperature to prepare a suspension, and then processed in the 
high-pressure homogenization using the same processing conditions as mentioned above but at room 
temperature. The cold process usually originates lipid nanoparticle dispersions with higher 
polydispersity than the hot process [33,59]. 

3.1.2. Membrane Contractor Method 

The membrane contractor method also requires a first step of melting of the solid lipid in which 
the drug is dispersed or dissolved [60]. This organic phase is mixed by mechanical stirring in an 
aqueous surfactant solution to obtain a hot emulsion which is then pressed against the membrane 
applying the required pressure so that the inner oily droplets are sized down when crossing the 
membrane, forming very small droplets which recrystallize when in contact with a cold aqueous 
phase. This method generates monodispersed nanoparticles and can be scaled-up with some 
adaptations. 
  

Figure 4. Most commonly used methods for the production lipid-, polymeric-, and metal-based
nanopharmaceutics, and the critical factors determining their choice.

3.1. Lipid-Based Nanopharmaceutics

3.1.1. High-Pressure Homogenization

High-pressure homogenization (HPH) is a technique with recognized advantage for large-scale
production of lipid nanoparticles. Hot homogenization or cold homogenization can be used [53]. In the
hot homogenization process, first the lipid is melted (in which the drug is dissolved or dispersed) and
then, under mechanical stirring, is added to an aqueous surfactant solution at identical temperature [54].
The obtained emulsion is poured into the high-pressure homogenizer at a certain pressure (usually
500–600 bar) for some minutes (c. 3–5 min) and homogenized at high temperature (usually 5–10 ◦C
above the melting point of the solid lipid). The resulting oil/water (O/A) nanoemulsion is cooled
down to room temperature in order to crystallize the liquid lipid to solid lipid and generate the lipid
nanoparticles [55–58]. For thermo-sensitive or hydrophilic drugs, the cold homogenization process is
usually recommended. In this approach, a first step to melt the lipid is also needed in order to disperse
the drug followed the fast cooling of the mixture. The obtained solid mixture is then ground in a mortar
mill to obtain lipid particles. These are dispersed in an aqueous surfactant solution at room or lower
temperature to prepare a suspension, and then processed in the high-pressure homogenization using
the same processing conditions as mentioned above but at room temperature. The cold process usually
originates lipid nanoparticle dispersions with higher polydispersity than the hot process [33,59].

3.1.2. Membrane Contractor Method

The membrane contractor method also requires a first step of melting of the solid lipid in which the
drug is dispersed or dissolved [60]. This organic phase is mixed by mechanical stirring in an aqueous
surfactant solution to obtain a hot emulsion which is then pressed against the membrane applying
the required pressure so that the inner oily droplets are sized down when crossing the membrane,
forming very small droplets which recrystallize when in contact with a cold aqueous phase. This
method generates monodispersed nanoparticles and can be scaled-up with some adaptations.
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3.1.3. Microemulsion Method

The microemulsion method requires the preparation of a microemulsion by dispersing, under
mechanical stirring, the melted lipid containing the drug in an aqueous surfactant solution heated
up at the same temperature as the organic phase, followed by the dilution in a large volume of cold
water (0–4 ◦C) under magnetic stirring. Lipid nanoparticles are result from the recrystallization of the
lipid phase induced by the thermal shock. Although not particularly suited for large-scale production,
the microemulsion method is simple, reproducible and suited for sensitive compounds [61]. To produce
a stable microemulsion, a co-surfactant added to the inner lipid phase is usually needed. Some new
adaptations, e.g., replacement of first heating step by microwave treatment to disperse the lipid in the
aqueous phase, have been proposed [62].

3.1.4. Multiple Emulsion Method

Multiple emulsion or double method has been proposed for the loading of hydrophilic molecules
into lipid matrices [63]. It requires the preparation of a water-in-oil (w/o) emulsion by dispersing
the aqueous inner phase containing the drug into the organic phase obtained from the dissolution
of the solid lipid in a suitable organic solvent, followed by the dispersion of this w/o emulsion into
an aqueous surfactant solution to produce a water-in-oil-in-water (w/o/w) emulsion. By evaporation of
the organic solvent under gentle mechanical stirring lipid nanoparticles are generated. This method
is also not particularly suited for the production of large volumes of particles (with the additional
limitation of usage of organic solvents), but it is reproducible and can be an interesting option for the
production of small batches to feed pre-clinical and clinical studies.

3.1.5. Solvent Emulsification Diffusion

The solvent emulsification diffusion method has been firstly proposed for the production of
polymeric nanoparticles [64], and then adapted to produce lipid nanoparticles. Briefly, it is based on the
dispersion of an organic solution of the lipid in a polar protic or aprotic organic solvent (e.g., ethanol,
acetone) in an aqueous surfactant solution. The diffusion of the organic solvent from the inner phase in
contact with the water phase, under gentle stirring results in the formation of lipid nanoparticles. This
approach is limited to small-sized batches, but it has the advantage of not requiring heat, and thus is
interesting for sensitive compounds.

3.1.6. Solvent Emulsification Evaporation

This method is a variation of the solvent emulsification diffusion by replacing the polar protic or
aprotic organic solvent by non-polar solvent (e.g., chloroform, dichloromethane). It is suited for the
loading of lipophilic drugs into the lipid nanoparticles but with higher risk of toxicity due to the type
of solvents involved.

3.1.7. Ultrasonication and High-Shear Homogenization

These methods commonly precede the high-pressure homogenization technique as they are
used for the production of the pre-emulsion prior to high-pressure homogenization. If used isolated,
they usually need extended times for the dispersion of the melted lipid phase into the hot aqueous
surfactant solution for the production of the pre-emulsion, which upon cooling down generates lipid
nanoparticles with a higher polydispersity, in comparison to the combination of ultrasound/high-shear
homogenization with the high-pressure homogenization [65–67].
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3.2. Polymeric-Based Nanopharmaceutics

3.2.1. Extrusion

The production of polymeric nanoparticles by extrusion method requires the use of polycarbonate
membranes and is based on the induced precipitation of drug-loaded nanoparticles at the exit of the
nanopores [68]. The method ensures a high reproducibility.

3.2.2. Ionic Gelation

Ionic gelation is commonly used in the production of nanoparticles from ionic polymers
(e.g., chitosan and tripolyphosphate, alginate and dextran sulphate). Briefly, the method involves
two mixed aqueous phases with a following transition from a liquid to a gel—a consequence of ionic
interactions occurring at room temperature [69]. The generated nanoparticles usually have sizes below
500 nm being nevertheless governed by the type of polysaccharides used as particle matrix. This
method also ensures high reproducibility.

3.2.3. Nanoprecipitation

The nanoprecipitation technique is a bottom-up method which generates nanoparticles
instantaneously using two miscible solvents, one of which does not dissolve the polymer. Firstly,
the drug and the polymer are dissolved in one of the solvents (i.e., the one dissolving the polymer).
Nanoprecipitation of nanoparticles loaded with drug happen under gentle magnetic stirring by
dropwise addition of the solvent in which the polymer is not soluble. This latter solvent is called
non-solvent [70].

3.2.4. Salting-Out

The salting-out method is a variation of the nanoprecipitation method by replacing the non-solvent
by an agent that induces the precipitation of the polymer entrapping the drug. Briefly, the organic
solvent in which the polymer and drug are dissolved (usually acetone or ethanol) is added to an aqueous
surfactant solution containing a high concentration of electrolyte as the salting-out agent (usually,
magnesium chloride, calcium chloride, magnesium acetate) to produce an aqueous gel forming
oil-in-water emulsion under high mechanical stirring [67]. The dilution of this emulsion in a volume
of water appropriate for the diffusion of solvent into aqueous phase, decreasing the ionic strength in
the electrolyte. The diffusion of the organic solvent induces the hardening (or nanoprecipitation) of
the polymer which entraps the drug and generates nanoparticles. The organic solvent can further be
removed by reduced pressure. In a nonelectrolyte system, sucrose can be used as salting agent.

3.2.5. Supercritical Fluid

The supercritical fluid method is based on the extraction of the organic solvent from the inner
phase of an oil-in-water (o/w) emulsion using the supercritical carbon dioxide (CO2) [71]. This method
has been reported to produce monodispersed nanoparticles with less residual organic solvent, and with
high drug payload. The final material is reported to be a dried powder that facilitates the production
of improved liquid or solid drug formulations, while the technique is described as environmentally
friendly and with potential to be scaled-up. This method is also being adapted for the production of
lipid nanoparticles [72].

3.3. Metal-Based Nanopharmaceuticals

Metal-based nanoparticles are produced from bottom-up techniques [9,73], either from chemical or
from physical methods. In the chemical methods, the reduction of metal complexes in diluted solutions
is preferred, whereas in physical methods a vast array of techniques has already been employed, e.g.,
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gamma-ray beam, microwave radiation, laser pulses, supercritical fluids and deposition by chemical
vapor [74].

4. Requirements for Clinically Accepted Nanopharmaceutical Batches

The scaling-up of a production process requires an absolute control or each and every technical
parameter, in such a fashion that only slight differences can be found between different batches of the
same nanoproduct. To assist on the development of clinically accepted nanopharmaceutical batches,
the “guideline on the requirements to the chemical and pharmaceutical quality documentation concerning
investigational medicinal products in clinical trials”, of the Eudralex, Volume X, is of instrumental value
as it displays specifications about the development of IMP (Investigational Medicinal Products) [75].
Examples of currently ongoing or upcoming clinical trials involving the use of nanopharmaceuticals
are listed in Table 1.

The nanoproduct to reach clinical trials needs to be carefully identified regarding the Annex 13
of IMP. Besides, the number of individuals enrolled in the clinical trial must be critically defined so
that the tested batch size is aligned with the respective phase of the trial. In Phase I of clinical trials,
the group size is usually between 10 and 100 [76]. Phases II and III require higher number of subjects
to determine the parameters of safety and control of produced batches to prepare the Investigational
Medical Product Dossier (IMPD).

Once the clinical trials are finished, the results are included in the IMPD to further submission
for marketing introduction authorization [77]. In Europe, the Common Technical Documentation has
a comparable format as the IMPD [78,79].

Table 1. Examples of currently ongoing or upcoming clinical trials of treatments containing
nanopharmaceuticals (source: https://clinicaltrials.gov/).

Identifier Title Nanopharmaceutics Purpose

NCT03752424 Topical Silver Nanoparticles for
Microbial Activity

Silver nanoparticles
Topical approved
anti-microbial gel

Foot Infection Fungal
Infection, Bacterial

NCT04000386
A Study of Efficacy of Zinc Oxide

Nanoparticles Coated Socks in
Prevention of Unpleasant Foot Odor

Zinc oxide nanoparticles coated
socks

Placebo socks

Zinc Oxide
Foot Dermatoses

NCT03635138
Effect of the Incorporation of Copper
and Zinc Nanoparticles into Dental

Adhesives

Metal nanoparticles (Zn and Cu)
Dental Adhesive pure Caries, Dental

NCT03774680

Targeted Polymeric Nanoparticles
Loaded with Cetuximab and
Decorated with Somatostatin

Analogue to Colon Cancer

Cetuximab nanoparticles
Oral approved anticancer drug

Colon Cancer
Colo-rectal Cancer

NCT03478150
Evaluation of the Antibacterial Effect

of Laser Diode and Zinc Oxide
Nano-Particles in Cavity Disinfection

Zinc oxide nanoparticles
Laser diode Caries, Dental

NCT03659864
The Role of Eicosanoids in the

Cardiovascular Actions of Inhaled
Nanoparticles

Diesel exhaust particulate
Carbon nanoparticles
Small graphene oxide

Blood Biomarkers
Vasodilation

Blood Clotting

NCT03666195

The Anti-microbial Effect of Titanium
Dioxide Nano-Particles in Complete

Dentures Made for Edentulous
Patients

Titanium dioxide nanoparticles Candida Infection
Denture Stomatitis

NCT03550001

Carbon Nanoparticles (CNP) as
Lymph Node Tracer in Rectal Cancer

After Neoadjuvant
Radiochemotherapy

Procedure: Injection CNP
before NAT Rectal cancer

NCT03003546

Nab-paclitaxel/Rituximab-coated
Nanoparticle AR160 in Treating

Patients with Relapsed or Refractory
B-Cell Non-Hodgkin Lymphoma

Laboratory Biomarker Analysis
Nab-paclitaxel/Rituximab-coated

Nanoparticle AR160

Aggressive Non-Hodgkin
Lymphoma

CD20 Positive
Recurrent B-Cell

Non-Hodgkin Lymphoma

https://clinicaltrials.gov/
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Table 1. Cont.

Identifier Title Nanopharmaceutics Purpose

NCT04094077
Evaluating AGuIX® Nanoparticles in

Combination with Stereotactic
Radiation for Brain Metastases

Brain Metastases Drug: AGuIX

NCT03700489
Mycological Comparative Study on

Maxillary Dentures of Two
Different Materials

Effect of Tio2 Nanoparticles on
Candida Aggregation

Other: titanium dioxide
denture

NCT04138342

Topical Fluorescent Nanoparticles
Conjugated Somatostatin Analogue

for Suppression and Bioimaging
Breast Cancer

Quantum dots coated with
veldoreotide

Topical approved placebo

Breast Cancer
Skin Cancer

Skin Diseases

NCT04148833

Treatment of Patients with
Atherosclerotic Disease with

Paclitaxel-associated to low-density
lipoprotein (LDL)-Like Nanoparticles

Drug: LDE-Paclitaxel
Drug: LDE-Placebo

Coronary Artery Disease
Atherosclerosis
Inflammation

NCT04240639

An Extension Study MRI/US Fusion
Imaging and Biopsy in Combination

with Nanoparticle Directed Focal
Therapy for Ablation of

Prostate Tissue

AuroShell particle infusion Neoplasms of the Prostate

NCT03692286

Assessment of Postoperative Pain
After Using Various Intracanal

Medication in Patients with
Necrotic Pulp

Silver nanoparticle/Calcium
hydroxide

Silver Nanoparticles in gel form
Calcium Hydroxide Intracanal

medication

Postoperative Pain

5. From Nanopharmaceutics to Nanonutraceutics: A Bet for the Future

Over the last decades, technological developments gave birth to a new class of products,
the so-called nanopharmaceutics. These formulations represent a step forward to innovative
personalized medicines with improved outcomes to patients and to public health systems. However,
with innovation and modernization, come also other issues related to regulatory affairs requiring new
legislation to shape them for human use, which should cover quality, efficacy and safety of the product
before it reaches clinical trials. A positive benefit/risk relationship must be ensured.

The internationally available guidelines for clinical trials and the required IMPD are instrumental to
ensure that the product submitted to an evaluation for a marketing introduction authorization is reliable.
While the production of nanopharmaceutics are strongly tied to GMP, continuous scientific guidance is
still required to ensure quality and safety. As the methods for production of nanopharmaceutics differ
amongst the advantages and easiness to be scaled-up, the selection should also rely on the safety of
the final product. Bioactives from natural sources with nutraceutical value (of vegetal or animal food
matrices) are of focused interest and are being proposed as ingredients to be loaded into nanoparticles
to obtain a new production—nanonutraceutics. The added value of several nutraceuticals in the
prevention, treatment or delay the onset of a disease is very well documented [80–84], although much
research is still needed as seen by the number of publications indexed in the Web of Knowledge dealing
with nanonutraceutics and clinical trials (Figure 5).

Nutraceutics, which derive from food matrices of vegetal or animal matrices, are a novel toolbox
not yet completely explored for its full potential in medicine. Current research is looking towards
several nanotechnological approaches to be exploited for the formulation of nutraceuticals [84–93],
and to build up the emerging area of the nanonutraceutics [9,94–96]. Nutraceutics, a portmanteau
of the words ‘nutrition’ and ‘pharmaceutical’, have been recently defined as “the phytocomplex if
they derive from a food of vegetal origin, and as the pool of the secondary metabolites if they derive
from a food of animal origin, concentrated and administered in the more suitable pharmaceutical
form” [84,97]. Nanonutraceutics could be an important tool useful among the strategies adopted in
managing health conditions, particularly tailored to patients who are not eligible for a conventional
pharmacological therapy. Studies on follow up, use, and compliance of pharmaceuticals reported in
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the area [98–101], as well as communication strategies and assessment [102], should be extended also to
nutraceuticals and carried out in view of exploiting the field to different health conditions, e.g., the ones
clustered in the so-called “metabolic syndrome”, which includes conditions ranging from obesity to
dysmetabolism [103–105]. These latter are often related to the food intake/dietary habits of each person.
The efficient encapsulation of nutraceuticals, their smart delivery and release from a nanoformulation
are the emerging challenge of nanotechnology applied to food derived products. To address this
issue, the principles of nanotechnology should be used for the proficient delivery of nutraceuticals
with the objective to improve their bioavailability thereby increasing health benefits. To reach this
end point, extensive research on encapsulation of nutraceuticals into biodegradable, environment
friendly nanocarriers, is ongoing to increase their absorption and the therapeutic potential. This aspect
is challenging and attracting growing interest for its perspective potential, even if further studies are
needed to assess whether to a nano-level changes in physical and biochemical properties may occur.
Nanonutraceutic products are a bet for the future. They should be assessed completely for retaining
their nutraceutical properties at a nano level, guarantee safety and the maintenance of the GMP in the
production processes, substantiating with scientific data their quality and stability, guarantee their
safety and efficacy. Follow-up studies to evaluate possible unwanted effect, as it is needed also for
both the nanopharmaceutics and nanonutraceutics [9,106–108].Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 17 
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Figure 5. Number of papers indexed in the Web of Knowledge dealing with nanopharmaceuticals,
nanonutraceuticals and clinical trials. Source: Web of Knowledge, keywords: “nanopharmaceuticals or
nanopharmaceutics” and “nanonutraceuticals or nanonutraceutics” and “clinical trials” (search on 20
January 2020).

6. Conclusions

Nanopharmaceutics emerged as a promising technology in pharmaceutical industry due to
their unique properties resulting from the size, shape, morphology and surface properties, which
are effective only if essential parameters such as quality, safety and efficacy are ensured over the
course of the scale-up process. However, no standard methodology is available to control the quality
of these nanoproducts in a scale-up process. Nanopharmaceutics triggered an entire revolution in
pharmaceutical industry with significant impact also on nutraceutics, which are attracting growing
interest for their beneficial health effects, resulting from improved delivery, enhanced bioavailability
and biological effect. Although several tremendous investments from industrial stakeholders have
already been made, future outcomes will positively accompany the modifications in the way these
products are controlled, produced, and launched on the market, through safe and effective filtering out
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of the non-compliant products and preventing them going to the market, and facilitating the good
products being made available to the public, as well as stimulating the developments of even newer,
and improved products.
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