The Joint Action of Some Broadleaf Herbicides on Potato (Solanum tuberosum L.) Weeds and Photosynthetic Performance of Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dose-Response Experiments for Individual Herbicide
2.2. Dose-Response Experiments for Mixtures Herbicide
2.3. Individual and Mixture Herbicides on Potato Chlorophyll a Fluorescence
3. Results
3.1. Potato Injury for Individual and Mixtures Herbicides
3.2. Dose-Response Analyses Herbicide Mixtures on C. album and A. retroflexus
3.3. The Effect of Herbicide Mixtures on Potato Biomass and Maximum Quantum Efficiency (Fv/Fm) of Potato
3.4. Relationship between Biomass and Fv/Fm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasaninasab Farzane, R.; Alebrahim, M.T.; Mohebodini, M.; Samadi Kalkhoran, E. The effect of dose and application time of EPTC on potato weed control. J. Crop. Product. 2018, 11, 41–54. [Google Scholar] [CrossRef]
- Khakzad, R.; Alebrahim, M.T.; Tobeh, A.; Oveisi, M.; Valiollahpor, R.; Tseng, T.M.P. Effects of different management practices on Portulaca oleracea emergence in soybean. Weed Res. 2019, 59, 279–287. [Google Scholar] [CrossRef]
- Samadi Kalkhoran, E.; Alebrahim, M.T. The Evaluation of oxadiargyl on weed control of potato (Solanum tuberosum L.) at different growth stages. J. Plant Protect. 2016, 30, 426–440. [Google Scholar] [CrossRef]
- Alebrahim, M.T.; Majd, R.; Rashed Mohassel, M.H.; Wilkakson, S.; Baghestani, M.A.; Ghorbani, R.; Kudsk, P. Evaluating the efficacy of pre and post-emergence herbicides for controlling Amaranthus retroflexus L. and Chenopodium album L. in potato. Crop Protect. 2012, 42, 345–350. [Google Scholar] [CrossRef]
- Vencill, W.K. Herbicide Handbook, 8th ed.; Weed Science Society of America: Lawrence, KS, USA, 2002; pp. 235–237. [Google Scholar]
- Brown, D.; Masiunas, J. Evaluation of herbicides for pumpkin (Cucurbita spp.). Weed Technol. 2002, 16, 282–292. [Google Scholar] [CrossRef]
- Duke, S.O.; Lydon, J.; Becerril, J.M.; Sherman, T.D.; Lehnen, L.P.; Matsumoto, H. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 1991, 39, 465–473. [Google Scholar] [CrossRef]
- Wilson, D.E.; Nissen, S.J.; Thompson, A. Potato (Solanum tuberosum) variety and weed response to sulfentrazone and flumioxazin. Weed Technol. 2002, 16, 414–420. [Google Scholar] [CrossRef]
- Morse, P.M. Some comments on assessment of joint action in herbicide mixtures. Weed Sci. 1978, 26, 58–71. [Google Scholar] [CrossRef]
- Søbye, K.W.; Streibig, J.C.; Cedergreen, N. Prediction of joint herbicide action by biomass and chlorophyll a fluorescence. Weed Res. 2011, 51, 23–32. [Google Scholar] [CrossRef]
- Ritz, C.H.; Striebig, J.C. How to use statistics to claim antagonism and synergism from binary mixture experiments. Pest Manag. Sci. Actions. 2021, 77, 3890–3899. [Google Scholar] [CrossRef] [PubMed]
- Streibig, J.C.; Jensen, J.E. Actions of herbicides in mixtures. In Herbicides and Their Mechanisms of Action; Cobb, A.H., Kirkwood, R.C., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 153–180. [Google Scholar]
- Roeb, J.; Peteinatos, G.G.; Gerhards, R. Using Sensors to Assess Herbicide Stress in Sugar Beets; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 563–570. [Google Scholar] [CrossRef]
- Andersen, R.N. Germination and Establishment of Weeds for Experimental Purposes; Weed Science Society of America: Urbana, IL, USA, 1968; pp. 26–27. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Gessner, P.K. Isobolographic analysis of interactions: An update on applications and utility. Toxicology 1995, 105, 161–179. [Google Scholar] [CrossRef]
- Fishel, F.M. Tank-Mixing Pesticides without Disasters. 2020. Available online: https://journals.flvc.org/edis/article/view/117653 (accessed on 24 April 2020).
- Streibig, J.C.; Dayan, F.E.; Rimando, A.M.; Duke, S.O. Joint action of natural and synthetic photosystem II inhibitors. Pestic. Sci. 1998, 55, 137–146. [Google Scholar] [CrossRef]
- Love, S.L.; Novy, R.; Corsini, D.L.; Bain, P. Variety selection and management. In Potato Production Systems; Stark, J.C., Love, S.L., Eds.; University of Idaho Agricultural: Moscow, ID, USA, 2003; pp. 21–47. [Google Scholar]
- Gawronski, S.W.; Haderlie, L.C.; Callihan, R.H.; Dwelle, R.B. Metribuzin Absorption, Translocation, and Distribution in Two Potato (Solanum tuberosum) Cultivars. 1985. Weed Sci. 1985, 33, 629–634. [Google Scholar] [CrossRef]
- Grichar, W.J.; Besler, B.A.; Brewer, K.D. Purple nutsedge control and potato (Solanum tuberosum) tolerance to sulfentrazone and halosulfuron. Weed Technol. 2003, 17, 485–490. [Google Scholar] [CrossRef]
- Main, C.R.; Ducar, J.T.; Whitty, E.B.; MacDonald, G.E. Response of three runner-type peanut cultivars of flumioxazin. Weed Technol. 2003, 17, 89–93. [Google Scholar] [CrossRef]
- Jones, C.A.; Griffin, J.L.; Etheredge, L.M.; Judice, W.E., Jr.; Siebert, J.D. Evaluation of Valor in sugarcane. Proc. South Weed Sci. Soc. 2004, 57, 18. [Google Scholar]
- Vasilakoglou, I.; Dhima, K.; Paschalidis, K.; Gatsis, T.; Zacharis, K.; Galanis, M. Field bindweed (Convolvulus arvensis L.) and redroot pigweed (Amaranthus retroflexus L.) control in potato by pre- or post-emergence applied flumioxazin and sulfosulfuron. Chil. J. Agric. Res. 2013, 73, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Edward, P.; Richard, J.R.; Dalley, C.D. Sugarcane Response to Flumioxazin. Weed Sci. 2006, 20, 695–701. [Google Scholar] [CrossRef]
- Hutchinson, P.J.S.; Boydston, R.A.; Ransom, C.V. Weed Management in Potatoes with Spartan Herbicide. PNW Bulletin 577; University of Idaho Educational Communications: Moscow, ID, USA, 2005; p. 6. [Google Scholar]
- Senseman, S.A. Flumioxazin: Herbicide Handbook; Weed Science Society of America: Lawrence, KS, USA, 2007; pp. 202–203. [Google Scholar]
- Harr, J.; Guggenheim, R.; Schulke, R.H.; Falk, R.H. Chenopodium album L. the Leaf Surface of Major Weeds; Sandoz Agro Ltd.: West Princeton, NJ, USA, 1991. [Google Scholar]
- De Ruiter, H.; Uffing, A.J.M.; Meinen, E.; Prins, A. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci. 1990, 38, 567–572. [Google Scholar] [CrossRef]
- Ramsdale, B.K.; Messersmith, C.G. Drift-reducing nozzle effects on herbicide performance. Weed Technol. 2001, 15, 453–460. [Google Scholar] [CrossRef]
- Isaacs, M.A.; Wilson, H.P.; Toler, J.E. Rimsulfuron plus theifensulfuron-methyl combinations with seleced postemerence broadleaf herbicides in corn (Zea mays L.). Weed Technol. 2002, 16, 664–668. [Google Scholar] [CrossRef]
- Han, H.; Picoli, G.J., Jr.; Gue, H.; Yu, Q.; Powles, S.B. Mechanistic basis for synergism of 2,4-D amine andmetribuzin in Avena sterilis. J. Pestic. Sci. 2020, 45, 216–222. [Google Scholar] [CrossRef]
- Li, Z.; Van Acker, R.C.; Robinson, D.E.; Soltani, N.; Sikkema, P.H. Halosulfuron Tank-Mixes Applied PRE in White Bean. Weed Technol. 2017, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.T.; Shankle, M.W.; Miller, D.K. Efficacy and tolerance of flumioxazin on sweetpotato (Ipomoea batatas). Weed Technol. 2006, 20, 334–339. [Google Scholar] [CrossRef]
- Hutchinson, P.J.S. A comparison of Flumioxazin and Rimsulfuron tank mixtures for weed control in potato. Weed Technol. 2007, 21, 1023–1028. [Google Scholar] [CrossRef]
- Walsh, M.J.; Stratford, K.; Stone, K.; Powles, S.B. Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol. 2012, 26, 341–347. [Google Scholar] [CrossRef]
- Butler, W.L.; Kitajima, M. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta. 1975, 376, 116–125. [Google Scholar] [CrossRef]
- Streibig, J.C.; Teicher, H.B. Herbicide Action and the Demise of Plants; The Annual Meeting of the Weed Science Society of America: New York, NY, USA, 2006; pp. 72–73. [Google Scholar]
- Bjorkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyllfluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Sharom, M.S.; Stephenson, G.R. Behaviour and Fate of Metribuzin in Eight Ontario Soils. Weed Sci. 1976, 24, 153–160. [Google Scholar] [CrossRef]
- Dermiyati, S.K.; Yamamoto, I. Degradation of the herbicide halosulfuron-methyl in two soils under different environmental conditions. J. Pestic. Sci. 1997, 22, 282–287. [Google Scholar] [CrossRef]
Herbicide | d | ED50 | Lack of Fit |
---|---|---|---|
Metribuzin | 3.04 (0.15) | 20.51 (7.24) | 0.46 |
Halosulfuron | 3.57 (0.16) | 7.98 (3.44) | 0.94 |
Flumioxazin | 2.82 (0.07) | 1.21 (0.38) | 0.73 |
Herbicide | d | ED50 | Lack of Fit |
---|---|---|---|
Metribuzin | 2.88 (0.11) | 9.37 (2.78) | 0.001 |
Halosulfuron | 2.75 (0.06) | 1.14 (0.21) | 0.06 |
Flumioxazin | 1.51 (0.03) | 0.54 (0.26) | 0.53 |
Herbicide | d | ED50 | Lack of Fit |
---|---|---|---|
Metribuzin | 36.58 (1.82) | 872.24 (165.79) | 0.79 |
Halosulfuron | 39.89 (1.70) | 165.81 (74.69) | 0.92 |
Flumioxazin | 36.95 (1.62) | 12.23 (2.14) | 0.08 |
Herbicide | c | d | ED50 | Lack of Fit |
---|---|---|---|---|
Metribuzin 4 days | - | 0.67 (0.03) | 212.44 (38.91) | 0.95 |
Metribuzin 8 days | - | 0.63 (0.03) | 137.71 (23.07) | 0.32 |
Halosulfuron 4 days | 0.27 (0.12) | 0.67 (0.02) | 32.94 (17.71) | 0.94 |
Halosulfuron 8 days | 0.40 (0.04) | 0.68 (0.01) | 20.62 (6.04) | 0.60 |
Flumioxazin 4 days | 0.36 (0.07) | 0.76 (0.04) | 34.13 (13.93) | 0.88 |
Flumioxazin 8 days | 0.23 (0.06) | 0.67 (0.05) | 22.16 (7.93) | 0.99 |
The First Experiment 4 Days after Treatment | The First Experiment 8 Days after Treatment | |||
---|---|---|---|---|
Mixture Type | Slope | Intercept | Slope | Intercept |
Metribuzin:halosulfuron | 0.007 (0.0006) | 0.52 (0.013) | 0.007 (0.0008) | 0.46 (0.016) |
Metribuzin:flumioxazin | 0.006 (0.0009) | 0.52 (0.017) | 0.007 (0.001) | 0.46 (0.019) |
The second experiment 4 days after treatment | The second experiment 8 days after treatment | |||
Mixture type | slope | intercept | slope | intercept |
Metribuzin:halosulfuron | 0.006 (0.0005) | 0.50 (0.011) | 0.007 (0.0008) | 0.45 (0.017) |
Metribuzin:flumioxazin | 0.007 (0.0007) | 0.47 (0.015) | 0.008 (0.0007) | 0.41 (0.015) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalkhoran, E.S.; Alebrahim, M.T.; Abad, H.R.M.C.; Streibig, J.C.; Ghavidel, A.; Tseng, T.-M.P. The Joint Action of Some Broadleaf Herbicides on Potato (Solanum tuberosum L.) Weeds and Photosynthetic Performance of Potato. Agriculture 2021, 11, 1103. https://doi.org/10.3390/agriculture11111103
Kalkhoran ES, Alebrahim MT, Abad HRMC, Streibig JC, Ghavidel A, Tseng T-MP. The Joint Action of Some Broadleaf Herbicides on Potato (Solanum tuberosum L.) Weeds and Photosynthetic Performance of Potato. Agriculture. 2021; 11(11):1103. https://doi.org/10.3390/agriculture11111103
Chicago/Turabian StyleKalkhoran, Elham Samadi, Mohammad Taghi Alebrahim, Hamid Reza Mohammaddust Chamn Abad, Jens Carl Streibig, Akbar Ghavidel, and Te-Ming Paul Tseng. 2021. "The Joint Action of Some Broadleaf Herbicides on Potato (Solanum tuberosum L.) Weeds and Photosynthetic Performance of Potato" Agriculture 11, no. 11: 1103. https://doi.org/10.3390/agriculture11111103
APA StyleKalkhoran, E. S., Alebrahim, M. T., Abad, H. R. M. C., Streibig, J. C., Ghavidel, A., & Tseng, T.-M. P. (2021). The Joint Action of Some Broadleaf Herbicides on Potato (Solanum tuberosum L.) Weeds and Photosynthetic Performance of Potato. Agriculture, 11(11), 1103. https://doi.org/10.3390/agriculture11111103