Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Yield, Yield Components, and Land Equivalent Ratio
3.3. Soil Water Storage, Water Use, and Water Balance
3.4. Water Use Efficiency
3.5. Energy Output and Net Economic Return
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Xue, J.F.; Liu, S.L.; Chen, Z.D.; Chen, F.; Lal, R.; Tang, H.M. Assessment of carbon sustainability under different tillage systems in a double rice cropping system in Southern China. Int. J. Life Cycle Assess. 2014, 19, 1581–1592. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Fan, Z.; Chai, Q.; Yu, A.; Zhao, C.; Yin, W.; Hu, F. Water and radiation use in maize/pea intercropping is enhanced with increased plant density. Agron. J. 2020, 112, 1–12. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Zhao, C.; Fan, Z.; Coulter, J.A.; Yin, W.; Hu, F.; Yu, A. High Maize Density Alleviates the Inhibitory Effect of Soil Nitrogen on Intercropped Pea. Agronomy 2020, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Chai, Q.; Gan, Y.; Turner, N.C.; Zhang, R.Z.; Yang, C.; Niu, Y. Water-saving innovations in Chinese agriculture. Adv. Agron. 2014, 126, 149–202. [Google Scholar]
- Mitchell, J.P.; Singh, P.N.; Wallender, W.W.; Munk, D.S.; Wroble, J.F.; Horwath, W.R. No-tillage and high-residue practices reduce soil water evaporation. Calif. Agric. 2012, 66, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R. Conservation Tillage Increases Water Use Efficiency of Spring Wheat by Optimizing Water Transfer in a Semi-Arid Environment. Agronomy 2019, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020, 231, 106024. [Google Scholar] [CrossRef]
- Deng, X.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Wang, L.; Palta, J.A.; Chen, W.; Chen, Y.; Deng, X. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agric. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Sun, M.; Gao, Z.; Zhao, W.; Deng, L.; Deng, Y.; Zhao, H. Effect of subsoiling in fallow period on soil water storage and grain protein accumulation of dryland wheat and its regulatory effect by nitrogen application. PLoS ONE 2013, 8, e75191. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Dang, T. Responses of soil water balance and precipitation storage efficiency to increased fertilizer application in winter wheat. Plant Soil 2011, 347, 41–51. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Coulter, J.A.; Xie, J.; Luo, Z.; Zhang, R. Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis. Agric. Water Manag. 2020, 229, 105934. [Google Scholar] [CrossRef]
- Fan, T.; Stewart, B.A.; Yong, W.; Junjie, L.; Guangye, Z. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agric. Ecosyst. Environ. 2005, 106, 313–329. [Google Scholar] [CrossRef]
- Xie, J.; Wang, L.; Li, L.; Coulter, J.A.; Chai, Q.; Zhang, R. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil Tillage Res. 2020, 199, 104584. [Google Scholar] [CrossRef]
- Zhang, S.; Li, P.; Yang, X.; Wang, Z.; Chen, X. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res. 2011, 112, 92–97. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C. Ridge-furrow mulching systems—an innovative technique for boosting crop productivity in semiarid rain-fed environments. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 118, pp. 429–476. [Google Scholar]
- Li, F.; Li, X.; Javaid, M.; Ashraf, M.; Zhang, F. Ridge-furrow plastic film mulching farming for sustainable dryland agriculture on the Chinese loess plateau. Agron. J. 2020, 112, 3284–3294. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, S.; Liu, C.; Xiong, Y.; Si, J.; Li, X. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crop. Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Lu, X.; Wang, M.; Chu, Q.; Wen, X. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J. Clean. Prod. 2016, 112, 149–157. [Google Scholar] [CrossRef]
- Xue, X.; Landis, A.E. Eutrophication Potential of Food Consumption Patterns. Environ. Sci. Technol. 2010, 44, 6450–6456. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Wang, Z.; Li, S.; Malhi, S. Plastic mulch: Tradeoffs between productivity and greenhouse gas emissions. J. Clean. Prod. 2018, 172, 1311–1318. [Google Scholar] [CrossRef]
- Wang, L.; Coulter, J.A.; Li, L.; Luo, Z.; Xie, J. Plastic mulching reduces nitrogen footprint of food crops in China: A meta-analysis. Sci. Total. Environ. 2020, 748, 141479. [Google Scholar] [CrossRef]
- Yan, C.; He, W.; Turner, N. Plastic-film mulch in Chinese agriculture: Importance and problems. World Agric. 2014, 4, 32–36. [Google Scholar]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total. Environ. 2018, 651, 484–492. [Google Scholar] [CrossRef]
- Liu, C.; Jin, S.; Zhou, L.; Jia, Y.; Li, F.; Xiong, Y. Effects of plastic film mulch and tillage on maize productivity and soil parameters. Eur. J. Agron. 2009, 31, 241–249. [Google Scholar] [CrossRef]
- Xie, J.; Chai, Q.; Zhang, R.; Luo, Z.; Li, L.; Niu, Y. Suitable Succession Crop Screening After Perennial Alfalfa for Soil Dedication Restoration in Loess Plateau. J. Soil Water Conserv. 2014, 5, 51–57. [Google Scholar]
- Qin, S.; Yeboah, S.; Wang, D.; Zhang, J.; Unc, A. Effects of ridge-furrow and plastic mulching planting patterns on microflora and potato tuber yield in continuous cropping soil. Soil Use Manag. 2016, 32, 465–473. [Google Scholar] [CrossRef]
- Khan, S.; Shah, A.; Nawaz, M.; Khan, M. Impact of different tillage practices on soil physical properties, nitrate leaching and yield attributes of maize (Zea mays, L.). J. Soil Sci. Plant Nutr. 2017, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China′s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Sasnauskienė, J.; Masilionytė, L.; Kriaučiūnienė, Z. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania. Sci. Total. Environ. 2015, 514, 1–9. [Google Scholar] [CrossRef]
- Li, L.; Huang, G.; Zhang, R.; Jin, X.; Chan, K. Effects of conservation tillage on soil water regimes in rainfed areas. Acta Ecol. Sin. 2005, 25, 2326–2332. [Google Scholar]
- Ren, J.; Zhang, L.; Duan, Y.; Zhang, J.; Evers, J.; Zhang, Y. Intercropping potato (Solanum tuberosum, L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crop. Res. 2019, 240, 168–176. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, X.; Zhang, S.; Palta, J.A.; Chen, Y. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency. Plant Soil 2017, 415, 131–144. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Li, L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives. Chin. J. Eco-Agric. 2016, 24, 403–415. [Google Scholar]
- Qiang, C. Research Progress on Mechanism of High Efficient Water Utilization in Intercropping System. J. Agric. Sci. Technol. 2008, 10, 11–15. [Google Scholar]
- Midmore, D.J. Agronomic modification of resource use and intercrop productivity. Field Crop. Res. 1993, 34, 357–380. [Google Scholar] [CrossRef]
- Garrity RAMP. Resource capture and utilization in intercropping: Water. Field Crop. Res. 1993, 3, 303–317. [Google Scholar]
- Fang, Y.; Miao, Q.; Liu, S.; Xu, B.; Chen, Y. Optimal Wheat Seeding Rate is Influenced by Cultivar-Specific Topsoil and Subsoil Root Traits. Agron. J. 2019, 111, 3150–3160. [Google Scholar] [CrossRef]
- Gong, Z. Chinese Soil Taxonomy; China Science Press: Beijing, China, 2011; pp. 5–215. (In Chinese) [Google Scholar]
- Mead, R.; Willey, R.W. The Concept of a ′Land Equivalent Ratio′ and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Jiang, X.; Li, X.G. Assessing the effects of plastic film fully mulched ridge–furrow on rainwater distribution in soil using dye tracer and simulated rainfall. Soil Tillage Res. 2015, 152, 67–73. [Google Scholar] [CrossRef]
- Bai, W.; Sun, Z.; Zheng, J.; Du, G.; Feng, L.; Cai, Q. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agric. Water Manag. 2016, 178, 281–290. [Google Scholar] [CrossRef]
- Zin El-Abedin, T.K.; Mattar, M.A.; Alazba, A.A.; Al-Ghobari, H.M. Comparative effects of two water-saving irrigation techniques on soil water status, yield, and water use efficiency in potato. Sci. Hortic. 2017, 225, 525–532. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Zhang, L.; Zhang, S.; Chen, Y. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crop. Res. 2018, 221, 50–60. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, P.; Xiong, X.; Hong, Y. DNA Methylation in Potato Under Drought Stress. Chin. Potato J. 2012, 26, 11–15. [Google Scholar]
- Wang, L.; Coulter, J.A.; Palta, J.A.; Xie, J.; Deng, X. Mulching-Induced Changes in Tuber Yield and Nitrogen Use Efficiency in Potato in China: A Meta-Analysis. Agronomie 2019, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Fan, Z.; Hu, F.; Yu, A.; Zhao, C.; Chai, Q. Innovation in alternate mulch with straw and plastic management bolsters yield and water use efficiency in wheat-maize intercropping in arid conditions. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, Z.; Zhang, L.; Yang, N.; Feng, L.; Bai, W. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crop. Res. 2020, 253, 107819. [Google Scholar] [CrossRef]
- Yu, Y.; Turner, N.C.; Gong, Y.; Li, F.; Fang, C.; Ge, L. Benefits and limitations to straw-and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. Eur. J. Agron. 2018, 99, 138–147. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zou, Y.; Chau, H.; Zhang, F. Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize. J. Arid. Land 2020, 12, 181–198. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Xue, X.; Kamran, M.; Ahmad, I.; Dong, Z. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crop. Res. 2019, 233, 101–113. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, L.; Kamran, M.; Xue, X.; Dong, Z. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crop. Res. 2019, 233, 121–130. [Google Scholar] [CrossRef]
Years | Cropping System a | Maize yield Components | Potato Yield Components | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ear Number per Plant | Ear Length (cm) | Rows per Ear | Grain Number per Row | 100-Grain Weight (g) | Yield (g plant−1) | Tuber Number per Plant | Yield (g plant−1) | Commodity Rate (%) c | ||
2014 | FMRFm/NMFp | 1.94 a b | 21.5 a | 14.9 a | 36.5 a | 58.1 a | 218.2 a | 6.1 a | 473.5 a | 78.6 a |
FMFm/NMFp | 1.77 b | 22.2 a | 15.3 a | 35.5 a | 52.8 ab | 192.8 b | 5.8 ab | 467.7 ab | 74.0 a | |
NMFm/NMFp | 1.59 b | 22.1 a | 15.3 a | 36.5 a | 55.4 ab | 131.5 c | 5.2 b | 434.5 b | 73.7 a | |
FMRFm | 1.66 b | 22.8 a | 15.1 a | 37.3 a | 53.9 ab | 205.2 ab | – | – | – | |
FMFm | 1.66 b | 22.1 a | 15.5 a | 36.1 a | 56.7 a | 182.2 b | – | – | – | |
NMFm | 1.51 b | 21.6 a | 15.0 a | 33.9 a | 52.4 b | 127.7 c | – | – | – | |
NMFp | – | – | – | – | – | – | 5.3 b | 421.6 b | 74.1 a | |
2015 | FMRFm/NMFp | 1.50 a | 19.9 a | 13.6 a | 32.8 a | 52.3 a | 197.2 a | 3.3 a | 228.1 a | 25.8 a |
FMFm/NMFp | 1.40 b | 19.8 a | 13.7 a | 31.9 a | 49.6 ab | 174.2 b | 3.0 ab | 222.9 ab | 23.8 ab | |
NMFm/NMFp | 1.21 bc | 19.8 a | 13.7 a | 32.8 a | 49.9 ab | 118.7 c | 2.8 b | 202.9 b | 20.5 ab | |
FMRFm | 1.28 b | 20.4 a | 13.5 a | 33.5 a | 48.5 ab | 185.4 ab | – | – | – | |
FMFm | 1.28 b | 19.7 a | 13.8 a | 32.5 a | 51.1 ab | 164.6 b | – | – | – | |
NMFm | 1.17 c | 18.9 a | 13.2 a | 30.5 a | 47.2 b | 115.3 c | – | – | – | |
NMFp | – | – | – | – | – | – | 2.7 b | 181.3 c | 18.3 b | |
Average | ||||||||||
Year (Y) | 1.69 a | 22.0 a | 15.2 a | 36.0 a | 54.9 a | 176.3 a | 5.6 a | 449.3 a | 75.1 a | |
1.30 b | 19.8 a | 13.6 b | 32.3 b | 49.8 b | 159.2 b | 3.0 b | 258.8 b | 34.3 b | ||
Cropping system (C) | FMRFm/NMFp | 1.72 a | 20.7 a | 14.3 a | 34.6 ab | 55.2 a | 207.7 a | 4.7 a | 350.8 a | 52.2 a |
FMFm/NMFp | 1.58 b | 21.0 a | 14.5 a | 33.7 ab | 51.2 ab | 183.5 b | 4.4 ab | 345.3 ab | 48.9 ab | |
NMFm/NMFp | 1.40 bc | 21.0 a | 14.5 a | 34.6 ab | 52.6 ab | 125.1 c | 4.0 b | 318.7 b | 47.1 b | |
FMRFm | 1.47 b | 21.6 a | 14.3 a | 35.4 a | 51.2 ab | 195.3 ab | – | – | – | |
FMFm | 1.47 b | 20.9 a | 14.6 a | 34.3 ab | 53.9 ab | 173.4 b | – | – | – | |
NMFm | 1.34 c | 20.3 a | 14.1 a | 32.2 b | 49.8 b | 121.5 c | – | – | – | |
NMFp | – | – | – | – | – | – | 4.0 b | 301.5 c | 46.2 b | |
Y | * | ns | * | * | * | * | *** | *** | *** | |
C | ** | ns | ns | * | * | ** | * | * | * | |
Y× C | ns | ns | ns | ns | ns | ns | ns | * | * |
Years | Mulch Practices of Maize a | Maize Yield (Mg ha–1) b | Potato Yield (Mg ha–1) | ||||
---|---|---|---|---|---|---|---|
Intercrop | Monocrop | ΔY (%) | Intercrop | Monocrop | ΔY (%) | ||
2014 | FMRF | 5.45 a c | 10.43 a | 5 | 7.92 a | 13.80 | 15 ♯ |
FMF | 4.50 b | 9.78 a | −8 * | 6.77 b | 13.80 | −2 | |
NMF | 3.25 c | 6.35 b | 2 | 7.22 b | 13.80 | 5 | |
2015 | FMRF | 5.45 a | 10.07 a | 8 * | 4.90 a | 8.46 | 16 ♯ |
FMF | 5.13 a | 9.56 a | 7 | 4.66 a | 8.46 | 10 ♯ | |
NMF | 3.32 b | 6.40 b | 4 | 4.24 b | 8.46 | 0 | |
Average | |||||||
Year (Y) | 2014 | 4.40 a | 8.85 a | 0 | 7.30 a | 13.80 a | 6 |
2015 | 4.63 a | 8.68 a | 6 | 4.60 b | 8.46 b | 9 ♯ | |
Cropping system (C) | FMRF | 5.45 a | 10.25 a | 6 | 6.41 a | 11.13 | 15 ♯ |
FMF | 4.82 b | 9.67 a | 0 | 5.72 b | 11.13 | 3 | |
NMF | 3.28 c | 6.38 b | 3 | 5.73 b | 11.13 | 3 | |
Y | ns | ns | ns | *** | *** | ** | |
C | ** | * | ns | * | – | * | |
Y × C | ns | ns | ns | * | – | * |
Years | Mulch Practices of Maize a | LER Maize | LER Potato | LER Intercropping |
---|---|---|---|---|
2014 | FMRF | 0.52 a b | 0.57 a | 1.09 a |
FMF | 0.46 b | 0.49 b | 0.95 b | |
NMF | 0.51 ab | 0.52 ab | 1.03 ab | |
2015 | FMRF | 0.54 a | 0.58 a | 1.12 a |
FMF | 0.54 a | 0.55 ab | 1.09 ab | |
NMF | 0.52 a | 0.50 b | 1.02 b | |
Average | ||||
Year (Y) | 2014 | 0.50 a | 0.53 a | 1.03 a |
2015 | 0.53 a | 0.54 a | 1.08 a | |
Cropping system (C) | FMRF | 0.53 a | 0.58 a | 1.11 a |
FMF | 0.50 a | 0.51 b | 1.01 b | |
NMF | 0.52 a | 0.51 b | 1.03 b | |
Y | ns | ns | ns | |
C | ns | * | * | |
Y × C | ns | ns | ns |
Years | Cropping System a | Soil Water Storage (mm) | Soil Water Balance | |
---|---|---|---|---|
Sowing | Harvesting | (mm) | ||
2014 | FMRFm/NMFp | 405 a b | 388 a | −17 a |
FMFm/NMFp | 405 a | 343 bc | −62 c | |
NMFm/NMFp | 405 a | 367 ab | −38 b | |
FMRFm | 405 a | 392 a | −13 a | |
FMFm | 405 a | 371 ab | −34 b | |
NMFm | 405 a | 344 bc | −61 c | |
NMFp | 405 a | 330 c | −75 d | |
2015 | FMRFm/NMFp | 398 a | 326 a | −72 b |
FMFm/NMFp | 400 a | 301 ab | −99 c | |
NMFm/NMFp | 401 a | 296 b | −105 cd | |
FMRFm | 378 a | 308 ab | −70 b | |
FMFm | 388 a | 287 b | −101 cd | |
NMFm | 336 b | 283 b | −53 a | |
NMFp | 400 a | 291 b | −109 d | |
Average | ||||
Year (Y) | 2014 | 405 a | 362 a | −43 a |
2015 | 386 a | 299 b | −87 b | |
Cropping system (C) | FMRFm/NMFp | 402 a | 357 a | −45 a |
FMFm/NMFp | 403 a | 322 bc | −81 d | |
NMFm/NMFp | 403 a | 332 abc | −71 c | |
FMRFm | 392 ab | 350 ab | −42 a | |
FMFm | 397 ab | 329 abc | −68 c | |
NMFm | 371 b | 314 c | −57 b | |
NMFp | 403 a | 310 c | −93 e | |
Y | ns | * | * | |
C | * | * | ** | |
Y × C | ns | ns | * |
Soil Layers | Mulch Practices of Maize a | Soil Water Storage (mm) | Soil Water Storage Deficit Degree (%) | ||||
---|---|---|---|---|---|---|---|
Intercrop | Maize Monocrop | Potato Monocrop | Intercrop | Maize Monocrop | Potato Monocrop | ||
0–50 cm | FMRF | 89 a b | 77 a | 54 | 30.6 b | 39.6 b | 57.8 |
FMF | 71 b | 76 a | 54 | 44.2 a | 40.8 b | 57.8 | |
NMF | 70 b | 64 b | 54 | 45.1 a | 50.1 a | 57.8 | |
50–110 cm | FMRF | 90 a | 85 a | 68 | 50.1 a | 54.1 b | 67.2 |
FMF | 91 a | 86 a | 68 | 49.5 a | 53.1 b | 67.2 | |
NMF | 88 a | 76 b | 68 | 51.3 a | 60.9 a | 67.2 | |
110–200 cm | FMRF | 178 a | 188 a | 188 | 40.7 b | 33.1 c | 33.1 |
FMF | 160 b | 167 b | 188 | 55.1 a | 49.4 b | 33.1 | |
NMF | 173 a | 145 c | 188 | 44.6 b | 66.9 a | 33.1 |
Years | Mulching Practices of Maize a | Water Use (mm) | ΔWU (%) b | ||
---|---|---|---|---|---|
Intercrop | Maize Monocrop | Potato Monocrop | |||
2014 | FMRF | 329 a c | 315 a | 334 | −7.57 c |
FMF | 329 a | 342 a | 334 | 2.26 a | |
NMF | 334 a | 325 a | 334 | −1.98 b | |
2015 | FMRF | 339 a | 350 a | 383 | −17.59 c * |
FMF | 346 a | 349 a | 383 | −12.99 b * | |
NMF | 353 a | 331 a | 383 | −2.84 a | |
Average | |||||
Year (Y) | 2014 | 331 a | 327 a | 334 a | −2.43 a |
2015 | 346 a | 343 a | 383 b | −11.14 b ♯ | |
Cropping system (C) | FMRF | 334 a | 332 a | 358 | −12.82 a ♯ |
FMF | 338 a | 345 a | 358 | −5.22 b | |
NMF | 344 a | 328 a | 358 | −2.75 c | |
Y | ns | ns | ns | ** | |
C | ns | ns | – | ** | |
Y × C | ns | ns | – | * |
Years | Mulch Practices of Maize a | WUEy of Maize (kg m–3) | WUEy of Potato (kg m–3) | WER | ||||
---|---|---|---|---|---|---|---|---|
Intercrop | Monocrop | Intercrop | Monocrop | Maize | Potato | Sum | ||
2014 | FMRF | 1.66 a b | 3.32 a | 2.41 a | 4.13 | 0.50 a | 0.58 a | 1.08 a ♯ |
FMF | 1.37 b | 2.86 b | 2.06 b | 4.13 | 0.48 a | 0.50 b | 0.98 b | |
NMF | 0.97 c | 1.95 c | 2.16 ab | 4.13 | 0.50 a | 0.52 ab | 1.02 ab | |
2015 | FMRF | 1.61 a | 2.88 a | 1.45 | 2.21 | 0.56 a | 0.65 a | 1.21 a ♯ |
FMF | 1.48 a | 2.74 a | 1.35 | 2.21 | 0.54 a | 0.61 ab | 1.15 ab | |
NMF | 0.94 b | 1.93 b | 1.20 | 2.21 | 0.49 a | 0.54 b | 1.03 b | |
Average | ||||||||
Years (Y) | 2014 | 1.33 a | 2.71 a | 2.21 a | 4.13 a | 0.49 a | 0.53 b | 1.03 b |
2015 | 1.34 a | 2.52 a | 1.33 b | 2.21 b | 0.53 a | 0.60 a | 1.13 a | |
Cropping system (C) | FMRF | 1.63 a | 3.08 a | 1.92 a | 3.11 | 0.53 a | 0.62 a | 1.15 a ♯ |
FMF | 1.43 a | 2.80 a | 1.69 b | 3.11 | 0.51 a | 0.55 ab | 1.06 b | |
NMF | 0.96 b | 1.94 b | 1.67 b | 3.11 | 0.49 a | 0.54 b | 1.03 b | |
Y | ns | ns | * | * | ns | * | * | |
C | * | * | * | – | ns | * | ** | |
Y × C | ns | ns | ns | – | ns | ns | * |
Years | Mulch Practices of Maize a | Energy Output (GJ ha–1 year−1) | Net Economic Return (RMB ha−1 year−1) b | ||||||
---|---|---|---|---|---|---|---|---|---|
Intercrop | Maize Monocrop | Potato Monocrop | ΔE (%) c | Intercrop | Maize Monocrop | Potato Monocrop | ΔNER (%) c | ||
2014 | FMRF | 119 a d | 170 a | 52 | 7.2 | 11205 a | 11,180 a | 7568 | 19.5 ♯ |
FMF | 99 b | 159 a | 52 | −6.2 | 8261 b | 10,815 a | 7568 | −10.1 ♯ | |
NMF | 80 c | 104 b | 52 | 2.6 | 7978 b | 7335 b | 7568 | 7.1 | |
2015 | FMRF | 107 a | 164 a | 32 | 9.2 * | 7584 a | 10,460 a | 1158 | 30.6 ♯ |
FMF | 101 a | 156 a | 32 | 7.4 | 6989 a | 10,367 a | 1158 | 21.3 ♯ | |
NMF | 70 b | 104 b | 32 | 2.9 | 4547 b | 7445 b | 1158 | 5.7 | |
Average | |||||||||
Year (Y) | 2014 | 99 a | 144 a | 52 a | 1.2 b | 9148 a | 9777 a | 7568 a | 5.5 b |
2015 | 93 a | 141 a | 32 b | 6.5 a | 6373 b | 9424 a | 1158 b | 19.2 a ♯ | |
Cropping system (C) | FMRF | 113 a | 167 a | 42 | 8.1 a * | 9395 a | 10,820 a | 4363 | 23.8 a ♯ |
FMF | 100 a | 158 a | 42 | 0.3 c | 7625 b | 10,591 a | 4363 | 2.0 c | |
NMF | 75 b | 104 b | 42 | 2.7 b | 6263 c | 7390 b | 4363 | 6.6 b | |
Y | ns | ns | * | *** | *** | ns | *** | *** | |
C | * | * | – | ** | ** | * | – | ** | |
Y × C | ns | ns | – | * | * | ns | – | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Wang, L.; Li, L.; Anwar, S.; Luo, Z.; Zechariah, E.; Kwami Fudjoe, S. Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau. Agriculture 2021, 11, 1100. https://doi.org/10.3390/agriculture11111100
Xie J, Wang L, Li L, Anwar S, Luo Z, Zechariah E, Kwami Fudjoe S. Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau. Agriculture. 2021; 11(11):1100. https://doi.org/10.3390/agriculture11111100
Chicago/Turabian StyleXie, Junhong, Linlin Wang, Lingling Li, Sumera Anwar, Zhuzhu Luo, Effah Zechariah, and Setor Kwami Fudjoe. 2021. "Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau" Agriculture 11, no. 11: 1100. https://doi.org/10.3390/agriculture11111100
APA StyleXie, J., Wang, L., Li, L., Anwar, S., Luo, Z., Zechariah, E., & Kwami Fudjoe, S. (2021). Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau. Agriculture, 11(11), 1100. https://doi.org/10.3390/agriculture11111100