The Effects of Crops Together with Winter Cover Crops on the Content of Soil Water-Stable Aggregates in Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Description
2.2. Soil Material
2.3. Physical Measurements
2.4. Chemical Analysis
2.5. Data Analysis
3. Results
3.1. The Effects of Crops, Treatments, Yearly Differences and Depths on the Soil Water-Stable Aggregate Content
3.2. The Effects of Crops, Treatments, Yearly Differences and Depths on the Soil Maximum Water Holding Capacity
3.3. The Effects of Crops, Treatments and Yearly Differences on the Soil Organic Carbon Content
3.4. The Effects of Crops, Treatments and Yearly Differences on the Plant-Available Phosphorus and Potassium
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Organic Crop Area by Agricultural Production Methods and Crops (from 2012 Onwards) (Online Data Code: Org_Cropar). Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=org_cropar (accessed on 2 June 2021).
- Jáńský, J.; Živělová, I. Subsidies for the Organic Agriculture. Agric. Econ. 2007, 53, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Shen, L.; Qiao, Y.; Yu, M.; Fan, B. Market Trends and Accreditation Systems for Organic Food in China. Trends Food Sci. Technol. 2009, 20, 396–401. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human Health Implications of Organic Food and Organic Agriculture: A Comprehensive Review. Environ. Health. 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercati, V. Organic Agriculture as a Paradigm of Sustainability: Italian Food and Its Progression in the Global Market. Agric. Agric. Sci. Proced. 2016, 8, 798–802. [Google Scholar] [CrossRef] [Green Version]
- Tully, K.L.; McAskill, C. Promoting Soil Health in Organically Managed Systems: A Review. Org. Agric. 2020, 10, 339–358. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing Soil Fertility in Organic Farming Systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Paré, M.C.; Lafond, J.; Pageau, D. Best Management Practices in Northern Agriculture: A Twelve-Year Rotation and Soil Tillage Study in Saguenay-Lac-Saint-Jean. Soil Tillage Res. 2015, 150, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Ma, B.L.; Bomke, A.A. Effects of Cover Crops on Soil Aggregate Stability, Total Organic Carbon, and Polysaccharides. Soil Sci. Soc. Am. J. 2005, 69, 2041–2048. [Google Scholar] [CrossRef]
- Sánchez de Cima, D.; Tein, B.; Eremeev, V.; Luik, A.; Kauer, K.; Reintam, E.; Kahu, G. Winter Cover Crop Effects on Soil Structural Stability and Microbiological Activity in Organic Farming. Biol. Agric. Hortic. 2016, 32, 170–181. [Google Scholar] [CrossRef]
- Carter, M.R.; Noronha, C.; Peters, R.D.; Kimpinski, J. Influence of Conservation Tillage and Crop Rotation on the Resilience of an Intensive Long-Term Potato Cropping System: Restoration of Soil Biological Properties after the Potato Phase. Agric. Ecosyst. Environ. 2009, 133, 32–39. [Google Scholar] [CrossRef]
- Are, M.; Kaart, T.; Selge, A.; Astover, A.; Reintam, E. The Interaction of Soil Aggregate Stability with Other Soil Properties as Influenced by Manure and Nitrogen Fertilization. Zemdir.-Agric. 2018, 105, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.R.; Leinweber, P.; Jurasinski, G.; Eckhardt, K.U.; Glatzel, S. Tillage-Induced Short-Term Soil Organic Matter Turnover and Respiration. Soil 2016, 2, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Caradus, J.R. Distinguishing between Grass and Legume Species for Efficiency of Phosphorus Use. N. Z. J. Agric. Res. 1980, 23, 75–81. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic Matter and Water-Stable Aggregates in Soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Are, M.; Kauer, K.; Kaart, T.; Selge, A.; Astover, A.; Reintam, E. Water Stability of Soil Aggregates in a 50-Year-Old Soil Formation Experiment on Calcareous Glacial Till. Eurasian Soil Sci. 2020, 53, 619–631. [Google Scholar] [CrossRef]
- Scheublin, T.R.; Ridgway, K.P.; Young, J.P.W.; Van Der Heijden, M.G. Nonlegumes, Legumes, and Root Nodules Harbor Different Arbuscular Mycorrhizal Fungal Communities. Appl. Environ. Microbiol. 2004, 70, 6240–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Zhao, K. Return Rate of Straw Residue Affects Soil Organic C Sequestration by Chemical Fertilization. Soil Tillage Res. 2011, 113, 70–73. [Google Scholar] [CrossRef]
- Boardman, J.; Favis-Mortlock, D.T. The Significance of Drilling Date and Crop Cover with Reference to Soil Erosion by Water, with Implications for Mitigating Erosion on Agricultural Land in South East England. Soil Use Manag. 2014, 3, 40–47. [Google Scholar] [CrossRef]
- Büchi, L.; Valsangiacomo, A.; Burel, E.; Charles, R. Integrating Simulation Data from a Crop Model in the Development of an Agri-Environmental Indicator for Soil Cover in Switzerland. Eur. J. Agron. 2016, 76, 149–159. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Campbell, G.S., Nielsen, D.R., Jackson, R.D., Mortland, M.M., Eds.; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Gardner, W.H. Water content. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Campbell, G.S., Nielsen, D.R., Jackson, R.D., Mortland, M.M., Eds.; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1986; pp. 493–544. [Google Scholar]
- Sáez-Plaza, P.; Michałowski, T.; Navas, M.J.; Asuero, A.G.; Wybraniec, S. An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Crit. Rev. Anal. Chem. 2013, 43, 178–223. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen Über Die Chemische Bodenanalyse Als Grundlage Für Die Beurteilung Des Nährstoffzustandes Der Böden. II. Chemische Extraktionsmetoden Zur Phosphor- Und Kaliumbestimmung. K. Lantbr. Högsk. Ann. 1960, 26, 199–215. [Google Scholar]
- Kasper, M.; Buchan, G.D.; Mentler, A.; Blum, W.E.H. Influence of Soil Tillage Systems on Aggregate Stability and the Distribution of C and N in Different Aggregate Fractions. Soil Tillage Res. 2009, 105, 192–199. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling Downwards—Dissolved Organic Matter in Soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Dimoyiannis, D. Wet Aggregate Stability as Affected by Excess Carbonate and Other Soil Properties. Land Degrad. Dev. 2012, 23, 450–455. [Google Scholar] [CrossRef]
- Amézketa, E. Soil Aggregate Stability: A Review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Oades, J.M. The Role of Biology in the Formation, Stabilization and Degradation of Soil Structure. Geoderma 1993, 56, 377–400. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H.; Qi, H. Effect of Long-Term Tillage on Soil Aggregates and Aggregate-Associated Carbon in Black Soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, G.; Stagnari, F.; Pisante, M.; Benites, J. Visual Soil Assessment: Field Guides; Food and Agricultural Organization of the United Nations: Rome, Italy, 2008; ISBN 978-92-5-105937-1. [Google Scholar]
- Abad, J.; de Mendoza, I.H.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover crops in viticulture. A systematic review (1): Implications on soil characteristics and biodiversity in vineyard. OENO One 2021, 55, 295–312. [Google Scholar] [CrossRef]
- Gysi, M.; Ott, A.; Flühler, H. Influence of Single Passes with High Wheel Load on a Structured, Unploughed Sandy Loam Soil. Soil Tillage Res. 1999, 52, 141–151. [Google Scholar] [CrossRef]
- Baumgartl, T.; Horn, R. Effect of aggregate stability on soil compaction. Soil Tillage Res. 1991, 19, 203–213. [Google Scholar] [CrossRef]
- Koga, N. Tillage, fertilizer type, and plant residue input impacts on soil carbon sequestration rates on a Japanese Andosol. Soil Sci. Plant Nutr. 2017, 63, 396–404. [Google Scholar] [CrossRef]
- Koga, N.; Tsuji, H. Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in northern Japan. Soil Sci. Plant Nutr. 2009, 55, 546–557. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Jordan, N.R.; Mortensen, D.A.; Smith, R.G.; Snapp, S.; Davis, A.S. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter? PLoS ONE 2016, 11, e0160974. [Google Scholar] [CrossRef] [PubMed]
- Nesper, M.; Bünemann, E.K.; Fonte, S.J.; Rao, I.M.; Velásquez, J.E.; Ramirez, B.; Hegglin, D.; Frossard, E.; Oberson, A. Pasture Degradation Decreases Organic P Content of Tropical Soils Due to Soil Structural Decline. Geoderma 2015, 257–258, 123–133. [Google Scholar] [CrossRef]
- Garland, G.; Bünemann, E.K.; Oberson, A.; Frossard, E.; Snapp, S.; Chikowo, R.; Six, J. Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model. Soil Biol. Biochem. 2018, 116, 91–98. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.; Collins, D.; Badgery, W.; Dalal, R.C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res. 2018, 178, 209–223. [Google Scholar] [CrossRef]
- Sinaj, S.; Frossard, E.; Fardeau, J.C. Isotopically exchangeable phosphate in size fractionated and unfractionated soils. Soil Sci. Soc. Am. J. 1997, 61, 1413–1417. [Google Scholar] [CrossRef]
- Phocharoen, Y.; Aramrak, S.; Chittamart, N.; Wisawapipat, W. Potassium Influence on Soil Aggregate Stability. Commun. Soil Sci. Plant Anal. 2018, 49, 2162–2174. [Google Scholar] [CrossRef]
- Rengasamy, P.; Marchuk, A. Cation Ratio of Soil Structural Stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Tein, B.; Kauer, K.; Eremeev, V.; Luik, A.; Selge, A.; Loit, E. Farming Systems Affect Potato (Solanum tuberosum L.) Tuber and Soil Quality. Field Crop. Res. 2014, 156, 1–11. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Clayton, G.W.; O’Donovan, J.T.; Harker, K.N.; Turkington, T.K.; Soon, Y.K. Potassium Release during Decomposition of Crop Residues under Conventional and Zero Tillage. Can. J. Soil Sci. 2006, 86, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Loide, V.; Nõges, M.; Rebane, J. Väetistarbe hindamisest mehlich 3 väljatõmbest [Assessment of the fertiliser requirement using the extraction solution Mehlich 3]. J. Agric. Sci. 2004, 4, 206–215. [Google Scholar]
Temperature (°C): | |||||||
Quarter | 2012 | 2013 | 2014 | 2015 | 2016 | 2012–2016 | 1987–2016 |
Q1 | −5.0 | −5.8 | −1.8 | 0.3 | −3.0 | −3.1 | −3.1 |
Q2 | 10.4 | 12.4 | 11.0 | 10.3 | 12.1 | 11.2 | 10.9 |
Q3 | 15.4 | 15.5 | 16.3 | 15.4 | 15.7 | 15.7 | 15.3 |
Q4 | 0.7 | 4.4 | 1.9 | 3.7 | 1.1 | 2.4 | 1.4 |
Average | 5.4 | 6.7 | 6.9 | 7.5 | 6.5 | 6.6 | 6.1 |
Precipitation (mm): | |||||||
Quarter | 2012 | 2013 | 2014 | 2015 | 2016 | 2012–2016 | 1987–2016 |
Q1 | 139 | 85 | 85 | 109 | 155 | 115 | 120 |
Q2 | 205 | 144 | 240 | 206 | 279 | 215 | 173 |
Q3 | 230 | 161 | 224 | 183 | 205 | 200 | 213 |
Q4 | 198 | 151 | 153 | 124 | 150 | 155 | 165 |
Total | 772 | 541 | 701 | 622 | 789 | 685 | 671 |
2016 Spring | |||||
---|---|---|---|---|---|
TC | TW | TW+M | |||
IV | 20 potato | 40 potato + WW | 60 potato + WW + M20 | ||
19 s. barley | 39 s. barley | 59 s. barley + M10 | |||
18 red clover | 38 red clover | 58 red clover | |||
17 w. wheat | 37 w. wheat + WWR | 57 w. wheat + WWR + M10 | |||
16 pea | 36 pea + WR | 56 pea + WR | |||
III | 15 potato | 35 potato + WW | 55 potato + WW + M20 | ||
14 s. barley | 34 s. barley | 54 s. barley + M10 | |||
13 red clover | 33 red clover | 53 red clover | |||
12 w. wheat | 32 w. wheat + WWR | 52 w. wheat + WWR + M10 | |||
11 pea | 31 pea + WR | 51 pea + WR | |||
II | 10 potato | 30 potato + WW | 50 potato + WW + M20 | ||
9 s. barley | 29 s. barley | 49 s. barley + M10 | |||
8 red clover | 28 red clover | 48 red clover | |||
7 w. wheat | 27 w. wheat + WWR | 47 w. wheat + WWR + M10 | |||
6 pea | 26 pea + WR | 46 pea + WR | |||
I | 5 potato | 25 potato + WW | 45 potato + WW + M20 | ||
4 s. barley | 24 s. barley | 44 s. barley + M10 | |||
3 red clover | 23 red clover | 43 red clover | |||
2 w. wheat | 22 w. wheat + WWR | 42 w. wheat + WWR + M10 | |||
1 pea | 21 pea + WR | 41 pea + WR | |||
2015 Spring | |||||
TC | TW | TW+M | |||
IV | 20 pea | 40 pea + WR | 60 pea + WR | ||
19 potato | 39 potato + WW | 59 potato + WW + M20 | |||
18 s. barley | 38 s. barley | 58 s. barley + M10 | |||
17 red clover | 37 red clover | 57 red clover | |||
16 w. wheat | 36 w. wheat + WWR | 56 w. wheat + WWR + M10 | |||
III | 15 pea | 35 pea + WR | 55 pea + WR | ||
14 potato | 34 potato + WW | 54 potato + WW + M20 | |||
13 s. barley | 33 s. barley | 53 s. barley + M10 | |||
12 red clover | 32 red clover | 52 red clover | |||
11 w. wheat | 31 w. wheat + WWR | 51 w. wheat + WWR + M10 | |||
II | 10 pea | 30 pea + WR | 50 pea + WR | ||
9 potato | 29 potato + WW | 49 potato + WW + M20 | |||
8 s. barley | 28 s. barley | 48 s. barley + M10 | |||
7 red clover | 27 red clover | 47 red clover | |||
6 w. wheat | 26 w. wheat + WWR | 46 w. wheat + WWR + M10 | |||
I | 5 pea | 25 pea + WR | 45 pea + WR | ||
4 potato | 24 potato + WW | 44 potato + WW + M20 | |||
3 s. barley | 23 s. barley | 43 s. barley + M10 | |||
2 red clover | 22 red clover | 42 red clover | |||
1 w. wheat | 21 w. wheat + WWR | 41 w. wheat + WWR + M10 |
Topsoil (5–10 cm) | Subsoil (30–35 cm) | |||
---|---|---|---|---|
WSA | Wmax | WSA | Wmax | |
C | F4.900 = 17.60 p < 0.001 | F4.900 = 14.32 p < 0.001 | F4.900 = 3.23 p = 0.012 | F4.900 = 2.57 p = 0.037 |
T | F2.900 = 5.23 p = 0.006 | F2.900 = 1.89 p = 0.152 | F2.900 = 54.22 p < 0.001 | F2.900 = 28.77 p < 0.001 |
Y | F3.900 = 44.98 p < 0.001 | F3.900 = 81.34 p < 0.001 | F3.900 = 22.32 p < 0.001 | F3.900 = 58.16 p < 0.001 |
C × T | F8.900 = 3.58 p < 0.001 | F8.900 = 3.90 p < 0.001 | F8.900 = 1.95 p = 0.049 | F8.900 = 3.11 p = 0.002 |
C × Y | F12.900 = 8.77 p < 0.001 | F12.900 = 4.35 p < 0.001 | F12.900 = 4.63 p < 0.001 | F12.900 = 3.53 p < 0.001 |
T × Y | F6.900 = 52.30 p < 0.001 | F6.900 = 8.06 p < 0.001 | F6.900 = 24.81 p < 0.001 | F6.900 = 23.19 p < 0.001 |
C × T × Y | F24.900 = 3.66 p < 0.001 | F24.900 = 2.48 p < 0.001 | F24.900 = 3.33 p < 0.001 | F24.900 = 2.06 p = 0.002 |
Year | Topsoil (5–10 cm) | Soil water-stable aggregate (WSA) content (%) | |||||
Pea | Potato | s. Barley | Clover | w. Wheat | |||
TC | 2015/2016 | 60.7 ± 1.1 Ba | 49.2 ± 2.4 Aa | 52.0 ± 1.4 Aa | 49.4 ± 2.7 Aa | 51.7 ± 2.1 Aa | |
2014/2015 | 58.4 ± 0.9 | 57.4 ± 1.8 b | 53.8 ± 1.4 a | 55.7 ± 1.6 ab | 57.0 ± 0.8 ab | ||
2013/2014 | 64.4 ± 0.9 b | 64.5 ± 1.9 b | 66.8 ± 2.6 b | 62.2 ± 1.5 b | 67.1 ± 1.2 b | ||
2012/2013 | 62.0 ± 1.2 a | 63.3 ± 1.4 | 63.8 ± 1.3 a | 62.7 ± 1.1 | 63.5 ± 1.3 b | ||
Average | 61.4 ± 0.6 | 58.6 ± 1.2 | 59.1 ± 1.2a | 57.5 ± 1.1 | 59.9 ± 1.0 | ||
TW | 2015/2016 | 69.0 ± 1.9 BCb | 56.7 ± 1.3 Ab | 63.3 ± 1.3 Bb | 64.0 ± 1.9 Bb | 70.8 ± 1.7 Cb | |
2014/2015 | 60.0 ± 1.6 C | 46.9 ± 0.8 Aa | 53.8 ± 1.5 Ba | 52.9 ± 1.5 Ba | 54.7 ± 1.1 Ba | ||
2013/2014 | 51.7 ± 4.3 Aa | 61.3 ± 2.2 Bb | 65.5 ± 1.6 Bb | 61.4 ± 1.0 Bb | 63.6 ± 1.2 Bb | ||
2012/2013 | 61.4 ± 1.1 Aa | 63.1 ± 1.6 A | 69.6 ± 1.3 Bb | 60.1 ± 1.4 A | 58.6 ± 1.8 Aa | ||
Average | 60.5 ± 1.5AB | 57.0 ± 1.1A | 63.0 ± 1.0Bb | 59.6 ± 0.9AB | 61.9 ± 1.0B | ||
TW+M | 2015/2016 | 72.2 ± 1.5 Bb | 56.8 ± 2.0 Ab | 65.8 ± 1.5 Bb | 68.2 ± 1.9 Bb | 68.6 ± 1.6 Bb | |
2014/2015 | 60.2 ± 1.5 B | 49.7 ± 2.5 Aa | 63.8 ± 2.4 Bb | 59.6 ± 2.2 Bb | 61.3 ± 1.8 Bb | ||
2013/2014 | 53.6 ± 1.4 a | 52.5 ± 1.1 a | 55.9 ± 1.8 a | 56.2 ± 1.1 a | 53.9 ± 1.4 a | ||
2012/2013 | 67.3 ± 1.6 Bb | 63.4 ± 1.5 AB | 63.5 ± 1.3 ABa | 58.9 ± 1.7 A | 68.1 ± 1.1 Bb | ||
Average | 63.3 ± 1.1B | 55.6 ± 1.1A | 62.3 ± 1.0Bab | 60.7 ± 1.0B | 63.0 ± 1.0B | ||
Year | Subsoil (30–35 cm) | ||||||
Pea | Potato | s. Barley | Clover | w. Wheat | |||
TC | 2015/2016 | 46.6 ± 1.1 | 50.3 ± 3.0 b | 52.0 ± 2.9 b | 45.7 ± 3.9 ab | 57.4 ± 3.5 b | |
2014/2015 | 49.1 ± 2.8 ABb | 57.3 ± 1.8 Bb | 41.9 ± 3.0 Ab | 45.9 ± 4.7 ABb | 43.2 ± 2.2 Ab | ||
2013/2014 | 54.1 ± 2.8 | 52.6 ± 3.0 | 55.2 ± 4.1 | 50.1 ± 3.3 ab | 47.7 ± 3.8 ab | ||
2012/2013 | 59.1 ± 2.1 b | 63.9 ± 2.7 b | 54.3 ± 4.3 | 55.5 ± 3.0 | 58.1 ± 2.4 | ||
Average | 52.2 ± 1.1ABb | 56.0 ± 1.5Bb | 50.9 ± 1.9ABb | 49.3 ± 1.9Aab | 51.6 ± 1.7ABb | ||
TW | 2015/2016 | 52.9 ± 3.4 B | 52.2 ± 2.0 Bb | 50.2 ± 1.6 ABb | 56.4 ± 2.1 Bb | 42.5 ± 2.2 Aa | |
2014/2015 | 29.3 ± 3.4 a | 36.2 ± 3.1 a | 31.9 ± 1.8 a | 28.7 ± 1.5 a | 27.7 ± 1.9 a | ||
2013/2014 | 52.4 ± 3.1 B | 42.9 ± 3.1 AB | 33.3 ± 3.1 A | 38.8 ± 3.7 Aa | 37.1 ± 3.7 Aa | ||
2012/2013 | 42.5 ± 3.4 a | 52.0 ± 1.9 a | 48.8 ± 4.7 | 51.5 ± 5.1 | 45.3 ± 5.5 | ||
Average | 44.3 ± 2.0ABa | 45.8 ± 1.6Ba | 41.0 ± 1.8ABa | 43.8 ± 2.1ABa | 38.2 ± 2.0Aa | ||
TW+M | 2015/2016 | 45.3 ± 2.3 | 42.0 ± 2.2 a | 40.6 ± 1.4 a | 41.3 ± 3.2 a | 42.3 ± 2.6 a | |
2014/2015 | 61.1 ± 1.4 Bc | 60.2 ± 1.1 Bb | 48.4 ± 3.0 Ab | 53.9 ± 2.3 ABb | 48.8 ± 1.9 Ab | ||
2013/2014 | 51.8 ± 2.8 B | 36.7 ± 2.5 A | 54.6 ± 4.2 B | 54.8 ± 3.3 Bb | 53.7 ± 1.5 Bb | ||
2012/2013 | 39.1 ± 3.3 Aa | 61.2 ± 4.1 Bab | 60.9 ± 2.1 B | 52.7 ± 2.6 B | 52.4 ± 2.5 B | ||
Average | 49.3 ± 1.6ab | 50.0 ± 1.9a | 51.1 ± 1.7b | 50.7 ± 1.6b | 49.3 ± 1.2b |
Year | Topsoil (5–10 cm) | Soil maximum water holding capacity (weight %) (Wmax) | |||||
Pea | Potato | s. Barley | Clover | w. Wheat | |||
TC | 2015/2016 | 26.5 ± 0.4 BC | 26.0 ± 0.5 ABC | 24.2 ± 0.5 Aa | 25.3 ± 0.3 ABa | 27.8 ± 0.7 C | |
2014/2015 | 30.0 ± 1.1 Bb | 30.2 ± 1.7 Bb | 23.8 ± 0.5 A | 28.4 ± 0.8 B | 26.7 ± 0.8 ABab | ||
2013/2014 | 33.4 ± 0.9 Bb | 31.3 ± 0.7 AB | 29.1 ± 1.1 A | 30.1 ± 0.9 ABa | 28.8 ± 0.7 A | ||
2012/2013 | 26.2 ± 0.5 Aa | 27.0 ± 0.6 AB | 29.0 ± 0.6 B | 28.1 ± 0.9 AB | 26.6 ± 0.7 AB | ||
Average | 29.0 ± 0.5B | 28.6 ± 0.6Bb | 26.5 ± 0.5A | 28.0 ± 0.4ABa | 27.5 ± 0.4AB | ||
TW | 2015/2016 | 28.0 ± 0.5 | 26.0 ± 1.3 | 26.8 ± 0.9 b | 28.2 ± 0.8 b | 28.3 ± 0.4 | |
2014/2015 | 24.5 ± 0.4 Aa | 23.6 ± 0.7 Aa | 23.8 ± 0.7 A | 28.0 ± 0.9 B | 25.4 ± 0.8 ABa | ||
2013/2014 | 29.5 ± 1.1 a | 30.3 ± 0.7 | 30.4 ± 0.9 | 32.1 ± 0.5 ab | 31.6 ± 0.9 | ||
2012/2013 | 29.9 ± 0.8 Bb | 27.6 ± 1.0 AB | 28.8 ± 0.5 AB | 30.2 ± 1.1 B | 26.4 ± 0.6 A | ||
Average | 28.0 ± 0.5AB | 26.9 ± 0.6Aa | 27.5 ± 0.5A | 29.6± 0.5Bb | 27.9 ± 0.5AB | ||
TW+M | 2015/2016 | 27.6 ± 0.9 AB | 26.4 ± 0.5 AB | 25.1 ± 0.7 Aab | 26.4 ± 0.7 ABab | 28.2 ± 0.8 B | |
2014/2015 | 25.8 ± 0.6 ABa | 27.5 ± 0.7 BCb | 23.8 ± 0.8 A | 29.6 ± 0.8 C | 28.3 ± 0.8 BCb | ||
2013/2014 | 31.2 ± 1.3 ABab | 29.7 ± 0.8 A | 29.7 ± 0.7 A | 33.6 ± 0.8 Bb | 29.1 ± 1.0 A | ||
2012/2013 | 30.0 ± 0.7 ABb | 28.8 ± 0.6 AB | 27.4 ± 0.5 A | 30.6 ± 1.1 B | 28.7 ± 0.9 AB | ||
Average | 28.6 ± 0.5BC | 28.1 ± 0.4ABab | 26.5 ± 0.4A | 30.0 ± 0.5Cb | 28.6 ± 0.4BC | ||
Year | Subsoil (30–35 cm) | ||||||
Pea | Potato | s. Barley | Clover | w. Wheat | |||
TC | 2015/2016 | 20.8 ± 1.3 | 21.8 ± 0.8 | 21.5 ± 0.8 ab | 19.9 ± 0.7 a | 21.6 ± 1.0 | |
2014/2015 | 19.3 ± 0.4 ABa | 21.7 ± 0.6 B | 18.8 ± 0.9 A | 20.9 ± 1.0 ABb | 20.3 ± 0.5 ABb | ||
2013/2014 | 23.0 ± 1.6 b | 24.2 ± 0.7 b | 24.1 ± 0.7 ab | 20.9 ± 0.7 b | 22.0 ± 0.9 b | ||
2012/2013 | 24.2 ± 0.8 AB | 26.5 ± 1.0 Ba | 22.5 ± 1.1 A | 23.6 ± 1.0 AB | 22.4 ± 0.4 A | ||
Average | 21.8 ± 0.6ABab | 23.5 ± 0.4Bb | 21.7 ± 0.5AB | 21.3 ± 0.5Aa | 21.6 ± 0.4Ab | ||
TW | 2015/2016 | 20.3 ± 0.5 A | 21.6 ± 0.7 AB | 23.8 ± 0.8 ABb | 23.8 ± 0.6 ABb | 21.3 ± 0.6 AB | |
2014/2015 | 17.7 ± 0.4 a | 19.5 ± 1.2 | 17.7 ± 0.6 | 18.1 ± 0.4 a | 17.0 ± 0.2 a | ||
2013/2014 | 18.9 ± 0.6 ABa | 17.2 ± 1.0 Aa | 21.4 ± 1.2 Ba | 17.1 ± 0.5 Aa | 17.0 ± 0.5 Aa | ||
2012/2013 | 24.2 ± 1.4 | 22.7 ± 0.8 b | 24.0 ± 0.8 | 23.4 ± 1.1 | 23.8 ± 1.1 | ||
Average | 20.3 ± 0.5a | 20.2 ± 0.5a | 21.7 ± 0.5 | 20.6 ± 0.5a | 19.8 ± 0.5a | ||
TW+M | 2015/2016 | 19.4 ± 0.5 | 20.9 ± 0.6 | 19.5 ± 0.4 a | 20.5 ± 0.6 a | 20.7 ± 0.6 | |
2014/2015 | 22.9 ± 0.7 BCb | 21.9 ± 0.4 BC | 19.2 ± 0.4 A | 23.0 ± 0.6 Cb | 20.8 ± 0.5 ABb | ||
2013/2014 | 23.8 ± 0.8 b | 22.9 ± 1.4 b | 25.2 ± 0.5 b | 25.2 ± 0.8 c | 22.1 ± 0.5 b | ||
2012/2013 | 22.2 ± 0.7 A | 23.3 ± 0.7 ABb | 25.8 ± 1.2 B | 22.9 ± 0.7 AB | 24.5 ± 0.7 AB | ||
Average | 22.1 ± 0.4b | 22.3 ± 0.4b | 22.4 ± 0.5 | 22.9 ± 0.4b | 22.0 ± 0.3b |
SOC | Ntot | PA | KA | MgA | CaA | |
---|---|---|---|---|---|---|
C | F4.180 = 1.06 p = 0.380 | F4.180 = 0.92 p = 0.452 | F4.180 = 0.219 p = 0.928 | F4.180 = 4.186 p = 0.003 | F4.180 = 0.445 p = 0.776 | F4.180 = 0.23 p = 0.920 |
T | F2.180 = 3.09 p = 0.048 | F2.180 = 2.80 p = 0.063 | F2.180 = 0.333 p = 0.717 | F2.180 = 4.575 p = 0.012 | F2.180 = 6.633 p = 0.002 | F2.180 = 3.31 p = 0.039 |
Y | F3.180 = 4.61 p = 0.004 | F3.180 = 98.72 p < 0.001 | F3.180 = 17.819 p < 0.001 | F3.180 = 14.287 p < 0.001 | F3.180 = 103.859 p < 0.001 | F3.180 = 12.97 p < 0.001 |
C × T | F8.180 = 0.35 p = 0.943 | F8.180 = 0.41 p = 0.916 | F8.180 = 0.280 p = 0.972 | F8.180 = 0.268 p = 0.975 | F8.180 = 0.149 p = 0.997 | F8.180 = 0.21 p = 0.989 |
C × Y | F12.180 = 0.92 p = 0.524 | F12.180 = 0.94 p = 0.504 | F12.180 = 0.671 p = 0.778 | F12.180 = 3.056 p < 0.001 | F12.180 = 0.572 p = 0.862 | F12.180 = 0.26 p = 0.994 |
T × Y | F6.180 = 0.48 p = 0.822 | F6.180 = 1.10 p = 0.363 | F6.180 = 1.279 p = 0.269 | F6.180 = 0.780 p = 0.587 | F6.180 = 0.144 p = 0.990 | F6.180 = 1.66 p = 0.133 |
C × T × Y | F24.180 = 0.48 p = 0.981 | F24.180 = 0.60 p = 0.932 | F24.180 = 0.628 p = 0.910 | F24.180 = 1.052 p = 0.404 | F24.180 = 0.606 p = 0.926 | F24.180 = 0.49 p = 0.978 |
Year | PA (mg/kg) | |||||
Pea | Potato | s. Barley | Clover | w. Wheat | ||
TC | 2015/2016 | 89.3 ± 4.8 a | 89.9 ± 7.6 | 88.8 ± 5.4 | 98.8 ± 10.3 | 99.3 ± 10.4 |
2014/2015 | 94.9 ± 16.2 | 104.7 ± 16.6 | 109.9 ± 16.2 | 105.5 ± 12.7 | 109.0 ± 17.0 | |
2013/2014 | 117.2 ± 12.2 | 112.0 ± 16.5 | 107.9 ± 9.1 | 104.6 ± 9.7 | 116.9 ± 14.8 | |
2012/2013 | 143.8 ± 10.9 | 141.5 ± 8.6 | 131.2 ± 10.1 | 134.1 ± 10.2 | 143.3 ± 12.3 | |
Average | 111.3 ± 7.6 | 112.0 ± 7.6 | 109.5 ± 6.2 | 110.7 ± 6.0 | 117.1 ± 7.5 | |
TW | 2015/2016 | 109.9 ± 13.7 ab | 90.7 ± 10.1 | 92.7 ± 12.1 | 99.5 ± 17.2 | 96.5 ± 8.4 |
2014/2015 | 102.8 ± 13.0 | 112.6 ± 15.0 | 102.4 ± 13.3 | 106.4 ± 9.9 | 112.4 ± 11.5 | |
2013/2014 | 106.0 ± 12.5 | 124.3 ± 13.6 | 120.5 ± 12.3 | 118.7 ± 12.5 | 109.0 ± 12.4 | |
2012/2013 | 126.6 ± 16.3 | 130.4 ± 14.9 | 137.4 ± 16.8 | 121.5 ± 18.3 | 126.0 ± 19.3 | |
Average | 111.3 ± 6.7 | 114.5 ± 7.2 | 113.3 ± 7.6 | 111.5 ± 7.0 | 111.0 ± 6.6 | |
TW+M | 2015/2016 | 126.1 ± 5.4 b | 102.2 ± 3.9 | 105.1 ± 5.5 | 103.5 ± 8.3 | 103.7 ± 7.2 |
2014/2015 | 107.7 ± 12.4 | 107.6 ± 14.7 | 96.7 ± 10.6 | 103.4 ± 10.1 | 129.6 ± 12.9 | |
2013/2014 | 118.6 ± 12.7 | 109.4 ± 8.9 | 103.4 ± 5.5 | 137.0 ± 11.7 | 120.2 ± 10.8 | |
2012/2014 | 111.6 ± 9.8 | 113.7 ± 7.1 | 151.3 ± 12.0 | 123.2 ± 11.7 | 124.9 ± 13.3 | |
Average | 116.0 ± 5.0 | 108.2 ± 4.4 | 114.1 ± 6.9 | 116.8 ± 6.0 | 119.6 ± 5.7 | |
Year | KA (mg/kg) | |||||
Pea | Potato | s. Barley | Clover | w. Wheat | ||
TC | 2015/2016 | 111.7 ± 6.4 | 94.0 ± 8.1 | 93.1 ± 6.2 | 121.2 ± 16.2 | 122.5 ± 9.9 |
2014/2015 | 102.9 ± 7.4 | 97.7 ± 8.9 | 114.0 ± 14.3 | 120.8 ± 4.1 | 126.0 ± 16.0 | |
2013/2014 | 112.9 ± 9.1 | 102.3 ± 15.6 | 117.0 ± 10.6 | 109.2 ± 9.7 | 113.2 ± 8.7 | |
2012/2013 | 143.3 ± 16.9 | 133.3 ± 10.9 | 135.8 ± 6.1 | 125.6 ± 4.2 | 136.2 ± 2.4 | |
Average | 117.7 ± 6.2 | 106.8 ± 6.4 | 115.0 ± 5.9 | 119.2 ± 4.7 | 124.5 ± 5.1 | |
TW | 2015/2016 | 130.3 ± 11.7 | 91.8 ± 11.1 | 92.1 ± 7.9 | 96.8 ± 9.4 | 110.8 ± 7.2 |
2014/2015 | 127.3 ± 13.8 | 111.8 ± 6.8 | 121.9 ± 10.9 | 124.5 ± 8.6 | 138.3 ± 15.4 | |
2013/2014 | 106.5 ± 9.5 | 102.7 ± 9.7 | 109.8 ± 8.1 | 118.0 ± 16.5 | 105.5 ± 12.7 | |
2012/2014 | 121.6 ± 19.4 | 117.5 ± 16.6 | 164.6 ± 34.7 | 123.5 ± 23.7 | 129.0 ± 21.8 | |
Average | 121.4 ± 6.7 | 106.0 ± 5.8 | 122.1 ± 11.0 | 115.7 ± 7.6 | 120.9 ± 7.6 | |
TW+M | 2015/2016 | 140.9 B ± 3.2 | 114.4 A ± 5.9 | 108.9 A ± 5.8 | 102.6 A ± 5.7 | 118.3 AB ± 7.4 |
2014/2015 | 127.4 AB ± 8.3 | 113.2 A ± 7.4 | 104.4 A ± 7.3 | 117.5 AB ± 8.2 | 153.4 B ± 12.1 | |
2013/2014 | 131.9 ± 9.9 | 105.8 ± 4.2 | 116.3 ± 7.9 | 138.3 ± 14.7 | 128.0 ± 9.3 | |
2012/2013 | 125.2 A ± 5.2 | 121.3 A ± 5.1 | 192.2 B ± 7.7 | 131.6 A ± 5.4 | 139.9 A ± 9.3 | |
Average | 131.3B ± 3.6 | 113.7A ± 2.9 | 130.5B ± 9.8 | 122.5AB ± 5.5 | 134.9B ± 5.5 |
WSA | SOC | Ntot | PA | KA | MgA | CaA | |
---|---|---|---|---|---|---|---|
WSA | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
SOC | +0.27 ●●● | n/a | n/a | n/a | n/a | n/a | n/a |
Ntot | +0.02 | +0.48 ●●● | n/a | n/a | n/a | n/a | n/a |
PA | +0.24 ●●● | +0.54 ●●● | +0.34 ●●● | n/a | n/a | n/a | n/a |
KA | +0.19 ●● | +0.44 ●●● | +0.40 ●●● | +0.77 ●●● | n/a | n/a | n/a |
MgA | +0.03 | +0.23 ●●● | +0.54 ●●● | +0.61 ●●● | +0.61 ●●● | n/a | n/a |
CaA | –0.03 | +0.32 ●●● | +0.37 ●●● | +0.67 ●●● | +0.54 ●●● | +0.61 ●●● | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Are, M.; Kaart, T.; Selge, A.; Reintam, E. The Effects of Crops Together with Winter Cover Crops on the Content of Soil Water-Stable Aggregates in Organic Farming. Agriculture 2021, 11, 1035. https://doi.org/10.3390/agriculture11111035
Are M, Kaart T, Selge A, Reintam E. The Effects of Crops Together with Winter Cover Crops on the Content of Soil Water-Stable Aggregates in Organic Farming. Agriculture. 2021; 11(11):1035. https://doi.org/10.3390/agriculture11111035
Chicago/Turabian StyleAre, Mihkel, Tanel Kaart, Are Selge, and Endla Reintam. 2021. "The Effects of Crops Together with Winter Cover Crops on the Content of Soil Water-Stable Aggregates in Organic Farming" Agriculture 11, no. 11: 1035. https://doi.org/10.3390/agriculture11111035
APA StyleAre, M., Kaart, T., Selge, A., & Reintam, E. (2021). The Effects of Crops Together with Winter Cover Crops on the Content of Soil Water-Stable Aggregates in Organic Farming. Agriculture, 11(11), 1035. https://doi.org/10.3390/agriculture11111035