Amendment of Livestock Manure with Natural Zeolite-Clinoptilolite and Its Effect on Decomposition Processes during Composting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates and Amendments
2.2. Construction of Piles
2.3. Analytical Determinations
2.4. Bacteriological Examination
2.5. Statistical Analysis
3. Results
3.1. Temperature and pH Level
3.2. Dry Matter Content and Ash
3.3. C/N Ratio
3.4. Organic Matter Degradation
3.5. Nitrogen Characteristics of the Compost
3.6. Bacteriological Examination
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Battini, F.; Agostini, A.; Boulamanti, A.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total. Environ. 2014, 481, 196–208. [Google Scholar] [CrossRef]
- Papajová, I.; Juri, P. The Sanitation of Animal Waste Using Anaerobic Stabilization. In Management of Organic Waste; IntechOpen Limited: London, UK, 2012; pp. 49–68. [Google Scholar]
- Sasáková, N. Environmental and Environmental Risks Associated with the Treatment and Utilization of Animal Excrements and Sewage Sludge and their Environmental Impact. Master’s Thesis, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia, 2015. [Google Scholar]
- Sharma, B.; Vaish, B.; Monika; Singh, U.K.; Singh, P.; Singh, R.P. Recycling of Organic Wastes in Agriculture: An Environmental Perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Neher, D.A.; Weicht, T.R.; Bates, S.T.; Leff, J.W.; Fierer, N. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times. PLoS ONE 2013, 8, e79512. [Google Scholar] [CrossRef] [Green Version]
- Alavi, N.; Daneshpajou, M.; Shirmardi, M.; Goudarzi, G.; Neisi, A.; Babaei, A.A. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Manag. 2017, 69, 117–126. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, W.; Men, M.; Bello, A.; Xu, X.; Xu, B.; Deng, L.; Jiang, X.; Sheng, S.; Wu, X.; et al. Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting. Front. Microbiol. 2019, 10, 529. [Google Scholar] [CrossRef] [Green Version]
- Irshad, M.; E Eneji, A.; Hussain, Z.; Ashraf, M. Chemical characterization of fresh and composted livestock manures. J. Soil Sci. Plant Nutr. 2013, 13, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Li, Z.; Lu, H.; Ren, L.; He, L. Experimental and modeling approaches for food waste composting: A review. Chemosphere 2013, 93, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Chandna, P.; Nain, L.; Singh, S.; Kuhad, R.C. Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol. 2013, 13, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, G.; Xu, X.; Qu, J.; Zhu, L.; Wang, T. Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J. Microbiol. Biotechnol. 2016, 32, 101. [Google Scholar] [CrossRef] [PubMed]
- Sunar, N.M.; Stentiford, E.I.; Stewart, D.I.; Fletcher, L.A. The Process and Pathogen Behaviour in Composting: A Review. arXiv 2014, arXiv:1404.5210. [Google Scholar]
- Huhe; Jiang, C.; Wu, Y.; Cheng, Y. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting. Microbiol. Open 2017, 6, e00518. [Google Scholar] [CrossRef]
- Paredes, C.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Bustamante, M.A.; Moreno-Caselles, J. Recycling of Two-Phase Olive-Mill Cake “Alperujo” by Co-composting with Animal Manures. Commun. Soil Sci. Plant Anal. 2015, 46, 238–247. [Google Scholar] [CrossRef]
- Brito, L.; Mourão, I.; Coutinho, J.; Smith, S. Simple technologies for on-farm composting of cattle slurry solid fraction. Waste Manag. 2012, 32, 1332–1340. [Google Scholar] [CrossRef]
- Yang, X.; Liu, E.; Zhu, X.; Wang, H.; Liu, H.; Liu, X.; Dong, W. Impact of Composting Methods on Nitrogen Retention and Losses during Dairy Manure Composting. Int. J. Environ. Res. Public Health 2019, 16, 3324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sui, Q.; Li, K.; Chen, M.; Tong, J.; Qi, L.; Wei, Y. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting. Environ. Sci. Pollut. Res. 2017, 24, 9122. [Google Scholar] [CrossRef] [PubMed]
- Zarabi, M.; Jalali, M. Rate of Nitrate and Ammonium Release From Organic Residues. Compos. Sci. Util. 2012, 20, 222–229. [Google Scholar] [CrossRef]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margeta, K.; Zabukovec, N.; Šiljeg, M.; Farkas, A. Natural Zeolites in Water Treatment—How Effective is Their Use. In Water Treatment; BoD—Books on Demand: Norderstedt, Germany, 2013. [Google Scholar] [CrossRef] [Green Version]
- Omar, L.; Ahmed, O.H.; Majid, N.M.A. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes. Sci. World J. 2015, 2015, 574201. [Google Scholar] [CrossRef] [PubMed]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Tillage Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Bautista, J.M.; Kim, H.; Ahn, D.-H.; Zhang, R.; Oh, Y.-S. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean J. Chem. Eng. 2010, 28, 189–194. [Google Scholar] [CrossRef]
- Soudejani, H.T.; Kazemian, H.; Inglezakis, V.; Zorpas, A.A. Application of zeolites in organic waste composting: A review. Biocatal. Agric. Biotechnol. 2019, 22, 101396. [Google Scholar] [CrossRef]
- The Central Control and Testing Institute in Agricultural (ÚKSÚP) in Bratislava, Permission: Inclusion of Zeolite in the List of Fertilizers and Auxiliary Substances Permitted in Organic Agricultural Production, from 17 January 2017. Available online: http://www.uksup.sk/en (accessed on 20 May 2021).
- Beck-Friis, B.; Smårs, S.; Jónsson, H.; Eklind, Y.; Kirchmann, H. Composting of Source-Separated Household Organics At Different Oxygen Levels: Gaining an Understanding of the Emission Dynamics. Compos. Sci. Util. 2003, 11, 41–50. [Google Scholar] [CrossRef]
- Villaseñor, J.; Rodríguez, L.; Fernández, F. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour. Technol. 2011, 102, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Antil, R.S.; Raj, D.; Abdalla, N.; Inubushi, K. Physical, Chemical and Biological Parameters for Compost Maturity Assessment: A Review. Sustain. Dev. Biodivers. 2014, 3, 83–101. [Google Scholar] [CrossRef]
- Tong, B.; Wang, X.; Wang, S.; Ma, L.; Ma, W. Transformation of nitrogen and carbon during composting of manure litter with different methods. Bioresour. Technol. 2019, 293, 122046. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Selvam, A.; Wong, J.W. Influence of lime on struvite formation and nitrogen conservation during food waste composting. Bioresour. Technol. 2016, 217, 227–232. [Google Scholar] [CrossRef]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef]
- Rhodes, C.J. Properties and applications of zeolites. Sci. Prog. 2010, 93, 223–284. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Z.; Gao, H.; Yan, X.; Chang, J.; Wang, C.; Hu, J.; Zhang, L. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices. PLoS ONE 2017, 12, e0178110. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-S.; Park, H.-J.; Hao, X.; Lee, S.-I.; Jeon, B.-J.; Kwak, J.-H.; Choi, W.-J. Nitrogen, carbon, and dry matter losses during composting of livestock manure with two bulking agents as affected by co-amendments of phosphogypsum and zeolite. Ecol. Eng. 2017, 102, 280–290. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S.; Lee, B.-K. Effects of Natural Zeolites on Bioavailability and Leachability of Heavy Metals in the Composting Process of Biodegradable Wastes. Zeolites Useful Miner. 2016, 17, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Ren, L.; Li, G.; Chen, T.; Guo, R. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Manag. 2011, 31, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Wang, X.; Selvam, A. Improving Compost Quality by Controlling Nitrogen Loss During Composting. In Current Developments in Biotechnology and Bioengineering; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 59–82. [Google Scholar]
- Soudejani, H.T.; Heidarpour, M.; Shayannejad, M.; Shariatmadari, H.; Kazemian, H.; Afyuni, M. Composts Containing Natural and Mg-Modified Zeolite: The Effect on Nitrate Leaching, Drainage Water, and Yield. CLEAN Soil Air Water 2019, 47. [Google Scholar] [CrossRef]
- Kachnič, J.; Sasáková, N.; Papajová, I.; Laktičová, K.V.; Hromada, R.; Harkabus, J.; Ondrašovičová, S.; Papaj, J. The risk to human health related to disposal of animal wastes to soil—Microbiological and parasitical aspects. Helminthologia 2013, 50, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Gurtler, J.B.; Doyle, M.P.; Erickson, M.C.; Jiang, X.; Millner, P.; Sharma, M. Composting To Inactivate Foodborne Pathogens for Crop Soil Application: A Review. J. Food Prot. 2018, 81, 1821–1837. [Google Scholar] [CrossRef] [PubMed]
Chemical | (%) | Mineralogical | (%) |
---|---|---|---|
SiO2 | 64.18–75.50 | Clinoptilolite | 80–84 |
Al2O3 | 10.93–14.80 | Cristobalite | 9 |
CaO | 1.43–11.68 | Plagioclase | 5–8 |
K2O | 1.24–4.24 | Clay mica | 2–3 |
Fe2O3 | 0.12–2.45 | Quartz | traces |
MgO | 0.29–1.43 | ||
Na2O | 0.10–2.97 | ||
TiO2 | 0.08–0.39 | ||
P2O5 | 0.01–0.18 | ||
Si/Al | 4.8–5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šubová, E.; Sasáková, N.; Zigo, F.; Mindžáková, I.; Vargová, M.; Kachnič, J.; Laktičová, K.V. Amendment of Livestock Manure with Natural Zeolite-Clinoptilolite and Its Effect on Decomposition Processes during Composting. Agriculture 2021, 11, 980. https://doi.org/10.3390/agriculture11100980
Šubová E, Sasáková N, Zigo F, Mindžáková I, Vargová M, Kachnič J, Laktičová KV. Amendment of Livestock Manure with Natural Zeolite-Clinoptilolite and Its Effect on Decomposition Processes during Composting. Agriculture. 2021; 11(10):980. https://doi.org/10.3390/agriculture11100980
Chicago/Turabian StyleŠubová, Eva, Naďa Sasáková, František Zigo, Ingrid Mindžáková, Mária Vargová, Ján Kachnič, and Katarína Veselitz Laktičová. 2021. "Amendment of Livestock Manure with Natural Zeolite-Clinoptilolite and Its Effect on Decomposition Processes during Composting" Agriculture 11, no. 10: 980. https://doi.org/10.3390/agriculture11100980
APA StyleŠubová, E., Sasáková, N., Zigo, F., Mindžáková, I., Vargová, M., Kachnič, J., & Laktičová, K. V. (2021). Amendment of Livestock Manure with Natural Zeolite-Clinoptilolite and Its Effect on Decomposition Processes during Composting. Agriculture, 11(10), 980. https://doi.org/10.3390/agriculture11100980