Assessment of Stocking Rate and Housing System on Performance, Carcass Traits, Blood Indices, and Meat Quality of French Pekin Ducks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Birds Management
2.2. Growth Performance Traits
2.3. Blood Biochemistry and Tissue Cholesterol Content
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Blood Metabolites and Meat Cholesterol
3.4. Anti-Oxidative Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 15 December 2019).
- Liu, Y.; Yuan, J.; Zhang, L.; Zhang, Y.; Cai, S.; Yu, J.; Xia, Z. Effects of tryptophan supplementation on growth performance, antioxidative activity, and meat quality of ducks under high stocking density. Poult. Sci. 2015, 94, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Simitzis, P.; Kalogeraki, E.; Goliomytis, M.; Charismiadou, M.; Triantaphyllopoulos, K.; Ayoutanti, A.; Niforou, K.; Hager-Theodorides, A.; Deligeorgis, S. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Br. Poult. Sci. 2012, 53, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Lu, J.; Zou, J.; Wang, Q.; Shi, S. Effects of stocking density on growth performance, carcass yield, and immune status of a local chicken breed. Poult. Sci. 2012, 91, 667–673. [Google Scholar] [CrossRef]
- Xie, M.; Jiang, Y.; Tang, J.; Wen, Z.; Huang, W.; Hou, S. Effects of stocking density on growth performance, carcass traits, and foot pad lesions of White Pekin ducks. Poult. Sci. 2014, 93, 1644–1648. [Google Scholar] [CrossRef]
- Abd El-Hack, M.; Hurtado, C.B.; Toro, D.M.; Alagawany, M.; Abdelfattah, E.; Elnesr, S. Fertility and hatchability in duck eggs. World Poult. Sci. J. 2019, 75, 599–608. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Hurtado, C.B.; Toro, D.M.; Alagawany, M.; Abdelfattah, E.M.; Elnesr, S.S. Impact of environmental and incubation factors on hatchability of duck eggs. Biol. Rhythm Res. 2019, 1–10. [Google Scholar] [CrossRef]
- Simsek, U.; Cerci, I.; Dalkilic, B.; Yilmaz, O.; Ciftci, M. Impact of stocking density and feeding regimen on broilers: Chicken meat composition, fatty acids, and serum cholesterol levels. J. Appl. Poult. Res. 2009, 18, 514–520. [Google Scholar] [CrossRef]
- Estevez, I. Density allowances for broilers: Where to set the limits? Poult. Sci. 2007, 86, 1265–1272. [Google Scholar] [CrossRef]
- Bouyeh, M.; Seidavi, A.; Mohammadi, H.; Sahoo, A.; Laudadio, V.; Tufarelli, V. Effect of climate region and stocking density on ostrich (Struthio camelus) productive performances. Reprod. Dom. Anim. 2017, 52, 44–48. [Google Scholar] [CrossRef]
- Rodenburg, T.B.; Bracke, M.; Berk, J.; Cooper, J.; Faure, J.; Guémené, D.; Guy, G.; Harlander, A.; Jones, T.; Knierim, U. Welfare of ducks in European duck husbandry systems. World Poult. Sci. J. 2005, 61, 633–646. [Google Scholar] [CrossRef]
- FASS. Guide for the Care and Use of Animals in Agricultural Research and Teaching, 3rd ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2010. [Google Scholar]
- Osman, A. Effect of the stocking rate on growth performance, carcass traits and meat quality of male Peking ducks. Der Tropenlandwirt J. Agric. Trop. Subtrop. 1993, 94, 147–156. [Google Scholar]
- Taboosha, M. Effect of Stocking Density and Slaughter age on Growth Performance and Carcass Traits of Female Mule Ducks (Crossbred of Muscovy Drake and Pekin Ducks) During Summer Season in Egypt. Middle East J. Appl. Sci. 2014, 4, 1023–1033. [Google Scholar]
- Dozier, W.; Thaxton, J.; Purswell, J.; Olanrewaju, H.; Branton, S.; Roush, W. Stocking density effects on male broilers grown to 1.8 kilograms of body weight. Poult. Sci. 2006, 85, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Feddes, J.J.; Emmanuel, E.J.; Zuidhoft, M.J. Broiler performance, body weight variance, feed and water intake, and carcass quality at different stocking densities. Poult. Sci. 2002, 81, 774–779. [Google Scholar] [CrossRef]
- Thomas, D.G.; Ravindran, V.; Thomas, D.V.; Camden, B.J.; Cottam, Y.H.; Morel, P.C.; Cook, C.J. Influence of stocking density on the performance, carcass characteristics and selected welfare indicators of broiler chickens. N. Z. Vet. J. 2004, 52, 76–81. [Google Scholar] [CrossRef]
- Ventura, B.A.; Siewerdt, F.; Estevez, I. Effects of barrier perches and density on broiler leg health, fear, and performance. Poult. Sci. 2010, 89, 1574–1583. [Google Scholar] [CrossRef]
- Heckert, R.A.; Estevez, I.; Russek-Cohen, E.; Pettit-Riley, R. Effects of density and perch availability on the immune status of broilers. Poult. Sci. 2002, 81, 451–457. [Google Scholar] [CrossRef]
- Houshmand, M.; Azhar, K.; Zulkifli, I.; Bejo, M.H.; Kamyab, A. Effects of prebiotic, protein level, and stocking density on performance, immunity, and stress indicators of broilers. Poult. Sci. 2012, 91, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, M.M.; Webb, M.L.; Youtz, S.L.; Roush, W.B.; Graves, H.B. Changes in serum corticosterone concentration of laying hens as a response to increased population density. Poultr. Sci. 1984, 63, 2271–2274. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Qin, X.; Sun, S.; Xiao, Z.; Dong, X.; Shahid, M.S.; Yin, D.; Yuan, J. Proteome and microbiota analysis reveals alterations of liver-gut axis under different stocking density of Peking ducks. PLoS ONE 2018, 13, e0198985. [Google Scholar] [CrossRef] [Green Version]
- Guardia, S.; Konsak, B.; Combes, S.; Levenez, F.; Cauquil, L.; Guillot, J.-F.; Moreau-Vauzelle, C.; Lessire, M.; Juin, H.; Gabriel, I. Effects of stocking density on the growth performance and digestive microbiota of broiler chickens. Poult. Sci. 2011, 90, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Petek, M.; Üstüner, H.; Yeşilbağ, D. Effects of stocking density and litter type on litter quality and growth performance of broiler chicken. Kafkas Univ. Vet. Fak. Derg. 2014, 20, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Van Staaveren, N.; Decina, C.; Baes, C.F.; Widowski, T.M.; Berke, O.; Harlander-Matauschek, A. Housing and Management Practices on 33 Pullet Farms in Canada. Animals 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Çavuşoğlu, E.; Petek, M.; Abdourhamane, I.M.; Akkoc, A.; Topal, E. Effects of different floor housing systems on the welfare of fast-growing broilers with an extended fattening period. Archiv. Anim. Breed. 2018, 61, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Farghly, M.F.; Mahrose, K.M.; Cooper, R.G.; Ullah, Z.; Rehman, Z.; Ding, C. Sustainable floor type for managing turkey production in a hot climate. Poult. Sci. 2018, 97, 3884–3890. [Google Scholar] [CrossRef]
- Bai, H.; Bao, Q.; Zhang, Y.; Song, Q.; Liu, B.; Zhong, L.; Zhang, X.; Wang, Z.; Jiang, Y.; Xu, Q. Research Note: Effects of the rearing method and stocking density on carcass traits and proximate composition of meat in small-sized meat ducks. Poult. Sci. 2020, 99, 2011–2016. [Google Scholar] [CrossRef]
- NRC. Nutrition Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Arif, M.; Iram, A.; Bhutta, M.A.; Naiel, M.A.; El-Hack, A.; Mohamed, E.; Othman, S.I.; Allam, A.A.; Amer, M.S.; Taha, A.E. The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Abo Ghanima, M.M.; Bin-Jumah, M.; Abdel-Moneim, A.-M.E.; Khafaga, A.F.; Abd El-Hack, M.E.; Allam, A.A.; El-Kasrawy, N.I. Impacts of Strain Variation on Response to Heat Stress and Boldo Extract Supplementation to Broiler Chickens. Animals 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moneim, A.E.; Selim, D.A.; Basuony, H.A.; Sabic, E.M.; Saleh, A.A.; Ebeid, T.A. Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status and digestive enzyme activities in Japanese quail birds. Trop. Anim. Health Prod. 2020, 52, 671–680. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.E.; Elbaz, A.M.; Khidr, R.E.; Badri, F.B. Effect of in ovo inoculation of Bifidobacterium spp. on growth performance, thyroid activity, ileum histomorphometry and microbial enumeration of broilers. Probiot. Antimicrob. Prot. 2019, in press. [Google Scholar] [CrossRef]
- Dinh, T.; Blanton, J., Jr.; Brooks, J.; Miller, M.; Thompson, L. A simplified method for cholesterol determination in meat and meat products. J. Food Comp. Anal. 2008, 21, 306–314. [Google Scholar] [CrossRef]
- Lay, D.; Fulton, R.; Hester, P.; Karcher, D.; Kjaer, J.; Mench, J.; Mullens, B.; Newberry, R.; Nicol, C.; O’sullivan, N. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Song, Z.; Jiao, H.; Song, Q.; Lin, H. The effect of group size and stocking density on the welfare and performance of hens housed in furnished cages during summer. Anim. Welf. J. 2012, 21, 41–49. [Google Scholar] [CrossRef]
- Sørensen, P.; Su, G.; Kestin, S. Effects of age and stocking density on leg weakness in broiler chickens. Poult. Sci. 2000, 79, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Zhang, L.S.; Wang, Z.; Liu, Y.; Li, F.H.; Yuan, J.M.; Xia, Z.F. Effects of stocking density on growth performance, meat quality and tibia development of Pekin ducks. Anim. Sci. J. 2018, 89, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Liu, Y.; Cai, S.; Yuan, J.; Wang, Z. Effects of Stocking Density on Immune Function and Oxidative Stress Level of Pekin Ducks Reared on Plastic Wire-Floor. China Poult. 2015, 37, 31–34. [Google Scholar]
- Simsek, U.G.; Dalkilic, B.; Ciftci, M.; Yuce, A. The influences of different stocking densities on some welfare indicators, lipid peroxidation (MDA) and antioxidant enzyme activities (GSH, GSH-Px, CAT) in broiler chickens. J. Anim. Vet. Adv. 2009, 8, 1568–1572. [Google Scholar]
- Ghanima, M.M.A.; Abd El-Hack, M.E.; Othman, S.I.; Taha, A.E.; Allam, A.A.; Abdel-Moneim, A.-M.E. Impact of different rearing systems on growth, carcass traits, oxidative stress biomarkers and humoral immunity of broilers exposed to heat stress. Poult. Sci. 2020, 99, 3070–3078. [Google Scholar] [CrossRef]
- Chuppava, B.; Visscher, C.; Kamphues, J. Effect of Different Flooring Designs on the Performance and Foot Pad Health in Broilers and Turkeys. Animals 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Almeida, E.A.D.; Sant’Anna, A.; Crowe, T.; Macari, M.; Furlan, R. Poultry rearing on perforated plastic floors and the effect on air quality, growth performance, and carcass injuries–Experiment 2: Heat stress situation. Poult. Sci. 2018, 97, 1954–1960. [Google Scholar] [CrossRef]
- Mutibvu, T.; Chimonyo, M.; Halimani, T. Physiological responses of slow-growing chickens under diurnally cycling temperature in a hot environment. Braz. J. Poult. Sci. 2017, 19, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Sturkie, P.D. Avian Physiology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- El-Deek, A.; Al-Harthi, M. Responses of modern broiler chicks to stocking density, green tea, commercial multi enzymes and their interactions on productive performance, carcass characteristics, liver composition and plasma constituents. Int. J. Poult. Sci. 2004, 3, 635–645. [Google Scholar]
- Cravener, T.; Roush, W.; Mashaly, M. Broiler production under varying population densities. Poult. Sci. 1992, 71, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, Ü.G.; Erişir, M.; Ciftci, M.; Seven, P.T. Effects of cage and floor housing systems on fattening performance, oxidative stress and carcass defects in broiler chicken. Kafkas Vet. Fak. Derg. 2014, 20, 727–733. [Google Scholar] [CrossRef]
- Bahreiny, E.; Dadvar, P.; Morovat, M.; Bujarpoor, M. Effect of different level of energy to protein ratio and breeding system on performance and carcass characteristics of male and female broilers. Int. J. Agric. 2013, 3, 597–607. [Google Scholar]
- Baeza, E.; Chartrin, P.; Arnould, C. Effects of stocking density on welfare, growth performance and carcass quality in Muscovy ducks. Sci. Tech. Avi. 2003, 45, 4–8. [Google Scholar]
- Zuowei, S.; Yan, L.; Yuan, L.; Jiao, H.; Song, Z.; Guo, Y.; Lin, H. Stocking density affects the growth performance of broilers in a sex-dependent fashion. Poult. Sci. 2011, 90, 1406–1415. [Google Scholar] [CrossRef]
- Simsek, U.; Ciftci, M.; Cerci, I.; Bayraktar, M.; Dalkilic, B.; Arslan, O.; Balci, T. Impact of stocking density and feeding regimen on broilers: Performance, carcass traits and bone mineralisation. J. Appl. Anim. Res. 2011, 39, 230–233. [Google Scholar] [CrossRef]
- Al-Bahouh, M.E.; Al-Nasser, A.Y.; Abdullah, F.K.; Ragheb, G.; Mashaly, M.M. Production performance of different broiler breeds under different housing systems. Int. J. Poult. Sci. 2012, 11, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Hall, A. The effect of stocking density on the welfare and behaviour of broiler chickens reared commercially. Anim. Welfare 2001, 10, 23–40. [Google Scholar]
- Park, B.-S.; Um, K.-H.; Park, S.-O.; Zammit, V.A. Effect of stocking density on behavioral traits, blood biochemical parameters and immune responses in meat ducks exposed to heat stress. Arch. Anim. Breed. 2018, 61, 425–432. [Google Scholar] [CrossRef]
- Bueno, J.P.R.; de Mattos Nascimento, M.R.B.; da Silva Martins, J.M.; Marchini, C.F.P.; Gotardo, L.R.M.; de Sousa, G.M.R.; Mundim, A.V.; Guimarães, E.C.; Rinaldi, F.P. Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Ciências Agrár. 2017, 38, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Abudabos, A.M.; Samara, E.M.; Hussein, E.O.; Al-Ghadi, M.a.Q.; Al-Atiyat, R.M. Impacts of stocking density on the performance and welfare of broiler chickens. Ital. J. Anim. Sci. 2013, 12, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Moneim, A.E.; Sabic, E.M. Beneficial effect of feeding olive pulp and Aspergillus awamori on productive performance, egg quality, serum/yolk cholesterol and oxidative status in laying Japanese quails. J. Anim. Feed Sci. 2019, 28, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Sogunle, O.; Egbeyale, L.; Bajomo, T.; Bamigboje, O.; Fanimo, A. Comparison of the performance, carcass characteristics and haematological parameters of broiler chicks reared in cage and floor. Pak. J. Biol. Sci. 2008, 11, 480–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasoetion, M.H.; Atmomarsono, U.; Sunarti, D.; Suthama, N. Growth performance and lipid profile of broilers fed different levels of purple sweet potato extract and raised under different stocking densities. Liv. Res. Rural Develop. 2019, 31, 97. [Google Scholar]
- Parthasarathy, S.; Raghavamenon, A.; Garelnabi, M.O.; Santanam, N. Oxidized low-density lipoprotein. In Free Radicals and Antioxidant Protocols; Springer: Berlin/Heidelberg, Germany, 2010; pp. 403–417. [Google Scholar]
- Rabasa, C.; Dickson, S.L. Impact of stress on metabolism and energy balance. Curr. Opin. Behav. Sci. 2016, 9, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Manohar, G.R.; Mani, K.; Viswanathan, K. Carcass yields and meat cholesterol as influenced by stocking density and system of rearing in commercial broilers. Indian J. Poult. Sci. 2005, 40, 255–258. [Google Scholar]
- Soriano-Santos, J. Chemical composition and nutritional content of raw poultry meat. In Handbook of Poultry Science and Technology; Guerrero-Legarreta, I., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 467–491. [Google Scholar]
- Liu, H.-X.; Rocha, C.S.; Dandekar, S.; Wan, Y.-J.Y. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. J. Hepatol. 2016, 64, 641–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, G.S.; Prasad, M.H.; Saraswathi, I.; Raghu, D.; Rao, D.; Reddy, P. Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin. Chim. Acta 2000, 293, 53–62. [Google Scholar] [CrossRef]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Thomas, M.J. The role of free radicals and antioxidants. Nutrition 2000, 7, 716–718. [Google Scholar] [CrossRef]
- Zhao, F.R.; Geng, A.L.; Li, B.M.; Shi, Z.X.; Zhao, Y.J. Effects of environmental factors on breast blister incidence, growth performance, and some biochemical indexes in broilers. J. Appl. Poult. Res. 2009, 18, 699–706. [Google Scholar] [CrossRef]
Ingredients | Starter (%) | Grower (%) |
---|---|---|
Yellow corn | 54.14 | 65.05 |
Soybean meal (44% CP) | 40.10 | 29.19 |
Soya bean oil | 2.90 | 2.90 |
Limestone | 1.00 | 1.00 |
Di-calcium phosphate | 1.00 | 1.00 |
dl-methionine | 0.11 | 0.11 |
NaCl | 0.25 | 0.25 |
Vitamin-mineral Premix 1 | 0.50 | 0.50 |
Chemical analysis (%) 2 | ||
Crude protein | 22.00 | 18.01 |
ME (kcal/kg) | 2945 | 2985 |
Crude fiber | 3.72 | 4.44 |
Ash | 7.69 | 6.17 |
Dry matter | 92.50 | 93.07 |
Ether extract | 3.77 | 3.36 |
FT | STD (bird/m2) | BW (g/bird) | WG (g/bird/day) | FI (g/bird/day) | FCR (g/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period in days | ||||||||||||||
Day old | 14 | 49 | 1–14 | 15–49 | 1–49 | 1–14 | 15–49 | 1–49 | 1–14 | 15–49 | 1–49 | |||
WSL | 14 day | 49 day | ||||||||||||
9 | 3 | 43.40 | 605 a | 3385 b | 40.14 a | 79.44 ab | 68.21 ab | 87.29 a | 216.7 d | 179.7 c | 2.18 b | 2.73 cd | 2.64 d | |
15 | 5 | 43.20 | 591 ab | 3316 c | 39.13 b | 77.87 b | 66.80 b | 84.59 cd | 224.3 ab | 184.4 a | 2.16 b | 2.88 a | 2.76 b | |
21 | 7 | 43.20 | 571 bc | 3281 d | 37.71 c | 77.43 b | 66.09 b | 83.99 d | 225.6 a | 185.2 a | 2.23 ab | 2.91 a | 2.80 a | |
PLS | 9 | 3 | 43.40 | 604 a | 3461 a | 40.04 a | 81.63 a | 69.75 a | 86.51 ab | 220.3 c | 182.1 b | 2.16 b | 2.70 d | 2.61 d |
15 | 5 | 43.60 | 581 b | 3401 ab | 38.43 bc | 80.57 ab | 68.53 ab | 86.47 ab | 223.1 ab | 184.1 ab | 2.25 a | 2.77 bc | 2.67 c | |
21 | 7 | 43.20 | 567 c | 3352 bc | 37.41 c | 79.57 b | 67.53 b | 85.79 bc | 222.0 bc | 183.1 ab | 2.29 a | 2.79 b | 2.71 c | |
SEM | 0.205 | 3.25 | 1.85 | 0.23 | 0.31 | 0.24 | 0.28 | 0.64 | 0.42 | 0.01 | 0.02 | 0.01 | ||
Two-Way ANOVA (p-Value) | ||||||||||||||
FT | 0.786 | 0.201 | <0.001 | 0.182 | <0.001 | <0.001 | 0.018 | 0.589 | 0.967 | 0.026 | <0.001 | <0.001 | ||
STD | 0.915 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 | ||
STD × FT | 0.916 | 0.688 | 0.850 | 0.651 | 0.759 | 0.858 | 0.013 | 0.003 | 0.011 | 0.104 | 0.016 | 0.041 |
FT | STD (bird/m2) | Dressing % | Liver % | Heart % | Abdominal Fat % | Breast % | Thigh % | Shoulder % | Left Filet % |
---|---|---|---|---|---|---|---|---|---|
WSL | 3 | 61.2 a | 4.03 | 1.16 | 2.46 a | 28.8 | 12.4 ab | 7.20 | 12.1 a |
5 | 59.0 b | 5.17 | 1.13 | 2.52 a | 28.8 | 12.2 b | 7.21 | 11.8 ab | |
7 | 58.4 c | 3.96 | 1.06 | 2.36 ab | 28.4 | 11.8 c | 7.10 | 11.5 b | |
PLS | 3 | 62.2 a | 4.03 | 1.15 | 2.20 c | 29.4 | 12.9 a | 7.32 | 12.2 a |
5 | 60.4 ab | 4.00 | 1.07 | 2.19 c | 29.1 | 12.6 a | 7.22 | 12.1 a | |
7 | 59.6 b | 3.96 | 1.11 | 2.26 b | 28.5 | 12.1 b | 7.14 | 11.9 ab | |
SEM | 0.31 | 0.21 | 0.01 | 0.05 | 0.14 | 0.09 | 0.03 | 0.05 | |
Two-Way ANOVA (p-Value) | |||||||||
FT | 0.012 | 0.336 | 0.671 | 0.012 | 0.353 | 0.005 | 0.254 | 0.002 | |
STD | <0.001 | 0.389 | 0.059 | 0.910 | 0.137 | <0.001 | 0.074 | <0.001 | |
STD × FT | 0.934 | 0.397 | 0.157 | 0.534 | 0.726 | 0.779 | 0.637 | 0.216 |
FT | STD (bird/m2) | ALT (g/dL) | AST (g/dL) | Uric acid (mg/dL) | Creatinine (mg/dL) | Serum (mg/dL) | Meat (mg/dL) | |||
---|---|---|---|---|---|---|---|---|---|---|
TG | TC | Total lipids | TG | TC | ||||||
WSL | 3 | 30.0 b | 70.2 d | 5.06 | 2.84 | 155 a | 135.1 | 568.4 | 138.4 b | 131.0 a |
5 | 32.6 a | 73.4 c | 5.18 | 1.09 | 145 ab | 131.6 | 544.9 | 134.8 bc | 129.6 ab | |
7 | 33.0 a | 75.4 b | 5.30 | 1.16 | 155 a | 135.8 | 567.4 | 128.6 d | 126.2 c | |
PLS | 3 | 28.4 c | 70.8 d | 5.10 | 1.03 | 143 b | 153.1 | 571.8 | 142.0 a | 131.2 a |
5 | 30.4 b | 76.0 ab | 5.02 | 1.06 | 129 c | 144.7 | 530.0 | 132.6 c | 127.4 bc | |
7 | 31.8 ab | 79.4 a | 5.00 | 1.09 | 129 c | 146.7 | 529.4 | 134.2 bc | 129.2 ab | |
SEM | 0.39 | 1.11 | 0.07 | 0.29 | 2.92 | 2.91 | 3.92 | 1.19 | 0.49 | |
Two-Way ANOVA (p-Value) | ||||||||||
FT | 0.006 | 0.253 | 0.325 | 0.293 | 0.001 | 0.019 | 0.307 | 0.252 | 0.680 | |
STD | <0.001 | 0.036 | 0.915 | 0.420 | 0.156 | 0.691 | 0.249 | 0.004 | 0.005 | |
STD × FT | 0.759 | 0.795 | 0.611 | 0.388 | 0.483 | 0.868 | 0.570 | 0.270 | 0.049 |
FT | STD (bird/m2) | MDA (nmoles/mL) | SOD (U/gHb) | GPx (U/gHb) | Catalase (U/gHb) |
---|---|---|---|---|---|
3 | 10.1 c | 60.2 c | 22.2 bc | 1.89 c | |
WSL | 5 | 10.3 ab | 63.1 bc | 24.4 b | 2.26 ab |
7 | 10.8 a | 67.8 a | 29.2 a | 2.42 a | |
3 | 10.1 c | 58.2 d | 21.6 c | 1.78 d | |
PLS | 5 | 10.2 b | 61.8 bc | 25.4 b | 1.96 bc |
7 | 10.4 ab | 64.1 b | 28.1 a | 2.15 b | |
SEM | 0.06 | 0.74 | 0.58 | 0.05 | |
Two-Way ANOVA (p-Value) | |||||
FT | 0.028 | 0.039 | 0.640 | 0.002 | |
STD | <0.001 | <0.001 | <0.001 | <0.001 | |
STD × FT | 0.204 | 0.602 | 0.277 | 0.444 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abo Ghanima, M.M.; Abd El-Hack, M.E.; Taha, A.E.; Tufarelli, V.; Laudadio, V.; Naiel, M.A.E. Assessment of Stocking Rate and Housing System on Performance, Carcass Traits, Blood Indices, and Meat Quality of French Pekin Ducks. Agriculture 2020, 10, 273. https://doi.org/10.3390/agriculture10070273
Abo Ghanima MM, Abd El-Hack ME, Taha AE, Tufarelli V, Laudadio V, Naiel MAE. Assessment of Stocking Rate and Housing System on Performance, Carcass Traits, Blood Indices, and Meat Quality of French Pekin Ducks. Agriculture. 2020; 10(7):273. https://doi.org/10.3390/agriculture10070273
Chicago/Turabian StyleAbo Ghanima, Mahmoud M., Mohamed E. Abd El-Hack, Ayman E. Taha, Vincenzo Tufarelli, Vito Laudadio, and Mohammed A. E. Naiel. 2020. "Assessment of Stocking Rate and Housing System on Performance, Carcass Traits, Blood Indices, and Meat Quality of French Pekin Ducks" Agriculture 10, no. 7: 273. https://doi.org/10.3390/agriculture10070273
APA StyleAbo Ghanima, M. M., Abd El-Hack, M. E., Taha, A. E., Tufarelli, V., Laudadio, V., & Naiel, M. A. E. (2020). Assessment of Stocking Rate and Housing System on Performance, Carcass Traits, Blood Indices, and Meat Quality of French Pekin Ducks. Agriculture, 10(7), 273. https://doi.org/10.3390/agriculture10070273