Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops
Abstract
:1. Introduction
2. Amaryllidaceae Crops—Botanical Characteristics and Biochemical Composition
3. Biodiversity and Ecology of Endophytes Associated with Crops Belonging to the Amaryllidaceae Family
3.1. Biochemistry and Functions of Fungal Endophytes Associated with Allioidae Crops
3.2. Biochemistry and Functions of Fungal Endophytes Associated with Amaryllidoideae Crops
4. Conclusions
5. Review Methodology
Author Contributions
Funding
Conflicts of Interest
References
- Petkova, N.T.; Ivanov, I.G.; Raeva, M.; Topuzova, M.G.; Todorova, M.M.; Denev, P.P. Fructans and antioxidants in leaves of culinary herbs from Asteraceae and Amaryllidaceae families. Food Res. 2019, 3, 407–415. [Google Scholar] [CrossRef]
- Amalfitano, C.; Golubkina, N.A.; Del Vacchio, L.; Russo, G.; Cannoniero, M.; Somma, S.; Morano, G.; Cuciniello, A.; Caruso, G. Yield, Antioxidant Components, Oil Content, and Composition of Onion Seeds Are Influenced by Planting Time and Density. Plants 2019, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Nemtinov, V.; Golubkina, N.; Koshevarov, A.; Konstanchuk, Y.; Molchanova, A.; Nadezhkin, S.; Sellitto, V.M.; Caruso, G. Health-beneficial compounds from edible and waste bulb components of sweet onion genotypes organically grown in northern Europe. Banats J. Biotechnol. 2019, 10. [Google Scholar] [CrossRef]
- Petrovic, B.; Kopta, T.; Pokluda, R. Effect of biofertilizers on yield and morphological parameters of onion cultivars. Folia Hortic. 2019, 31, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Rozpądek, P.; Rąpała-Kozik, M.; Wężowicz, K.; Grandin, A.; Karlsson, S.; Ważny, R.; Anielska, T.; Turnau, K. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiol. Biochem. 2016, 107, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Hibilik, N.; Selmaoui, K.; Msairi, S.; Touati, J.; Chliyeh, M.; Mouria, A.; Artib, M.; Touhami, A.O.; Benkirane, R.; Douira, A. Study of Arbuscular Mycorrhizal Fungi Diversity and Its Effect on Growth and Development of Leek Plants (Allium porrum L.). Annu. Res. Rev. 2018, 24, 1–14. [Google Scholar] [CrossRef]
- Golubkina, N.; Krivenkov, L.; Sekara, A.; Vasileva, V.; Tallarita, A.; Caruso, G. Prospects of Arbuscular Mycorrhizal Fungi Utilization in Production of Allium Plants. Plants 2020, 9, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Sugiyama, S. Phylogenetic signal of host plants in the bacterial and fungal root microbiomes of cultivated angiosperms. Plant J. 2020. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Aleklett, K.; Hart, M. The root microbiota—A fingerprint in the soil? Plant Soil 2013, 370, 671–686. [Google Scholar]
- Ansari, M.W.; Trivedi, D.K.; Sahoo, R.K.; Gill, S.S.; Tuteja, N. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol. Biochem. 2013, 70, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Crişan, I.; Vidican, R.; Stoian, V.; Şandor, M.; Stoie, A. Endophytic Root Colonization Patterns in Early and Mid-Spring Geophytes from Cluj County. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca 2019, 76, 21–27. [Google Scholar]
- Casas, C.; Torretta, J.P.; Exeler, N.; Omacini, M. What happens next? Legacy effects induced by grazing and grassendophyte symbiosis on thistle plants and their floral visitor. Plant Soil 2016, 405, 211–229. [Google Scholar]
- Compant, S.; Saikkonen, K.; Mitter, B.; Campisano, A.; Mercado-Blanco, J. Editorial Special Issue: Soil, Plants and Endophytes. Plant Soil 2016, 405, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Johnston-Monje, D.; Lundberg, D.S.; Lazarovits, G.; Reis, V.M.; Raizada, M.N. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 2016, 405, 337–355. [Google Scholar] [CrossRef] [Green Version]
- Soussi, A.; Ferjani, R.; Marasco, R.; Guesmi, A.; Cherif, H.; Rolli, E.; Mapelli, F.; Ouzari, H.I.; Daffonchio, D.; Cherif, A. Plant associated microbiomes in arid lands: Diversity, ecology and biotechnological potential. Plant Soil 2016, 405, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Saunders, M.; Kohn, L.M. Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol. 2009, 182, 229–238. [Google Scholar] [CrossRef]
- Rustamova, N.; Bozorov, K.; Efferth, T.; Yili, A. Novel secondary metabolites from endophytic fungi: Synthesis and biological properties. Phytochem. Rev. 2020, 19, 425–448. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Wang, S.; Li, J.; Li, Y.; Chen, W.K.; Wang, R. Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata. Environ. Microbiol. 2020, 22, 1421–1434. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.; Abo-Elyousr, K.A.; Abdel-Rahim, I.R. Leaf surface and endophytic fungi associated with onion leaves and their antagonistic activity against Alternaria porri. Czech Mycol. 2015, 67, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Wang, L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 2018, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Vinale, F.; Nicoletti, R.; Borrelli, F.; Mangoni, A.; Parisi, O.A.; Marra, R.; Lombardi, N.; Lacatena, F.; Grauso, L.; Finizio, S.; et al. Co-culture of plant beneficial microbes as source of bioactive metabolites. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- Caruso, G.; Abdelhamid, M.T.; Kalisz, A.; Sekara, A. Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae. Agriculture 2020, 10, 286. [Google Scholar] [CrossRef]
- Chase, M.W.; Christenhusz, M.J.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Kamenetsky, R.; Rabinowitch, H.D. The genus Allium: A developmental and horticultural analysis. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2006, 32, 329. [Google Scholar]
- Wheeler, E.J.; Mashayekhi, S.; McNeal, D.W.; Columbus, J.T.; Pires, J.C. Molecular systematics of Allium subgenus Amerallium (Amaryllidaceae) in North America. Am. J. Bot. 2013, 100, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Keusgen, M.; Schulz, H.; Glodek, J.; Krest, I.; Krüger, H.; Herchert, N.; Keller, J. Characterization of some Allium hybrids by aroma precursors, aroma profiles, and alliinase activity. J. Agric. Food Chem. 2002, 50, 2884–2890. [Google Scholar] [CrossRef]
- Rabinowitch, H.D.; Currah, L. (Eds.) Allium Crop Science: Recent Advances; CABI Publishing: Wallingford, UK, 2002. [Google Scholar]
- Sekara, A.; Pokluda, R.; Del Vacchio, L.; Somma, S.; Caruso, G. Interactions among genotype, environment and agronomic practices on production and quality of storage onion (Allium cepa L.). A review. Hortic. Sci. 2017, 44, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Kučová, L.; Kopta, T.; Sękara, A.; Pokluda, R. Controlling nitrate and heavy metals content in leeks (Allium porrum L.) using arbuscular mycorrhizal fungi inoculation. Pol. J. Environ. Stud. 2018, 27, 137–143. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Seredin, T.M.; Antoshkina, M.S.; Kosheleva, O.V.; Teliban, G.C.; Caruso, G. Yield, quality, antioxidants and elemental composition of new leek cultivars under organic or conventional systems in a greenhouse. Horticulturae 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Galeone, C.; Turati, F.; Zhang, Z.F.; Guercio, V.; Tavani, A.; Serraino, D.; Brennan, P.; Fabianova, E.; Lissowska, J.; Mates, D.; et al. Relation of Allium vegetables intake with head and neck cancers: Evidence from the inhance consortium. Mol. Nutr. Food Res. 2015, 59, 1641–1650. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic role of functional components in Alliums for preventive chronic disease in human being. Evid. Based Complement Altern. Med. 2017, 3, 9402849. [Google Scholar] [CrossRef]
- Munday, R. Harmful and beneficial effects of organic monosulfides, disulfides, and polysulfides in animals and humans. Chem. Res. Toxicol. 2012, 25, 47–60. [Google Scholar] [CrossRef]
- Mnayer, D.; Fabiano-Tixier, A.S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef]
- Vlase, L.; Parvu, M.; Parvu, E.A.; Toiu, A. Chemical constituents of three Allium species from Romania. Molecules 2013, 18, 114–127. [Google Scholar] [CrossRef]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016, 2016, 2986796. [Google Scholar] [CrossRef] [Green Version]
- Stafford, G.I.; Pedersen, M.E.; van Staden, J.; Jäger, A.K. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol. 2008, 119, 513–537. [Google Scholar] [CrossRef]
- Nair, J.J.; Wilhelm, A.; Bonnet, S.L.; van Staden, J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg. Med. Chem. Let. 2017, 27, 4943–4951. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. Alkaloids Chem. Biol. 2020, 83, 113–185. [Google Scholar]
- Desgagné-Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2020. [Google Scholar] [CrossRef]
- Lin, Y.T.; Chou, M.C.; Wu, S.J.; Yang, Y.H. Galantamine plasma concentration and cognitive response in Alzheimer’s disease. PeerJ 2019, 7, e6887. [Google Scholar] [CrossRef]
- Nair, J.J.; Bastida, J.; Viladomat, F.; van Staden, J. Cytotoxic agents of the crinane series of Amaryllidaceae alkaloids. Nat. Prod. Commun. 2012, 7, 12. [Google Scholar] [CrossRef]
- Rønsted, N.; Symonds, M.R.; Birkholm, T.; Christensen, S.B.; Meerow, A.W.; Molander, M.; Stafford, G.I. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol. Biol. 2012, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.S.; Upper, C.D. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae a Pathogen, Ice Nucleus, and Epiphyte. Microbiol. Mol. Biol. Rev. 2000, 64, 624–653. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Gawad, K.M.; Abdel-Mallek, A.Y.; Hussein, N.A.; Abdel-Rahim, I.R. Diversity of mycobiota associated with onion (Allium cepa L.) cultivated in Assiut, with a newly recorded fungal species to Egypt. J. Microbiol. Biotechnol. Food Sci. 2017, 9, 1145–1151. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.I.; Moharram, A.M.; Abdel-Sater, M.A. Monthly variations in the mycobiota of wheat fields in El-Kharga Oasis, Western desort, Egypt. Bull. Fac. Sci. Assiut Univ. 2000, 29, 195–211. [Google Scholar]
- Zhou, J.; Li, P.; Meng, D.; Gu, Y.; Zheng, Z.; Yin, H.; Yin, H.; Li, J. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environ. Pollut. 2020, 260, 113990. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, Z.; Tan, D.; Yang, J.; Zhou, Q.; Zeng, F.; Zhang, M.; Bie, Q.; Chen, C.; Xue, Y.; et al. Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 2017, 123, 18–22. [Google Scholar] [CrossRef]
- Yang, S.; Nan, X.H.; Lu, Y.B.; Peng, F. Study on isolation and anti-microbial activitiy of endophyte in Lycoris aurea Herb. J. Tradit. Chin. Med. 2010, 30, 78–80. [Google Scholar]
- Rocha, L.F.; Inglis, P.W.; Humber, R.A.; Kipnis, A.; Luz, C. Occurrence of Metarhizium spp. in Central Brazilian soils. J. Basic Microbiol. 2013, 53, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Nouh, F.A.A.; Abdel-Azeem, A.M. Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. In Agriculturally Important Fungi for Sustainable Agriculture; Springer: Cham, Switzerland, 2020; pp. 55–80. [Google Scholar]
- Pusztahelyi, T.; Holb, I.J.; Pócsi, I. Secondary metabolites in fungus-plant interactions. Front. Plant. Sci. 2015, 6, 573. [Google Scholar] [CrossRef] [Green Version]
- Muvea, A.M.; Meyhöfer, R.; Subramanian, S.; Poehling, H.-M.; Ekesi, S.; Maniana, N.K. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci. PLoS ONE 2014, 9, e108242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muvea, A.M.; Meyhöfer, R.; Maniania, N.K.; Poehling, H.M.; Ekesi, S.; Subramanian, S. Behavioral responses of Thrips tabaci Lindeman to endophyte-inoculated onion plants. J. Pest Sci. 2015, 88, 555–562. [Google Scholar] [CrossRef]
- Priyadharsini, P.; Pandey, R.; Muthukumar, T. Arbuscular mycorrhizal and dark septate fungal associations in shallot (Allium cepa L. var. aggregatum) under conventional agriculture. Acta Bot. Croat. 2012, 71, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, T.; He, X. Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China. Front. Agric. China 2009, 3, 164–170. [Google Scholar] [CrossRef]
- Isaeva, O.V.; Glushakova, A.M.; Garbuz, S.A.; Kachalkin, A.V.; Chernov, I.Y. Endophytic yeast fungi in plant storage tissues. Biol. Bull. 2010, 37, 26–34. [Google Scholar] [CrossRef]
- Xiang, L.; Gong, S.; Yang, L.; Hao, J.; Xue, M.; Zeng, F.; Zhang, X.; Shi, W.; Wang, H.; Yu, D. Biocontrol potential of endophytic fungi in medicinal plants from Wuhan Botanical Garden in China. Biol. Contr. 2015, 94, 47–55. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Qiao, X.G.; Miao, C.P.; Liu, K.; Chen, Y.W.; Xu, L.H.; Zhao, L.X. Diversity, distribution and biotechnological potential of endophytic fungi. Ann. Microbiol. 2016, 66, 529–542. [Google Scholar] [CrossRef]
- Iqbal, Z.; Nasir, H.; Hiradate, S.; Fujii, Y. Plant growth inhibitory activity of Lycoris radiata herb. And the possible involvement of lycorine as an allelochemical. Weed Biol. Manag. 2006, 6, 221–227. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.M.; Abdel-Hafez, S.I.I.; Abdel-Rahim, I.R. Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J. Phytopatol. 2014, 162, 567–574. [Google Scholar] [CrossRef]
- Siameto, E.; Okoth, S.; Amugune, N.; Chege, N. Antagonism of Trichoderma harzianum isolates on soil borne plant pathogenic fungi from Embu District, Kenya. J. Yeast Fungal Res. 2010, 1, 47–54. [Google Scholar]
- Flori, P.; Roberti, R. Treatment of onion bulbs with antagonistic fungi for the control of Fusarium oxysporum f. sp. cepae. Difesa Piante 1993, 16, 5–12. [Google Scholar]
- Abdel-Rahim, I.R.; Abo-Elyousr, K.A. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol. Res. 2018, 212, 1–9. [Google Scholar] [CrossRef]
- Muvea, A.M.; Subramanian, S.; Maniania, N.K.; Poehling, H.M.; Ekesi, S.; Meyhöfer, R. Endophytic colonization of onions induces resistance against viruliferous thrips and virus replication. Front. Plant Sci. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Madrigal, C.; Tadeo, J.; Melgarejo, P. Relationship between flavipin production by Epicoccum nigrum and antagonism against Monilinia laxa. Mycol. Res. 1991, 95, 1375–1381. [Google Scholar] [CrossRef]
- Haggag, W.M.; El Soud, M.A. Pilot-scale production and optimizing of cellulolytic Penicillium oxalicum for controlling of mango malformation. Agric. Sci. 2013, 4, 165–174. [Google Scholar]
- Shentu, X.; Zhan, X.; Ma, Z.; Yu, X.; Zhang, C. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz. J. Microbiol. 2014, 45, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinoza, F.; Vidal, S.; Rautenbach, F.; Lewu, F.; Nchu, F. Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L. [Amaryllidaceae]). Heliyon 2019, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Koul, M.; Meena, S.; Kumar, A.; Sharma, P.R.; Singamaneni, V.; Riyaz-Ul-Hassan, S.; Abid, H.; Asha, C.; Anil, P.; Prasoon, G.; et al. Secondary metabolites from endophytic fungus Penicillium pinophilum induce ROS-mediated apoptosis through mitochondrial pathway in pancreatic cancer cells. Planta Med. 2016, 82, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Abdulmyanova, L.I.; Fayzieva, F.K.; Ruzieva, D.M.; Rasulova, G.A.; Sattarova, R.S.; Gulyamova, T.G. Bioactivity of fungal endophytes associating with Allium plants growing in Uzbekistan. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 769–778. [Google Scholar] [CrossRef]
- Ruzieva, D.M.; Abdulmyanova, L.I.; Rasulova, G.A.; Sattarova, R.S.; Gulyamova, T.G. Screening of inhibitory activity against α-amylase of fungal endophytes isolated from medicinal plants in Uzbekistan. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 2744–2752. [Google Scholar]
- Keusgen, M.; Fritsch, R.M.; Hisoriev, H.; Kurbonova, P.A.; Khassanov, F.O. Wild Allium species (Alliaceae) used in folk medicine of Tajikistan and Uzbekistan. J. Ethnobiol. Ethnomed. 2006, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Ptak, A.; Simlat, M.; Morańska, E.; Spina, R.; Dupire, F.; Kozaczka, S.; Laurain-Mattar, D. Potential of the Leucojum aestivum L. endophytic bacteria to promote Amaryllidaceae alkaloids biosynthesis. Acta Biol. Cracov. 2019, 62, 30. [Google Scholar]
- Liu, Z.; Zhou, J.; Li, Y.; Wen, J.; Wang, R. Bacterial endophytes from Lycoris radiata promote the accumulation of Amaryllidaceae alkaloids. Microbiol. Res. 2020, 239, 126501. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Kusari, S.; Sezgin, S.; Lamshöft, M.; Kusari, P.; Kayser, O.; Spiteller, M. Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl. Microbiol. Biotechnol. 2015, 99, 7651–7662. [Google Scholar] [CrossRef]
- Yang, M.J.; Lu, X.L.; Wang, Y.G.; Yao, G.Y.; Yang, L.; Liu, X.F. Screening and identifying of endophytic fungi with acetylcholinesterase inhibitory activity from narcissus. Chin. Pharmacol. Bull. 2013, 10, 33. [Google Scholar]
- Onofri, S.; Barreca, D.; Garuccio, I. Effects of lycorine on growth and effects of L-galactonic acid-γ-lactone on ascorbic acid biosynthesis in strains of Cryptococcus laurentii isolated from Narcissus pseudonarcissus roots and bulbs. Anton. Leeuw. Int. J. G. 2003, 83, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, S.; Zhao, Z.; Peng, F.; Li, Y. Isolation and identification of a galanthamine-producing endophytic fungus from Lycoris aurea bulbs. Northwest Pharm. J. 2011, 4, 5. [Google Scholar]
- Li, H.; Xu, Q.; Sun, W.; Zhang, R.; Wang, J.; Lai, Y.; Hu, Z.; Zhang, Y. 21-Epi-taichunamide D and (±)-versicaline A, three unusual alkaloids from the endophytic Aspergillus versicolor F210. Tetrahedron Lett. 2020, 61, 152219. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Cao, F.; Wang, J.; Hu, Z.; Zhang, Y. Proversilins A–E, Drimane-Type Sesquiterpenoids from the Endophytic Aspergillus versicolor. J. Nat. Prod. 2020, 83, 2200–2206. [Google Scholar] [CrossRef]
- Bascom-Slack, C.A.; Ma, C.; Moore, E.; Babbs, B.; Fenn, K.; Greene, J.S.; Hann, B.D.; Keehner, J.; Kelley-Swift, E.G.; Kembaiyan, V.; et al. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb. Ecol. 2009, 58, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Ferranti, P.; Caira, S.; Misso, G.; Castellano, M.; Di Lorenzo, G.; Caraglia, M. Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World J. Microbiol. Biotechnol. 2014, 30, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
- Zupic, I.; Cater, T. Bibliometric methods in management and organization. Org. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Global Biodiversity Information Facility. Available online: https://www.gbif.org/ (accessed on 25 September 2020).
- The Plan List. Available online: www.theplantlist.org (accessed on 25 September 2020).
- MycoBank. Available online: http://www.mycobank.org/ (accessed on 25 September 2020).
Tissues | Dominating Endophyte Species | Main Activities of the Endophyte | Main Metabolites/Enzymes Linked to Endophyte Bioactivities | Reference |
---|---|---|---|---|
Allium cepa (leaf) | Clonostachys rosea, Hypocrea lixii, Trichoderma asperellum, T. atroviride, T. harzianum, Fusarium sp. | Suppression of Thrips tabacii reproduction and viral transmitting | Volatile components | [56,57,68] |
A. cepa (leaf healthy) | Cladosporium cladosporioides, C. sphaerospermum | Antifungal against Alternaria porri | Not investigated | [20] |
Epicoccum nigrum | Antifungal against A. porri | Flavipin | [20,69] | |
Penicillium oxalicum | Antifungal against A. porri | Lytic extracellular enzymes (β-1,3-glucanase, chitinases, cellulases) | [20,70] | |
T. harzianum | Antifungal against A. porri | Lytic extracellular enzymes | [20,65] | |
A. cepa (leaf infected with A. porri) | Botrytis cinerea, Penicillium aurantiogriseum, Alternaria alternata, Cladosporium spp. | Antifungal against A. porri | Not investigated | [20] |
A. cepa (umbels) | Talaromyces pinophilus | Antifungal against B. cinerea | Lytic extracellular enzymes (chitinase, lipase, and protease) | [67] |
A. cepa (floral stalks infected with A. porri) | Trihoderma longibrachiatum, T. harzianum, | Antifungal against A. porri | Lytic extracellular enzymes | [64] |
A. llium sativum (leaf) | Trichoderma brevicompactum | Antifungal against Rhizoctonia solani and B. cinerea | 4-acetoxy-12,13-epoxy-9-trichothecene (trichodermin) | [71] |
Allium schoenoprasum (leaves, roots) | Beauveria bassiana | Protection of the host | Increased alkaloid level | [72] |
A. schoenoprasum (bulb) | Penicillium pinophilum | Inhibition of the NCI60/ATCC panel of human cancer cell of different tissue origin | Skyrin R=H and Dicatenarin R=OH. | [73] |
Allium filidens (stem, bulb) | Aspergillus terreus, Penicillium sp. | Cytotoxic against carcinoma of the cervix (HeLa), larynx (HEp-2); Inhibition of α-amylase activity | Not investigated | [74,75] |
A. terreus | Antibacterial against Pseudomonas aeruginosa | Not investigated | [74] | |
A. filidens (bud) | Alternaria tenuissima | Antibacterial against P. aeruginosa and Staphylococcus aureus | Not investigated | [74] |
Allium longicuspis (root) | Aspergillus ochraceus | Antibacterial against P. aeruginosa and S. aureus | Not investigated | [74] |
Aspergillus versicolor | Antibacterial against E. coli, P. aeruginosa, and S. aureus | Not investigated | [74] | |
Fusarium sp. | Antibacterial against E. coli | Not investigated | [74] | |
A. longicuspis (bulb) | Aspergillus. spectabilis | Antibacterial against P. aeruginosa and S. aureus | Not investigated | [74] |
A. longicuspis (leaf) | Fusarium sambucinum | Antibacterial against E. coli | Not investigated | [74] |
Alternaria sp. | Antibacterial against E. coli, P. aeruginosa, and S. aureus | Not investigated | [74] | |
A. terreus | Antibacterial against E. coli, P. aeruginosa, and S. aureus, inhibition of α-amylase activity | Not investigated | [74,75] | |
Aspergillus flavus | Antibacterial against P. aeruginosa | Not investigated | [74] |
Tissues | Dominating Endophyte Species | Main Activities of the Endophyte | Main Metabolites/Enzymes Linked to Endophyte Bioactivities | Reference |
---|---|---|---|---|
Narcissus pseudonarcissus (root tips, outer bracts) | Papiliotrema laurentii | Antifungal against some strains of Cryptococcus laurentii | Lycorine | [81] |
Narcissus sp. | Rhinocladiella sp. | Inhibition of acetylcholinesterase | Not investigated | [80] |
Narcissus tazetta (bulb) | Fusarium solani | Selective accumulation by an endophytic bacterium, Achromobacter xylosoxidans | Hexacyclopeptides | [79] |
L. aurea | Penicillium sp. | Not investigated | Galantamine | [82] |
L. radiata (bulb) | Aspergillus versicolor | Cytotoxic against human tumor HL-60 cells with an IC50 value of 5.6 lM.15 | (±)–Versicalin A, keto-enol tautomer (+)–6a | [83] |
L. radiata (bulb) | A. versicolor | Cytotoxic against human tumor HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cell lines | Proversilin C | [84] |
Proversilin E | ||||
Eucharis cyaneosperma | Streptomyces recifensis | Not investigated | Not investigated | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, G.; Golubkina, N.; Tallarita, A.; Abdelhamid, M.T.; Sekara, A. Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops. Agriculture 2020, 10, 533. https://doi.org/10.3390/agriculture10110533
Caruso G, Golubkina N, Tallarita A, Abdelhamid MT, Sekara A. Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops. Agriculture. 2020; 10(11):533. https://doi.org/10.3390/agriculture10110533
Chicago/Turabian StyleCaruso, Gianluca, Nadezhda Golubkina, Alessio Tallarita, Magdi T. Abdelhamid, and Agnieszka Sekara. 2020. "Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops" Agriculture 10, no. 11: 533. https://doi.org/10.3390/agriculture10110533