Tillage Effects on Cotton Performance and Soil Quality in an Irrigated Arid Cropping System
Abstract
:1. Introduction
- i.
- Evaluate the performance of three tillage methods (bed, plow, and strip tillage) for cotton growth, yields and fiber quality,
- ii.
- Evaluate differences of selected soil quality indicators between the tillage treatments,
- iii.
- Evaluate the temporal changes of selected soil quality indicators under the tillage treatments.
2. Materials and Methods
2.1. Experimental Site and Land Preparation
2.2. Measurements
3. Results
3.1. Cotton Growth, Yield, and Fiber Quality
3.2. Soil Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nordstrom, K.F.; Hotta, S. Wind Erosion from Cropland in the USA: A Review of Problems, Solutions and Prospects. Geoderma 2004, 121, 157–167. [Google Scholar] [CrossRef]
- Huszar, P.C.; Piper, S.L. Estimating the off-Site Costs of Wind Erosion in New Mexico. J. Soil Water Conserv. 1986, 41, 414–416. [Google Scholar]
- Piper, S. Measuring Particulate Pollution Damage from Wind Erosion in the Western United States. J. Soil Water Conserv. 1989, 44, 70–75. [Google Scholar]
- Karamanos, A.J.; Bilalis, D.; Sidiras, N. Effects of Reduced Tillage and Fertilization Practices on Soil Characteristics, Plant Water Status, Growth and Yield of Upland Cotton. J. Agron. Crop. Sci. 2004, 190, 262–276. [Google Scholar] [CrossRef]
- Wright, A.L.; Hons, F.M.; Lemon, R.G.; McFarland, M.L.; Nichols, R.L. Microbial Activity and Soil C Sequestration for Reduced and Conventional Tillage Cotton. Appl. Soil Ecol. 2008, 38, 168–173. [Google Scholar] [CrossRef]
- Yoo, K.H.; Touchton, J.T. Runoff and Soil Loss by Crop Growth Stage under Three Cotton Tillage Systems. J. Soil Water Conserv. 1989, 44, 225–228. [Google Scholar]
- Lascano, R.J.; Baumhardt, R.L.; Hicks, S.K.; Heilman, J.L. Soil and Plant Water Evaporation from Strip-Tilled Cotton: Measurement and Simulation. Agron. J. 1907, 86, 987–994. [Google Scholar] [CrossRef]
- Smart, J.R.; Bradford, J.M. No-Tillage and Reduced Tillage Cotton Production in South Texas. In Proceedings of the Beltwide Cotton Conference, Nashville, TN, USA, 9–12 January 1996; pp. 1397–1401. [Google Scholar]
- Mitchell, J.; Klonsky, K.; Shrestha, A.; Fry, R.; DuSault, A.; Beyer, J.; Harben, R. Adoption of Conservation Tillage in California: Current Status and Future Perspectives. Aust. J. Exp. Agric. 2007, 47, 1383–1388. [Google Scholar] [CrossRef] [Green Version]
- Bossange, A.V.; Knudson, K.M.; Shrestha, A.; Harben, R.; Mitchell, J.P. The Potential for Conservation Tillage Adoption in the San Joaquin Valley, California: A Qualitative Study of Farmer Perspectives and Opportunities for Extension. PLoS ONE 2016, 11, e0167612. [Google Scholar] [CrossRef]
- Zhang, J.; Idowu, O.J.; Wedegaertner, T. Registration of Glandless ‘NuMex COT 17 GLS’ Upland Cotton Cultivar with Fusarium Wilt Race 4 Resistance. J. Plant Regist. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Chohan, S.; Perveen, R.; Abid, M.; Tahir, M.N.; Sajid, M. Cotton Diseases and Their Management. In Cotton Production and Uses; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 239–270. [Google Scholar]
- USDA; NRCS. Soil Survey Staff Keys to Soil Taxonomy, 8th ed.; U.S. Gov. Print. Office: Washington, DC, USA, 1998.
- Idowu, O.J.; Kircher, P. Soil Quality of Semi-Arid Conservation Reserve Program Lands in Eastern New Mexico. Arid Land Res. Manag. 2015, 30, 153–165. [Google Scholar] [CrossRef]
- Ogden, C.B.; Van Es, H.M.; Schindelbeck, R.R. Miniature Rain Simulator for Field Measurement of Soil Infiltration. Soil Sci. Soc. Am. J. 1997, 61, 1041–1043. [Google Scholar] [CrossRef]
- Islam, K.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E.; Weil, R.R. Estimating Active Carbon for Soil Quality Assessment: A Simplified Method for Laboratory and Field Use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar] [CrossRef]
- Willers, C.; Van Rensburg, P.J.; Claassens, S. Phospholipid Fatty Acid Profiling of Microbial Communities-A Review of Interpretations and Recent Applications. J. Appl. Microbiol. 2015, 119, 1207–1218. [Google Scholar] [CrossRef]
- IBM Corp. Released IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Norton, E.R.; Silvertooth, J.C.; Stedman, S.W. Plant Population Evaluation for Upland Cotton; Series P-99; College of Agriculture, University of Arizona: Tucson, AZ, USA, 1995; pp. 25–28. [Google Scholar]
- Farooq, O.; Mubeen, K.; Khan, A.A.; Ahmad, S. Sowing Methods for Cotton Production. In Cotton Production and Uses; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 45–57. [Google Scholar]
- Johnson, R.M.; Downer, R.G.; Bradow, J.M.; Bauer, P.J.; Sadler, E. Variability in Cotton Fiber Yield, Fiber Quality, and Soil Properties in a Southeastern Coastal Plain. Agron. J. 2002, 94, 1305–1316. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.G.; Kerby, T.A.; Roberts, B.A.; Bryant, D.C.; Higashi, S.L. Potassium Nutrition Effects on Lint Yield and Fiber Quality of Acala Cotton. Crop. Sci. 1990, 30, 672–677. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, Z.; Liu, S.; Li, W.; Tang, W.; Dong, H. Effects of Deficit Irrigation and Plant Density on the Growth, Yield and Fiber Quality of Irrigated Cotton. Field Crop. Res. 2016, 197, 1–9. [Google Scholar] [CrossRef]
- Bradow, J.M.; Davidonis, G.H. Effects of Environment on Fiber Quality. In Physiology of Cotton; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2010; pp. 229–245. [Google Scholar]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems—A Review of the Nature, Causes and Possible Solutions. Soil Till. Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Coates, W.E. Reduced Tillage Systems for Irrigated Cotton: Is Soil Compaction a Concern? Appl. Eng. Agric. 2001, 17, 273–279. [Google Scholar] [CrossRef]
- Idowu, O.J.; Sultana, S.; Darapuneni, M.; Beck, L.; Steiner, R. Short-term Conservation Tillage Effects on Corn Silage Yield and Soil Quality in an Irrigated, Arid Agroecosystem. Agronomy 2019, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Angers, D.A. Changes in Soil Aggregation and Organic Carbon under Corn and Alfalfa. Soil Sci. Soc. Am. J. 1992, 56, 1244–1249. [Google Scholar] [CrossRef]
- Rasse, D.P.; Smucker, A.J.M.; Santos, D.; Rasse, D. Alfalfa Root and Shoot Mulching Effects on Soil Hydraulic Properties and Aggregation. Soil Sci. Soc. Am. J. 2000, 64, 725–731. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation Tillage Impacts on Soil, Crop and the Environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Kabir, Z.; O’Halloran, I.; Fyles, J.; Hamel, C. Seasonal Changes of Arbuscular Mycorrhizal Fungi as Affected by Tillage Practices and Fertilization: Hyphal Density and Mycorrhizal Root Colonization. Plant Soil 1997, 192, 285–293. [Google Scholar] [CrossRef]
- Curaqueo, G.; Acevedo, E.; Cornejo, P.; Seguel, A.; Rubio, R.; Borie, F. Tillage Effect on Soil Organic Matter, Mycorrhizal Hyphae and Aggregates in a Mediterranean Agroecosystem. Rev. Cienc. Suelo Nutr. Veg. 2010, 10, 12–21. [Google Scholar] [CrossRef]
- Jansa, J.; Wiemken, A.; Frossard, E. The Effects of Agricultural Practices on Arbuscular Mycorrhizal Fungi. Geol. Soc. London Spéc. Publ. 2006, 266, 89–115. [Google Scholar] [CrossRef]
- Sharma, M.P.; Reddy, U.G.; Adholeya, A. Response of Arbuscular Mycorrhizal Fungi on Wheat (Triticum aestivum L.) Grown Conventionally and on Beds in a Sandy Loam Soil. Indian J. Microbiol. 2011, 51, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
Tillage Treatments | Year | |||
---|---|---|---|---|
Measurements | Mean * | Mean * | ||
Plant population (per ha) | BT | 86,111 ± 5923 | 2017 | 78,935 ± 5378 |
PT | 81,315 ± 4966 | 2018 | 82,124 ± 2273 | |
ST | 74,163 ± 3019 | p-value | 0.41 | |
p-value | 0.45 | |||
Plant height (m) | BT | 1.26 ± 0.12 | 2017 | 1.49 ± 0.09a |
PT | 1.14 ± 0.16 | 2018 | 0.88 ± 0.06b | |
ST | 1.16 ± 0.16 | p-value | 0.001 | |
p-value | 0.24 |
Tillage Treatments | Year | |||
---|---|---|---|---|
Measurements | Mean * | Mean * | ||
Seed cotton yield (kg/ha) | BT | 3611 ± 289 | 2017 | 3847 ± 263 |
PT | 4008 ± 189 | 2018 | 3640 ± 208 | |
ST | 3611 ± 368 | p-value | 0.62 | |
p-value | 0.17 | |||
Lint yield (kg/ha) | BT | 1540 ± 118 | 2017 | 1660 ± 109 |
PT | 1699 ± 84 | 2018 | 1526 ± 86 | |
ST | 1541 ± 157 | p-value | 0.46 | |
p-value | 0.19 | |||
Seed yield (kg/ha) | BT | 2071 ± 172 | 2017 | 2187 ± 155 |
PT | 2309 ± 109 | 2018 | 2114 ± 122 | |
ST | 2071 ± 211 | p-value | 0.76 | |
p-value | 0.17 | |||
Lint percentage (%) | BT | 42.8 ± 0.5 | 2017 | 43.3 ± 0.3a |
PT | 42.5 ± 0.5 | 2018 | 41.9 ± 0.3b | |
ST | 42.5 ± 0.4 | p-value | 0.03 | |
p-value | 0.75 | |||
Boll weight (g/boll) | BT | 6.54 ± 0.09 | 2017 | 6.56 ± 0.07 |
PT | 6.66 ± 0.12 | 2018 | 6.68 ± 0.10 | |
ST | 6.66 ± 0.12 | p-value | 0.43 | |
p-value | 0.67 |
Tillage Treatments | Year | |||
---|---|---|---|---|
Measurements | Mean * | Mean * | ||
Micronaire | BT | 5.10 ± 0.14 | 2017 | 4.93 ± 0.06b |
PT | 5.12 ± 0.09 | 2018 | 5.33 ± 0.05a | |
ST | 5.16 ± 0.06 | p-value | 0.0004 | |
p-value | 0.82 | |||
Fiber length (mm) | BT | 1.14 ± 0.02 | 2017 | 1.17 ± 0.01a |
PT | 1.12 ± 0.02 | 2018 | 1.09 ± 0.01b | |
ST | 1.17 ± 0.01 | p-value | 0.0002 | |
p-value | 0.17 | |||
Uniformity index (%) | BT | 84.79 ± 0.41 | 2017 | 85.19 ± 0.20a |
PT | 84.60 ± 0.25 | 2018 | 84.10 ± 0.33b | |
ST | 84.55 ± 0.50 | p-value | 0.003 | |
p-value | 0.86 | |||
Fiber strength (g/tex) | BT | 28.68 ± 0.49 | 2017 | 28.33 ± 0.28 |
PT | 29.03 ± 0.42 | 2018 | 29.18 ± 0.39 | |
ST | 28.55 ± 0.43 | p-value | 0.14 | |
p-value | 0.77 | |||
Fiber elongation (%) | BT | 7.04 ± 0.21 | 2017 | 7.26 ± 0.10a |
PT | 6.76 ± 0.32 | 2018 | 6.38 ± 0.21b | |
ST | 6.65 ± 0.23 | p-value | 0.003 | |
p-value | 0.28 | |||
Short fiber content (%) | BT | 7.85 ± 0.21 | 2017 | 7.81 ± 0.10 |
PT | 7.98 ± 0.20 | 2018 | 8.01 ± 0.20 | |
ST | 7.90 ± 0.21 | p-value | 0.32 | |
p-value | 0.89 |
Mean Cone Index (kPa) * | ||||
---|---|---|---|---|
Sampling Time | Tillage Treatments | 0–0.1 m | 0.1–0.2 m | 20–30 cm |
2017 Pre-plant | BT | 396 ± 25b | 504 ± 30 | 637 ± 54 |
PT | 530 ± 35a | 662 ± 48 | 703 ± 60 | |
ST | 421 ± 36b | 667 ± 74 | 773 ± 64 | |
p-value | 0.01 | 0.05 | 0.19 | |
2017 Mid-season | BT | 414 ± 39b | 917 ± 99b | 1200 ± 135b |
PT | 682 ± 53a | 1635 ± 193a | 1889 ± 197a | |
ST | 662 ± 55a | 1314 ± 66a | 1599 ± 141ab | |
p-value | 0.001 | 0.002 | 0.02 | |
2017 Harvest | BT | 2252 ± 235 | 3603 ± 218 | |
PT | 1963 ± 242 | 3453 ± 243 | ||
ST | 2293 ± 192 | 3371 ± 215 | ||
p-value | 0.55 | 0.76 | ||
2018 Pre-plant | BT | 721 ± 49 | 1091 ± 55 | 1160 ± 70 |
PT | 830 ± 59 | 1201 ± 130 | 1192 ± 91 | |
ST | 700 ± 51 | 947 ± 50 | 1115 ± 73 | |
p-value | 0.21 | 0.13 | 0.73 | |
2018 Mid-season | BT | 832 ± 88 | 1311 ± 154b | 1484 ± 136b |
PT | 1151 ± 148 | 2003 ± 153a | 2002 ± 130a | |
ST | 1135 ± 80 | 1511 ± 112b | 1389 ± 130b | |
p-value | 0.09 | 0.004 | 0.004 | |
2018 Harvest | BT | 1492 ± 190 | 2646 ± 354 | 2619 ± 258 |
PT | 1850 ± 205 | 2562 ± 314 | 2802 ± 223 | |
ST | 1538 ± 219 | 2413 ± 220 | 2508 ± 300 | |
p-value | 0.42 | 0.84 | 0.74 |
Measurement | Tillage Treatments | Mean * | Sampling Time | Mean * |
---|---|---|---|---|
Field infiltration rate (mm/h) | BT | 17.5 ± 3.0 | 2017 PL | 24.6 ± 2.5a |
PT | 20.9 ± 2.9 | 2017 HA | 18.6 ± 1.8a | |
ST | 16.2 ± 2.2 | 2018 HA | 11.4 ± 1.9b | |
p-value | 0.13 | p-value | 0.004 | |
Mean weight diameter of dry aggregates (mm) | BT | 1.16 ± 0.07 | 2017 PL | 1.09 ± 0.09b |
PT | 1.00 ± 0.05 | 2017 HA | 1.26 ± 0.06a | |
ST | 1.22 ± 0.07 | 2018 HA | 1.05 ± 0.02b | |
p-value | 0.13 | p-value | 0.02 | |
Wet aggregate stability (%) | BT | 77.1 ± 3.3 | 2017 PL | 89.2 ± 0.93a |
PT | 75.2 ± 3.5 | 2017 HA | 69.5 ± 1.7b | |
ST | 73.3 ± 4.6 | 2018 HA | 66.9 ± 2.2b | |
p-value | 0.24 | p-value | 0.001 | |
Permanganate oxidizable carbon (mg/kg) | BT | 393 ± 22 | 2017 PL | 450 ± 7a |
PT | 380 ± 26 | 2017 HA | 303 ± 14c | |
ST | 396 ± 24 | 2018 HA | 415 ± 6b | |
p-value | 0.61 | p-value | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idowu, O.J.; Sultana, S.; Darapuneni, M.; Beck, L.; Steiner, R.; Omer, M. Tillage Effects on Cotton Performance and Soil Quality in an Irrigated Arid Cropping System. Agriculture 2020, 10, 531. https://doi.org/10.3390/agriculture10110531
Idowu OJ, Sultana S, Darapuneni M, Beck L, Steiner R, Omer M. Tillage Effects on Cotton Performance and Soil Quality in an Irrigated Arid Cropping System. Agriculture. 2020; 10(11):531. https://doi.org/10.3390/agriculture10110531
Chicago/Turabian StyleIdowu, Omololu John, Sifat Sultana, Murali Darapuneni, Leslie Beck, Robert Steiner, and Mohammed Omer. 2020. "Tillage Effects on Cotton Performance and Soil Quality in an Irrigated Arid Cropping System" Agriculture 10, no. 11: 531. https://doi.org/10.3390/agriculture10110531
APA StyleIdowu, O. J., Sultana, S., Darapuneni, M., Beck, L., Steiner, R., & Omer, M. (2020). Tillage Effects on Cotton Performance and Soil Quality in an Irrigated Arid Cropping System. Agriculture, 10(11), 531. https://doi.org/10.3390/agriculture10110531