How Does Climate Change Affect Rice Yield in China?
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. Direct Effect of Climate Change on Rice Yield
2.2. Indirect Effects of Climate Change on Rice Yield
2.2.1. Irrigation Area
2.2.2. Fertilizer Application Amount
2.2.3. Labor Force
3. Data and the Empirical Model
3.1. Study Area
3.2. Variable Measurement
3.2.1. Dependent Variable: Rice Yield
3.2.2. Explanatory Variables: Climate Change
3.2.3. Intermediate Variables: Irrigated Area, Fertilizer Application Amount, and Labor Force
3.2.4. Control Variables
3.3. Model Specification
3.3.1. Testing the Direct Effect
3.3.2. Testing the Mediation Effect
4. Results and Discussion
4.1. Direct Effect
4.2. Indirect Effects
4.2.1. The Indirect Effect of Effective Irrigation Area on Rice Yield
4.2.2. The Indirect Effect of Chemical Fertilizer Applications on Rice Yield
4.2.3. The Indirect Effect of the Agricultural Labor Force on Rice Yield
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watts, N.; Scales, I.R. Seeds, agricultural systems and socio-natures: Towards an actor–network theory informed political ecology of agriculture. Geogr. Compass 2015, 9, 225–236. [Google Scholar] [CrossRef]
- Williams, S.; Hobday, A.; Falconi, L.; Hero, J.; Holbrook, N.; Capon, S.; Bond, N.; Ling, S.; Hughes, L. Research priorities for natural ecosystems in a changing global climate. Glob. Chang. Biol. 2020, 26, 410–416. [Google Scholar] [CrossRef]
- Liu, J.; Stewart, R.E.; Szeto, K.K. Moisture transport and other hydrometeorological features associated with the severe 2000/01 drought over the western and central Canadian prairies. J. Clim. 2004, 17, 305–319. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Yang, J. Overview of Impacts of Climate Change and Adaptation in China’s Agriculture. J. Integr. Agric. 2014, 13, 1–17. [Google Scholar] [CrossRef]
- Wei, T.; Cherry, T.L.; Glomrod, S.; Zhang, T. Climate change impacts on crop yield: Evidence from China. Sci. Total Environ. 2014, 499, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, Y.; Wang, C.; Wang, P.; Tao, F. Future extreme temperature and its impact on rice yield in China. Int. J. Clim. 2017, 37, 4814–4827. [Google Scholar] [CrossRef]
- Krishnan, P.; Swain, D.K.; Chandra Bhaskar, B.; Nayak, S.K.; Dash, R.N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric. Ecosyst. Environ. 2007, 122, 233–242. [Google Scholar] [CrossRef]
- Lin, E.; Xiong, W.; Ju, H.; Xu, Y.; Xie, L. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. Biol. Sci. 2005, 360, 2149–2154. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xiong, W.; Yang, X.; Cao, Y.; Feng, L. Geographic variation of rice yield response to past climate change in china. J. Integr. Agric. 2014, 13, 1586–1598. [Google Scholar] [CrossRef]
- Christopher, R.B.; Barry, S.; Michael, B.; Thomas, R.J.; John, S.; Quentin, C.; Bhawan, S. Adaptation in Canadian agriculture to climatic variability and change. Clim. Chang. 2000, 45, 181–201. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, O.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Nat. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, E.; Yang, X.; Wang, J. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Chang. Biol. 2010, 16, 2287–2299. [Google Scholar] [CrossRef]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M.; Moya, P.F.; Dobermann, A.; Dawe, D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Nat. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlenker, W. Crop responses to climate and weather: Cross-section and panel models. Clim. Chang. Food Secur. 2010, 37, 99–108. [Google Scholar] [CrossRef]
- Field, C.; Lobell, D.; Peters, H.; Chiariello, N. Feedbacks of terrestrial ecosystems to climate change. Annu. Rev. Environ. Resour. 2007, 32, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Cui, X. Climate change and adaptation in agriculture: Evidence from US cropping patterns. J. Environ. Econ. Manag. 2020, 101, 102306. [Google Scholar] [CrossRef]
- Wassmann, R.; Jagadish, S.V.K.; Heuer, S.; Ismail, A.; Redona, E.; Serraj, R.; Singh, R.K.; Howell, G.; Pathak, H.; Sumfleth, K. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Adv. Agron. 2009, 101, 59–122. [Google Scholar]
- Bai, H.; Tao, F.; Xiao, D.; Liu, F.; Zhang, H. Attribution of yield change for rice wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Clim. Chang. 2016, 135, 539–553. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S. China feels the heat: Negative impacts of high temperatures on China’s rice sector. Aust. J. Agric. Resour. Econ. 2018, 62, 576–588. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar] [CrossRef]
- Zafar, S.A.; Hameed, A.; Nawaz, M.A.; Wei, M.A.; Noor, M.A.; Hussain, M. Mechanisms and molecular approaches for heat tolerance in rice under climate change scenario. J. Integr. Agric. 2018, 17, 726–738. [Google Scholar] [CrossRef]
- Brian, R.M.; Peter, B.A. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ. Exp. Bot. 2011, 72, 223–231. [Google Scholar] [CrossRef]
- Ju, H.; van der Velde, M.; Lin, E.; Xiong, W.; Li, Y. The impacts of climate change on agricultural production systems in China. Clim. Chang. 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Burgos, N.R.; Oosterhuis, D.M. Temperature and drought impacts on rice production: An agronomic perspective regarding short- and long-term adaptation measures. Water Resour. Rural Dev. 2017, 9, 12–27. [Google Scholar] [CrossRef]
- Stefan, S.; Heidi, W.; Zhao, G.; Frank, E. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 2017, 12, 054023. [Google Scholar] [CrossRef]
- Chen, M.; Sun, F.; Berry, P.; Tinch, R.; Ju, H.; Lin, E. Integrated assessment of China’s adaptive capacity to climate change with a capital approach. Climatic Change 2015, 128, 367–380. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land fragmentation and its driving forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Gao, L.; Huang, J.; Rozelle, S. Rental markets for cultivated land and agricultural investments in China. Agric. Econ. 2012, 43, 391–403. [Google Scholar] [CrossRef]
- Masashi, O.; Toshichika, I.; Gen, S.; Naota, H. Modeling irrigation-based climate change adaptation in agriculture: Model development and evaluation in Northeast China. J. Adv. Model. Earth Syst. 2015, 7, 1409–1424. [Google Scholar] [CrossRef]
- Stephen, N.N.; Hubert, H.G.S.; Josephine, N.T.; Johan, R.; Penning de Vries, F.W.T. Agro-hydrological evaluation of on-farm rainwater storage systems for supplemental irrigation in Laikipia district, Kenya. Agric. Water Manag. 2004, 73, 21–41. [Google Scholar] [CrossRef]
- Moseley, W.G. Agriculture on the brink: Climate change, labor and smallholder farming in Botswana. Land 2016, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Sala, O.; Chapin, F.; Armesto, J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.; Jackson, R.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Eric, A.D.; Ivan, A.J. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nat. Int. Wkly. J. Sci. 2006, 440 (Suppl. 1), 165–173. [Google Scholar] [CrossRef]
- Timo, D.; Leena, F.; Tarja, L.; Aino, S. Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings. Plant. Soil 2002, 239, 173–185. [Google Scholar] [CrossRef]
- Rosacker, L.L.; Kieft, T.L. Biomass and adenylate energy charge of a grassland soil during drying. Pergamon 1990, 22, 1121–1127. [Google Scholar] [CrossRef]
- Barrios, S.; Ouattara, B.; Strobl, E. The impact of climatic change on agricultural production: Is it different for Africa? Food Policy 2008, 33, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Mark, M. Pitt. Farm-level fertilizer demand in Java: A meta-production function approach. Am. J. Agric. Econ. 1983, 65, 502–508. [Google Scholar] [CrossRef]
- Tomar, O.S.; Dagar, J.C.; Minhas, P.S. Evaluation of sowing methods, irrigation schedules, chemical fertilizer doses and varieties of Plantago ovata forsk to rehabilitate degraded calcareous lands irrigated with saline water in dry regions of northwestern India. Arid Soil Res. Rehabil. 2010, 24, 133–151. [Google Scholar] [CrossRef]
- Zare, M.; Samani, A.A.N.; Mohammady, M.; Teimurian, T.; Bazrafshan, J. Simulation of soil erosion under the influence of climate change scenarios. Environ. Earth Sci. 2016, 75, 1405. [Google Scholar] [CrossRef]
- Li, X.; Chow, K.; Zhu, Y.; Lin, Y. Evaluating the impacts of high-temperature outdoor working environments on construction labor productivity in China: A case study of rebar workers. Build. Environ. 2016, 95, 42–52. [Google Scholar] [CrossRef]
- Tomoko, H.; Shinichiro, F.; Kiyoshi, T.; Tokuta, Y.; Toshihiko, M. Economic implications of climate change impacts on human health through undernourishment. Clim. Chang. 2016, 136, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, A.; Kegler, S.R.; Saha, S.S.; Mulholland, J.A. A statistical framework to evaluate extreme weather definitions from a health perspective a demonstration based on extreme heat events. Bull. Am. Meteorol. Soc. 2016, 97, 1817–1830. [Google Scholar] [CrossRef] [PubMed]
- Limaye, V.S.; Vargo, J.; Harkey, M.; Holloway, T.; Patz, J.A. Climate change and heat-related excess mortality in the eastern USA. Ecohealth 2018, 15, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Gentle, P.; Narayan, T.M. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- Kirchberger, M. Natural disasters and labor markets. J. Dev. Econ. 2017, 125, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Chavas, J.P.; Di, F.S. On the role of risk versus economies of scope in farm diversification with an application to Ethiopian farms. J. Agric. Econ. 2012, 63, 25–55. [Google Scholar] [CrossRef]
- David, W.; Habtamu, Y.A.; Johannes, S. Social capital, income diversification and climate change adaptation: Panel data evidence from rural Ethiopia. J. Agric. Econ. 2018, 69, 458–475. [Google Scholar] [CrossRef]
- Johanna, H.; Jenny, S.; Madelene, O.; Chen, D.; Yun, X.; Per, K. Climate variability and land-use change in Danangou Watershed, China—examples of small-scale farmers’ adaptation. Clim. Chang. 2005, 7, 189–212. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, S.; Zhang, W. New trends in internal migration in China: Profiles of the new-generation migrants. China World Econ. 2018, 1, 18–41. [Google Scholar] [CrossRef]
- Li, N.; He, W.; Qiu, T.; Chen, L. Farmland property right structure, factor efficiency and agricultural performance. Manag. World 2017, 3, 44–62. [Google Scholar]
- Cohn, A.S.; VanWey, L.K.; Spera, S.A.; Mustard, J.F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Chang. 2016, 6, 601–604. [Google Scholar] [CrossRef]
- Li, F.; Zhou, M.; Shao, J.; Chen, Z.; Wei, X.; Yang, J. Maize, wheat and rice production potential changes in China under the background of climate change. Agric. Syst. 2020, 182, 102853. [Google Scholar] [CrossRef]
- Lobell, D.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Elodie, B.; Wolfram, S. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 2017, 11, 258–279. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Xu, J. Assessing the impacts of temperature variations on rice yield in China. Clim. Chang. 2016, 138, 191–205. [Google Scholar] [CrossRef]
- Edwards, J.R.; Lambert, L.S. Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychol. Methods 2007, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical consideration. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Rüdiger, S.; Jennifer, K.; Tim, A.B.; Ellen, K.; Martina, F. Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios. Glob. Planet. Chang. 2012, 94–95. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Jerry, M.; Ren, W.; Huang, Y.; Xu, X.; Liu, M.; Zhang, C.; Chen, G.; Pan, S.; et al. Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environ. Res. Lett. 2012, 7, 044020. [Google Scholar] [CrossRef]
- Yang, T.; Zeng, Y.; Sun, Y.; Zhang, J.; Tan, X.; Zeng, Y.; Huang, S.; Pan, X. Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system. Plant Soil Environ. 2019, 65, 483–489. [Google Scholar] [CrossRef]
- Kniveton, D.R.; Smith, C.D.; Black, R. Emerging migration flows in a changing climate in dryland Africa. Nat. Clim. Chang. 2012, 2, 444–447. [Google Scholar] [CrossRef]
- Xu, C.; Wu, W.; Ge, Q. Impact assessment of climate change on rice yields using the ORYZA model in the Sichuan Basin, China. Int. J. Climatol. 2018, 38, 2922–2939. [Google Scholar] [CrossRef]
- Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Hijioka, Y.; Nishimori, M. Varying benefits of irrigation expansion for crop production under a changing climate and competitive water use among crops. Earths Future Int. J. Climatol. 2018, 6, 1207–1220. [Google Scholar] [CrossRef]
Variable | Description | Mean | Std. Dev. | Min | Max | Obs |
---|---|---|---|---|---|---|
Dependent variable | Rice Yields (RICE) | 655.459 | 732.016 | 0.120 | 2644.81 | 783 |
Explanatory variables | Rainfall (RAIN) | 8.952 | 0.648 | 6.883 | 10.087 | 783 |
Average Temperature (Tave) 10 ° C | 1.333 | 0.545 | 0.138 | 2.537 | 783 | |
Highest Temperature (Tmax) 10 ° C | 1.888 | 0.467 | 0.831 | 2.973 | 783 | |
Lowest Temperature (Tmin) 10 ° C | 0.885 | 0.648 | −0.515 | 2.249 | 783 | |
Intermediate variables | Effective irrigation area (EIA) | 1909.267 | 1421.641 | 81.500 | 5932.740 | 783 |
Fertilizer application amount (FAA) | 156.479 | 128.876 | 1.500 | 716.090 | 783 | |
Labor force (LAB) | 587.275 | 490.515 | 17.270 | 2678.890 | 783 |
LS1 | LS2 | LS3 | |
---|---|---|---|
RICE | RICE | RICE | |
RAIN | 1.492 *** | 1.580 *** | 1.532 *** |
(0.297) | (0.312) | (0.316) | |
Tave | −0.787 * | ||
(0.435) | |||
Tmax | −0.678 * | ||
(0.388) | |||
Tmin | −0.710 * | ||
(0.409) | |||
Constant | −6.177 * | −6.539 ** | −7.000 ** |
(3.347) | (3.162) | (3.336) | |
Control | Yes | Yes | Yes |
YEAR | Yes | Yes | Yes |
PROVINCE | Yes | Yes | Yes |
N | 783 | 783 | 783 |
R2 | 0.914 | 0.907 | 0.914 |
LS4 | LS5 | LS6 | LS7 | LS8 | LS9 | |
---|---|---|---|---|---|---|
EIA | RICE | FAA | RICE | LAB | RICE | |
RAIN | −0.636 *** | 0.893 *** | −0.537 *** | 0.294 *** | 0.519 ** | 1.213 *** |
(0.171) | (0.246) | (0.177) | (0.094) | (0.204) | (0.226) | |
Tave | 0.643 * | 2.351 *** | 1.329 *** | 1.684 *** | −1.240 *** | 2.905 *** |
(0.331) | (0.589) | (0.394) | (0.490) | (0.404) | (0.368) | |
EIA | 1.492 *** | |||||
(0.285) | ||||||
FAA | 0.761 *** | |||||
(0.202) | ||||||
LAB | 1.314 *** | |||||
(0.314) | ||||||
Constant | 6.816 *** | −17.707 *** | 0.718 | −8.108 *** | 1.070 | −22.041 *** |
(1.452) | (2.543) | (1.526) | (2.121) | (1.585) | (2.024) | |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
YEAR | Yes | Yes | Yes | Yes | Yes | Yes |
PROVINCE | Yes | Yes | Yes | Yes | Yes | Yes |
N | 783 | 783 | 783 | 783 | 783 | 783 |
R2 | 0.945 | 0.959 | 0.946 | 0.967 | 0.959 | 0.932 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Liu, Y.; Sun, H.; Taghizadeh-Hesary, F. How Does Climate Change Affect Rice Yield in China? Agriculture 2020, 10, 441. https://doi.org/10.3390/agriculture10100441
He W, Liu Y, Sun H, Taghizadeh-Hesary F. How Does Climate Change Affect Rice Yield in China? Agriculture. 2020; 10(10):441. https://doi.org/10.3390/agriculture10100441
Chicago/Turabian StyleHe, Wenjian, Yiyang Liu, Huaping Sun, and Farhad Taghizadeh-Hesary. 2020. "How Does Climate Change Affect Rice Yield in China?" Agriculture 10, no. 10: 441. https://doi.org/10.3390/agriculture10100441
APA StyleHe, W., Liu, Y., Sun, H., & Taghizadeh-Hesary, F. (2020). How Does Climate Change Affect Rice Yield in China? Agriculture, 10(10), 441. https://doi.org/10.3390/agriculture10100441