On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms
Abstract
:1. Introduction
1.1. The Environmental Impact of Agriculture
1.2. The Eco-Efficiency Concept as a Tool to Realize Sustainable Development
1.3. Eco-Efficiency in Agriculture
2. Materials and Methods
2.1. Data Collection
2.2. Environmental Impact Operationalisation
- nitrogen and phosphorus in mineral fertilizers (estimated based on FADN data)
- nitrogen and phosphorus in animal feces (the volume of mineral components from natural fertilizers was determined based on the average annual number of farm animals in each farm),
- nitrogen biologically bound by free-living bacteria and legumes (the amount of nitrogen obtained from natural sources (biological binding and atmospheric precipitation) was estimated, taking into account the dependence of biological nitrogen fixation processes on soil quality [122]; moreover, it was taken into account that the cultivation of legumes provides 60 kg N/ha [123].),
- nitrogen from precipitation [10 kg N/ha],
- nitrogen and phosphorus in the seed material.
- commercial plants,
- fodder crops.
- enteric fermentation emissions (equation IPCC 10.21, tier 1 & 2),
- direct and indirect emissions from manure management (equations IPCC 10.23, 10.25, 10.26, 10.28),
- direct and indirect emissions from managed soils (equations IPCC 11.1, 11.6, 11.9, 11.10, 11.11),
- emissions from urea and agricultural lime applications (equations IPCC 11.13, 11.12).
2.3. Specification of DEA Models for Eco-Efficiency Evaluation
- x1—utilized farm area in ha (land in ha),
- x2—number of work units (AWU),
- x3—value of assets (capital without land value),
- x4—value of indirect consumption, including agricultural products from own production used for production purposes, as well as materials from purchase, energy, external services, and other costs related to production,
- x5—nitrogen surpluses in kg N per farm (estimated on farm’s N balance),
- x6—phosphorus surpluses in kg P2O5 per farm (estimated on farm’s P balance),
- y1—output—value of the farm’s agricultural production.
2.4. Farm Sustainability Indicators and Other Assumptions
- the correctness of agricultural practice in plant production,
- indicators of the correctness of agricultural practice in livestock production,
- environmental perception indicator,
- production potential indicator,
- economic potential indicator,
- indicator of living conditions,
- mental comfort indicator.
3. Results
3.1. Environmental Pressure
3.2. Eco-Efficiency According to the DEA Method
3.3. Characteristics of Farms in Various Eco-Efficiency Groups
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cambers, G.; Sibley, S. Cambridge IGCSE Geography Coursebook; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Pingali, P.; Raney, T. From the Green Revolution to the Gene Revolution: How Will the Poor Fare? FAO: Rome, Italy, 2005. [Google Scholar]
- Van Zanden, J.L. The first green revolution: The growth of production and productivity in European agriculture, 1870–1914. Econ. Hist. Rev. 1991, 44, 215–239. [Google Scholar] [CrossRef]
- Essays Impacts of Green Revolution on Environment. Available online: https://www.ukessays.com/essays/environmental-sciences/impacts-of-the-green-revolution-environmental-sciences-essay.php (accessed on 17 August 2020).
- Wik, M.; Pingali, P.; Broca, S. Global Agricultural Performance: Past Trends and Future Prospects; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Pingali, P. Green Revolution: Impacts, limits, and the path ahed. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050. The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewski, E. Trwały rozwój i trwałe rolnictwo. Teoria i praktyka gospodarstw rolnych—Sustainable Development and Sustainable Agriculture. In Theory and Practice of Agricultural Farms; SGGW Publishing: Warsaw, Poland, 2008. [Google Scholar]
- Ikerd, J.E. Toward an Economics of Sustainability. Available online: http://web.missouri.edu/ikerdj/papers/econ-sus.htm (accessed on 18 August 2020).
- Lehni, M. World Business Council for Sustainable Development. In Eco-Efficiency. Creating More Value with Less Impact; WBCSD: Geneva, Switzerland, 2000. [Google Scholar]
- Saling, P.; Kicherer, A.; Dittrich-Krämer, B.; Wittlinger, R.; Zombik, W.; Schmidt, I.; Schrott, W.; Schmidt, S. Eco-efficiency analysis by BASF: The method. Int. J. Life Cycle Assess. 2002, 7, 203–218. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development. In Eco-Efficiency. Learning Module; WBCSD: Geneva, Switzerland, 2006.
- Rybaczewska-Błażejowska, M.; Gierulski, W. Eco-Efficiency Evaluation of Agricultural Production in the EU-28. Sustainability 2018, 10, 4544. [Google Scholar] [CrossRef] [Green Version]
- Gancone, A.; Pubule, J.; Rosa, M.; Blumberga, D. Evaluation of agriculture eco-efficiency in Latvia. Energy Procedia 2017, 128. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Dias, R.; Mattos, L.V.; Quelhas, O.L.G.; Filho, W.; Dias, R.d.F.; Mattos, L.V.; Quelhas, O.L.G.; Leal Filho, W. Towards sustainable development through the perspective of eco-efficiency—A systematic literature review. J. Clean. Prod. 2017, 165, 890–904. [Google Scholar] [CrossRef]
- Schaltegger, S.; Burritt, R. Contemporary Environmental Accounting. Issues, Concepts and Practice; Routledge: London, UK, 2000. [Google Scholar]
- Pang, J.; Chen, X.; Zhang, Z.; Li, H. Measuring Eco-Efficiency of Agriculture in China. Sustainability 2016, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- ECORYS. Modernising and Simplifying the Common Agricultural Policy. Summary of the Results of the Public Consultation. 2017. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/key_policies/documents/summary-public-consul-modernising-simplifying-cap_2017_en.pdf (accessed on 10 August 2020).
- Tagliabue, G. The EU legislation on “GMOs” between nonsense and protectionism: An ongoing Schumpeterian chain of public choices. GM Crop. Food 2017, 8, 57–73. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The Future of Food and Farming; 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52017DC0713&from=EN (accessed on 10 August 2020).
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- OECD. Agriculture and the Environment: Lessons Learned from a Decade of OECD Work. 2004. Available online: http://www.oecd.org/greengrowth/sustainable-agriculture/agri-environmentalindicatorsandpolicies/33913449.pdf (accessed on 10 August 2020).
- Moonen, A.C.; Bàrberi, P. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 2008, 127, 7–21. [Google Scholar] [CrossRef]
- Gołębiewska, B.; Pajewski, T. Positive and Negative Externalities of Management Illustrated by the Case of Agricultural Production. J. Agribus. Rural Dev. 2018, 48, 113–120. [Google Scholar] [CrossRef]
- Pajewski, T.; Malak-Rawlikowska, A.; Gołębiewska, B. Measuring regional diversification of environmental externalities in agriculture and the effectiveness of their reduction by EU agri-environmental programs in Poland. J. Clean. Prod. 2020. [Google Scholar] [CrossRef]
- Liu, T.; Bruins, R.; Heberling, M. Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis. Sustainability 2018, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing; UNEP: Nairobi, Kenya, 2007. [Google Scholar]
- European Commission. Nitrogen Pollution and the European Environment. Implications for Air Quality Policy. 2013. Available online: https://ec.europa.eu/environment/integration/research/newsalert/pdf/IR6_en.pdf (accessed on 10 August 2020).
- Erisman, J.W.; van Grinsven, H.; Grizzetti, B.; Bouraoui, F.; Powlson, D.; Sutton, M.A.; Bleeker, A.; Reis, S. The European nitrogen problem in a global perspective. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011; pp. 9–31. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- International Fertilizer Industry Association. Sustainable Management of the Nitrogen Cycle in Agriculture and Mitigation of Reactive Nitrogen Side Effects; IFIA: Paris, France, 2007. [Google Scholar]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452. [Google Scholar] [CrossRef]
- Withers, P.; Neal, C.; Jarvie, H.; Doody, D. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Cowling, E.B. Reactive Nitrogen and The World: 200 Years of Change. AMBIO 2002, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- OECD. Water quality and agriculture: Meeting the policy challenge. OECD Stud. Water 2012, 155. [Google Scholar] [CrossRef]
- Follett, J.R.; Follett, R.F.; Herz, W.C. Environmental and Human Impacts of Reactive Nitrogen; Soil and Water Conservation Society: Ankeny, IA, USA, 2010. [Google Scholar]
- European Environment Agency. The European Environment—State and Outlook 2010; EEA: Copenhagen, Denmark, 2010. [Google Scholar]
- European Commission. Komunikat Komisji do Parlamentu Europejskiego, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego i Komitetu Regionów. In Komuniakt konsultacyjny w sprawie zrównoważonego Stosowania Fosforu; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Golec, R.D.C.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990-2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, D. Greenhouse Gas Emissions of Agriculture: A Comparative Analysis. In Environmental Chemistry and Recent Pollution Control Approaches; IntechOpen: London, UK, 2019. [Google Scholar]
- FAO. Greenhouse Gas Emissions from Agriculture, Forestry and Other Land Use. In FAO’s Work on Climate Change GHG Emissions; FAO: Rome, Italy, 2014. [Google Scholar]
- FAO. Coping with Water Scarcity: An. Action Framework for Agriculture and Food Security; FAO: Rome, Italy, 2012. [Google Scholar]
- Portmann, F.T.; Siebert, S.; Döll, P. Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef] [Green Version]
- Peck, A.J.; Hatton, T. Salinity and the discharge of salts from catchments in Australia. J. Hydrol. 2003, 272, 191–202. [Google Scholar] [CrossRef]
- Gonet, S.S.; Kopernika, U.M.; Geografii, I.; Gleboznawstwa, Z. Materia organiczna w tematycznej Strategii Ochrony Gleb Unii Europejskiej. Rocz. Glebozn. 2007, 58, 15–26. [Google Scholar]
- Scott, C.E.; Monks, S.A.; Spracklen, D.V.; Arnold, S.R.; Forster, P.M.; Rap, A.; Äijälä, M.; Artaxo, P.; Carslaw, K.S.; Chipperfield, M.P.; et al. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Pearce, F. Rivers in the Sky: How Deforestation Is Affecting Global Water Cycles. Available online: https://e360.yale.edu/features/how-deforestation-affecting-global-water-cycles-climate-change (accessed on 17 August 2020).
- Ellison, D. Forests and Water. Background Analytical Study 2. Background Study Prepared for the Thirteenth Session of the United Nations Forum on Forests; 2018. Available online: https://www.un.org/esa/forests/wp-content/uploads/2018/04/UNFF13_BkgdStudy_ForestsWater.pdf (accessed on 12 August 2020).
- Wolosin, M.; Harris, N. Ending Tropical Deforestation: Tropical Forests and Climate Change: The Latest Science. 2018. Available online: https://files.wri.org/s3fs-public/ending-tropical-deforestation-tropical-forests-climate-change.pdf (accessed on 12 August 2020).
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef] [PubMed]
- World Wildlife Fund. Living Planet. Report—2018: Aiming Higher; Grooten, M., Almond, R., Eds.; WWF: Gland, Switzerland, 2018. [Google Scholar]
- IUCN. Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 17 August 2020).
- Hindriks, J.; Myles, G.D. Intermediate Public Economics; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Pigou, A.C. The Economics of Welfare; Transaction Publishers: Piscataway, NJ, USA, 1924. [Google Scholar]
- Varian, H. Microeconomics: Average Course; Scientific Publishing House PWN: Warsaw, Poland, 1995. [Google Scholar]
- Cornes, R.; Sandler, T. The Theory of Externalities, Public Goods, and Club Goods; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Buchanan, J.M.; Stubblebine, W.C. Externality. Economica 1962, 29, 371–384. [Google Scholar] [CrossRef]
- World Commission on Environment Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Romeiro, A.R. Sustainable development: An ecological economics perspective. Estud. Avançados 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Sen, A. Sustainable Human Development: Concepts and Priorities. 1994. Available online: http://hdr.undp.org/sites/default/files/anand_sudhir_-_sustainable_human_development-_concepts_and_priorities.pdf (accessed on 14 August 2020).
- UNEP. Universality in the Post 2015 Sustainable Development Agenda. Available online: https://www.ohchr.org/Documents/Issues/MDGs/Post2015/OHCHR_UNEP.pdf (accessed on 17 August 2020).
- Long, G. The idea of universality in the sustainable development goals. Ethics Int. Aff. 2015, 29, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Ciegis, R.; Ramanauskiene, J.; Martinkus, B. The Concept of Sustainable Development and its Use for Sustainability Scenarios. Eng. Econ. 2009, 2, 28–37. [Google Scholar]
- Daly, H.E. Sustainable Development: Definitions, Principles, Policies; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- Harris, J.M. Basic Principles of Sustainable Development; UNESCO: Paris, France, 2002. [Google Scholar]
- Giovannoni, E.; Fabietti, G. What is sustainability? A review of the concept and its applications. In Integrated Reporting: Concepts and Cases that Redefine Corporate Accountability; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–40. ISBN 9783319021683. [Google Scholar]
- UN. Report of the United Nations Conference on Environment and Development. 1992. Available online: https://www.un.org/esa/dsd/agenda21/Agenda%2021.pdf (accessed on 12 August 2020).
- Gómez-Limón, J.A.; Picazo-Tadeo, A.J.; Reig-Martínez, E. Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy 2012, 29, 395–406. [Google Scholar] [CrossRef]
- Pittman, R.W. Multilateral Productivity Comparisons with Undesirable Outputs. Econ. J. 1983, 93, 883. [Google Scholar] [CrossRef]
- Jollands, A.N. An Ecological Economics of Eco-Efficiency-Theory, Interpretations and Applications, 2003. Available online: https://mro.massey.ac.nz/bitstream/handle/10179/1770/01_front.pdf?sequence=2&isAllowed=y (accessed on 11 August 2020).
- Kleiber, M. Ekoefektywność Technologii. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji—Państwowego Instytutu Badawczego, 2011. Available online: https://www.gig.eu/sites/default/files/attachments/projekty/ekoefektywnosc_technologii_monografia.pdf (accessed on 11 August 2020).
- Koskela, M. Measuring eco-efficiency in the Finnish forest industry using public data. J. Clean. Prod. 2015, 98, 316–327. [Google Scholar] [CrossRef]
- Debreu, G. The Coefficient of Resource Utilization. Econometrica 1951, 19, 273–292. [Google Scholar] [CrossRef]
- Farrell, J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Borys, T. Nowe kierunki ekonomii środowiska i zasobów naturalnych w aspekcie nowej pespektywy finansowej unii europejskiej. Ekon. i Środowisko 2013, 1, 18–28. [Google Scholar]
- Daly, H.E. Steady-State Economics: Concepts, Questions, Policies. GAIA 1992, 1, 333–338. [Google Scholar] [CrossRef]
- Huesemann, M.H. Can pollution problems be effectively solved by environmental science and technology? An analysis of critical limitations. Ecol. Econ. 2001, 37, 271–287. [Google Scholar] [CrossRef]
- Daly, H.E. Beyond Growth. The Economics of Sustainable Development; Beacon Press: Boston, MA, USA, 1996. [Google Scholar]
- Huppes, G.; Ishikawa, M. A framework for quantified eco-efficiency analysis. J. Ind. Ecol. 2005, 9, 25–41. [Google Scholar] [CrossRef]
- Peças, P.; Götze, U.; Bravo, R.; Richter, F.; Ribeiro, I. Methodology for selection and application of eco-efficiency indicators fostering decision-making and communication at product level-the case of molds for injection molding. In Advanced Applications in Manufacturing Engineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–52. ISBN 9780081024140. [Google Scholar]
- Glavič, P.; Lesjak, M.; Hirsbak, S. European Training Course on Eco-Efficiency. In Proceedings of the 15th European Roundtable on Sustainable Consumption and Production Conference (15th ERSCP), Bregenz, Austria, 2–4 May 2012. [Google Scholar]
- Organization for Economic Cooperation and Development. Ecoefficiency; OECD: Paris, France, 1998. [Google Scholar]
- Müller, K.; Holmes, A.; Deurer, M.; Clothier, B.E. Eco-efficiency as a sustainability measure for kiwifruit production in New Zealand. J. Clean. Prod. 2015, 106, 333–342. [Google Scholar] [CrossRef]
- Charmondusit, K.; Phatarachaisakul, S.; Prasertpong, P. The quantitative eco-efficiency measurement for small and medium enterprise: A case study of wooden toy industry. Clean Technol. Environ. Policy 2014, 16, 935–945. [Google Scholar] [CrossRef]
- European Environmental Agency. Making Sustainability Accountable: Eco-Efficiency, Resource Productivity and Innovation; EEA: Copenhagen, Denmark, 1998. [Google Scholar]
- Burchart-Korol, D.; Kruczek, M.; Czaplicka-Kolarz, K. Wykorzystanie ekoefektywności w ocenie poziomu ekoinnowacyjności. In Innowacje w Zarządzaniu i Inżynierii Produkcji; Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją: Katowice, Poland, 2013. [Google Scholar]
- Dyckhoff, H.; Allen, K. Measuring ecological efficiency with data envelopment analysis (DEA). Eur. J. Oper. Res. 2001, 132, 312–325. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Gómez-Limón, J.A.; Reig-Martínez, E. Assessing farming eco-efficiency: A Data Envelopment Analysis approach. J. Environ. Manag. 2011, 92, 1154–1164. [Google Scholar] [CrossRef]
- Lozano, S.; Iribarren, D.; Moreira, M.T.; Feijoo, G. The link between operational efficiency and environmental impacts. Sci. Total Environ. 2009, 407, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, D.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Further potentials in the joint implementation of life cycle assessment and data envelopment analysis. Sci. Total Environ. 2010, 408, 5265–5272. [Google Scholar] [CrossRef] [PubMed]
- Hayati, D. A Literature Review on Frameworks and Methods for Measuring and Monitoring Sustainable Agriculture. 2017. Available online: http://gsars.org/wp-content/uploads/2017/03/TR-27.03.2017-A-Literature-Review-on-Frameworks-and-Methods-for-Measurin....pdf (accessed on 21 July 2020).
- Ikerd, J.E. Two related but distinctly different concepts. AGRIS 1993, 10, 30–31. [Google Scholar]
- Pacini, C.; Wossink, A.; Giesen, G.; Vazzana, C.; Huirne, R. Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agric. Ecosyst. Environ. 2003, 95, 273–288. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Kanter, D.R.; Musumba, M.; Wood, S.L.R.; Palm, C.; Antle, J.; Balvanera, P.; Dale, V.H.; Havlik, P.; Kline, K.L.; Scholes, R.J.; et al. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. 2018, 163, 73–88. [Google Scholar] [CrossRef]
- Reckling, M.; Bergkvist, G.; Watson, C.A.; Stoddard, F.L.; Zander, P.M.; Walker, R.L.; Pristeri, A.; Toncea, I.; Bachinger, J. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems. Front. Plant. Sci. 2016, 7, 669. [Google Scholar] [CrossRef] [PubMed]
- Keating, B.A.; Carberry, P.S.; Bindraban, P.S.; Senthold, A.; Meinke, H.; Dixon, J. Eco-efficient Agriculture: Concepts, Challenges, and Opportunities. Crop. Sci. 2010. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- FAO. Save and Grow. A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop. Production; FAO: Rome, Italia, 2011. [Google Scholar]
- European Commission. The Future of Food and Farming; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Beltrán-Esteve, M.M. Essays on the Assessment of Eco-Efficiency in Agriculture; Universidad de Alicante: Alicante, Spain, 2012. [Google Scholar]
- UN. Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment. Available online: https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=785&menu=1515 (accessed on 18 August 2020).
- Tyteca, D. On the measurement of the environmental performance of firms—A literature review and a productive efficiency perspective. J. Environ. Manag. 1996, 46, 281–308. [Google Scholar] [CrossRef]
- Neyman, J. On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection. J. R. Stat. Soc. 1934, 97, 558–625. [Google Scholar] [CrossRef]
- Farm Accountancy Data Network. Plan. Wyboru Próby Gospodarstw Rolnych Polskiego FADN (Plan. of Sampling for Polish FADN); FADN: Warsaw, Poland, 2008. [Google Scholar]
- Kalton, G. Introducing to Survey Sampling; Sage Publications: Thousand Oaks, CA, USA, 1983. [Google Scholar]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Wąs, A.; Sulewski, P.; Majewski, E.; Kobus, P. Use of Big Data for Assessment of Environmental Pressures from Agricultural Production. In Management in the Era of Big Data; Paliszkiewicz, J., Ed.; Auerbach Publications: Boca Raton, FL, USA, 2020; pp. 137–152. [Google Scholar]
- Majewski, E.; Kobus, P.; Wąs, A. Drivers of environmental pressures from agricultural production. In Proceedings of the XV EAAE Congress, Towards Sustainable Agri-food Systems: Balancing Between Markets and Society, Parma, Italy, 29 August–1 September 2017. [Google Scholar]
- Kremer, A.M. Methodology and Handbook Eurostat/OECD. 2013. Available online: https://ec.europa.eu/eurostat/documents/2393397/2518760/Nutrient_Budgets_Handbook_%28CPSA_AE_109%29_corrected3.pdf/4a3647de-da73-4d23-b94b-e2b23844dc31 (accessed on 25 July 2020).
- Majewski, E. Ekonomiczno-Organizacyjne Uwarunkowania Rozwoju Systemu Integrowanej Produkcji Rolniczej (SIPR) w Polsce; SGGW Publishing: Warsaw, Poland, 2002. [Google Scholar]
- Stasiak, G.; Mazur, A.; Koper, P.; Żebracki, K.; Skorupska, A. Symbioza rizobiów z roślinami bobowatymi (FABACEAE). Postępy Mikrobiol. 2016, 55, 289–299. [Google Scholar]
- PDA. Nutrients in Crop Material. Available online: https://www.pda.org.uk/pda_leaflets/nutrients-in-crop-material/ (accessed on 10 July 2020).
- Kopiński, J. Bilans Azotu Brutto. Agrośrodowisko. In Opis Metodyki i Omówienie Wyników Bilansu na Poziomie NUTS-0 (Polska) i NUTS-2 (województwa); Instytut Uprawy Nawożenia i Gleboznawstwa. Państwowy Instytut Badawczy: Puławy, Poland, 2017. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas. Inventories; Institute for Global Environmental Strategies: Arlington, VA, USA, 2006. [Google Scholar]
- KOBIZE. Wartości Opałowe i Wskaźniki Emisji w Roku 2012 do Raportowania w Ramach Wspólnotowego Systemu Handlu Uprawnieniami do Emisji za rok 2015 (Calorific Values and Emission Indices for Year 2012 for Reporting in European Union Emission Trading System Sys, 2015. Available online: https://www.kobize.pl/uploads/materialy/download/2014/WO_i_WE_do_stosowania_w_SHE_2015.pdf (accessed on 25 July 2020).
- Kulczycka, J.; Wernicka, M. Metody i Wyniki Obliczania Śladu Węglowego Działalności Wybranych Podmiotów Branży Energetycznej i Wydobywczej; Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk: Kraków, Poland, 2015. [Google Scholar]
- Fleet News, Carbon Footprint Calculator. Available online: http://www.fleetnews.co.uk/costs/carbon-footprint-calculator/ (accessed on 25 July 2020).
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Madhanagopal, R.; Chandrasekaran, R. Selecting Appropriate Variables for DEA Using Genetic Algorithm (GA) Search Procedure. Int. J. Data Envel. Anal. Oper. Res. 2014, 1, 28–33. [Google Scholar]
- Atici, K.B. Using Data Envelopment Analysis for the Efficiency and Elasticity Evaluation of Agricultural Farms. Ph.D. Thesis, University of Warwick, Coventry, UK, 2012. [Google Scholar]
- Pishgar-Komleh, S.H.; Zylowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110–138. [Google Scholar] [CrossRef]
- Manello, A. Efficiency and Productivity in Presence of Undesirable Outputs. Ph.D. Thesis, University of Bergamo, Bergamo, Italy, 2012. [Google Scholar]
- Ramli, N.A.; Munisamy, S. Modeling undesirable factors in efficiency measurement using data envelopment analysis: A review. J. Sustain. Sci. Manag. 2013, 8, 126–135. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Introduction to Data Envelopment Analysis and Its Uses; Springer: New York, NY, USA, 2006. [Google Scholar]
- Weaver, R.D. Measuring Productivity of Environmentally Interactive Technologies: The Case of Agriculture and the Environment. Am. J. Agric. Econ. 1998, 80, 595–599. [Google Scholar] [CrossRef]
- Weaver, R.D.; Kim, T. Targeting Environmental Protection in Agriculture: Ipm And Bmps As Environmental Performance Indicators. In Proceedings of the American Agricultural Economics Association Annual Meeting, Nashville, TN, USA, 8–11 August 1999. [Google Scholar]
- Cooper, I.; Nguyen, N.C.; Hancock, J. Rotations, Risk and Reward: Farming system choice on the Eyre Peninsula of South Australia. In Proceedings of the Australian Agricultural and Resource Economics Society Conference, Fremantle, Australia, 12–14 February 2003. [Google Scholar]
- Scheel’s H. 2000, DEA EMS: Efficiency Measurement System. Dortmund, Germany. Available online: http://www.holger-scheel.de/ems/ (accessed on 23 July 2020).
- Geniaux, G.; Powell, B.; Bellon, S.; Deverre, C. Sustainable Development Indicator Frameworks and Initiatives. Report No. 49 November 2009 of the EU FP6 Project SEAMLESS. 2009. Available online: https://core.ac.uk/download/pdf/6517845.pdf (accessed on 13 August 2020).
- Sulewski, P.; Kłoczko-Gajewska, A. Development of the sustainability index of farms based on surveys and FADN sample. Probl. Agric. Econ. 2018, 356, 32–56. [Google Scholar] [CrossRef]
- Sulewski, P.; Kłoczko-Gajewska, A.; Sroka, W. Relations between Agri-Environmental, Economic and Social Dimensions of Farms’ Sustainability. Sustainability 2018, 10, 4629. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, P.A.; Nordhaus, W.D. Economics; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Kapp, W. The Social Costs of Private Enterprise; Schocken Books: New York, NY, USA, 1950. [Google Scholar]
- Ullah, R.; Shivakoti, G.P.; Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: The case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disaster Risk Reduct. 2015, 13, 151–157. [Google Scholar] [CrossRef]
- Van Passel, S.; Nevens, F.; Mathijs, E.; Van Huylenbroeck, G. Measuring farm sustainability and explaining differences in sustainable efficiency. Ecol. Econ. 2007, 62, 149–161. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development. Eco-Efficient Leadership for Improved Economic and Environmental Performance; WBCSD: Geneva, Switzerland, 1995. [Google Scholar]
- Nielsen, A.H.; Kristensen, I.S. Nitrogen and phosphorus surpluses on Danish dairy and pig farms in relation to farm characteristics. In Proceedings of the Livestock Production Science; Elsevier: Amsterdam, The Netherlands, 2005; Volume 96, pp. 97–107. [Google Scholar]
- Hünerberg, M.; Little, S.M.; Beauchemin, K.A.; McGinn, S.M.; O’Connor, D.; Okine, E.K.; Harstad, O.M.; Kröbel, R.; McAllister, T.A. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agric. Syst. 2014, 127, 19–27. [Google Scholar] [CrossRef]
- Flessa, H.; Ruser, R.; Dörsch, P.; Kamp, T.; Jimenez, M.A.; Munch, J.C.; Beese, F.O. Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric. Ecosyst. Environ. 2002, 91, 175–189. [Google Scholar] [CrossRef]
- Van Passel, S.; Van Huylenbroeck, G.; Lauwers, L.; Mathijs, E. Sustainable value assessment of farms using frontier efficiency benchmarks. J. Environ. Manag. 2009, 90, 3057–3069. [Google Scholar] [CrossRef] [Green Version]
- Berre, D.; Vayssières, J.; Boussemart, J.-P.; Leleu, H.; Tillard, E.; Lecomte, P. Eco-efficiency determinants: A new approach combining an agronomic whole-farm model and efficiency frontier analysis. Rev. Econ. Polit. 2013, 123, 549–572. [Google Scholar]
- Mouron, P.; Scholz, R.W.; Nemecek, T.; Weber, O. Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing. Ecol. Econ. 2006, 58, 561–578. [Google Scholar] [CrossRef]
- Iribarren, D.; Hospido, A.; Moreira, M.T.; Feijoo, G. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Sci. Total Environ. 2011, 409, 1786–1798. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
Farms | Value of Assets (Capital) [Thousand EUR] | Utilized Farm Area in ha [Land in ha] | Number of Work Units [AWU] | Indirect Consumption [Thousand EUR] | Production [Thousand EUR] |
---|---|---|---|---|---|
Farm type | |||||
Cattle | 142.3 | 29.8 | 1.81 | 24.8 | 42.3 |
Cereals | 136.0 | 77.0 | 1.56 | 40.0 | 65.7 |
General Crop | 104.9 | 45.5 | 2.18 | 30.9 | 55.7 |
Mixed | 101.4 | 35.3 | 1.74 | 30.2 | 42.8 |
Others | 147.3 | 9.0 | 2.68 | 38.7 | 76.1 |
Pigs | 180.8 | 38.0 | 2.03 | 94.1 | 118.3 |
Total | 130.3 | 40.5 | 1.89 | 38.3 | 59.1 |
Economic size (standard output in thousand EUR) | |||||
≥4; <25 | 54.4 | 15.8 | 1.48 | 9.9 | 15.0 |
≥25; <100 | 149.3 | 44.6 | 2.00 | 37.2 | 62.3 |
≥100 | 369.7 | 126.8 | 3.09 | 162.9 | 231.7 |
Farms | N Surplus [kg/ha] | P2O5 Surplus [kg/ha] | GHG Emissions [kg CO2eq/ha]—Only Agricultural Sources | GHG Emissions [kg CO2eq/ha]—Agricultural Sources + Energy Carriers Use |
---|---|---|---|---|
Farm type | ||||
Cattle | 64.8 | 11.4 | 4676.1 | 5057.7 |
Cereals | 83.2 | −13.1 | 1184.1 | 1500.3 |
General Crop | 91.5 | 2.3 | 1334.4 | 1622.4 |
Mixed | 97.3 | 7.9 | 2073.4 | 2393.7 |
Others | 95.5 | 29.9 | 1517.5 | 9271.2 |
Pigs | 166.1 | 127.0 | 3399.1 | 4053.5 |
Economic size (standard output in thousand EUR) | ||||
≥4; 25 | 72.7 | 3.6 | 1717.7 | 2017.5 |
≥25; <100 | 92.2 | 8.8 | 2708.9 | 3217.1 |
≥100 | 107.0 | 26.6 | 1963.4 | 2420.0 |
Total | 93.7 | 13.8 | 2291.0 | 2746.0 |
Farms | N Surplus [g/1 EUR] | P2O5 Surplus [g/1 EUR] | GHG Emissions [kg CO2eq/1 EUR]—Only Agricultural Sources | GHG Emissions [kg CO2eq/! EUR]—Agricultural Sources + Energy Carriers Use |
---|---|---|---|---|
Production type | ||||
Cattle | 2.59 | 0.45 | 186.56 | 201.79 |
Cereals | 5.69 | −0.82 | 79.71 | 100.47 |
General Crop | 4.23 | 0.10 | 61.72 | 75.04 |
Mixed | 4.55 | 0.37 | 96.86 | 111.83 |
Others | 1.15 | 0.36 | 18.24 | 111.42 |
Pigs | 3.03 | 2.32 | 61.98 | 73.91 |
Economic size (standard output in thousand EUR) | ||||
≥4; <25 | 4.37 | 0.21 | 103.17 | 121.18 |
≥25; <100 | 3.75 | 0.36 | 110.05 | 130.69 |
≥100 | 3.32 | 0.83 | 60.91 | 75.07 |
Total | 3.64 | 0.54 | 89.00 | 106.68 |
Farms | Eco-Efficiency Indicators | Conventional Efficiency Indicators | % of Fully Efficient Farms | ||||
---|---|---|---|---|---|---|---|
CRS | VRS | SE | CRS | VRS | SE | ||
Production type | |||||||
Mixed | 0.77 | 0.83 | 0.85 | 0.69 | 0.77 | 0.89 | 36.6 |
Cattle | 0.78 | 0.86 | 0.88 | 0.60 | 0.78 | 0.76 | 29.3 |
Cereals | 0.74 | 0.88 | 0.83 | 0.69 | 0.85 | 0.81 | 39.2 |
Pigs | 0.77 | 0.84 | 0.84 | 0.73 | 0.84 | 0.87 | 25.8 |
Others | 0.69 | 0.85 | 0.82 | 0.60 | 0.80 | 0.74 | 41.3 |
General Crop | 0.73 | 0.86 | 0.84 | 0.66 | 0.81 | 0.81 | 41.1 |
Economic size (standard output in thousand EUR) | |||||||
Small | 0.70 | 0.85 | 0.84 | 0.57 | 0.79 | 0.72 | 32.0 |
Medium | 0.79 | 0.84 | 0.85 | 0.71 | 0.80 | 0.89 | 36.5 |
Large | 0.85 | 0.89 | 0.87 | 0.82 | 0.86 | 0.95 | 41.3 |
Total | 0.76 | 0.85 | 0.85 | 0.66 | 0.80 | 0.82 | 34.9 |
Farm Characteristics | Eco-Efficiency Group | Differences Significance | ||||||
---|---|---|---|---|---|---|---|---|
Gr. I | Gr. II | Gr. III | Gr. IV | Total Sample | F-Test | p-Value | ||
utilized agricultural area (UAA) [ha] | 23.6 | 37.7 | 47.6 | 53.7 | 40.6 | 8.379 | 0.0000 | |
livestock [LU] | 11.2 | 29.2 | 41.1 | 37.0 | 29.6 | 8.542 | 0.0000 | |
Value of capital per farm [thousand EUR] | 170.3 | 265.2 | 353.1 | 366.8 | 288.5 | 12.297 | 0.0000 | |
Indebtedness indicator (borrowed capital/assets) [%] | 4.2 | 5.1 | 11.2 | 11.4 | 8.8 | 6.177 | 0.0004 | |
Production value | thousand EUR per farm | 20.1 | 47.9 | 71.8 | 97.5 | 59.2 | 17.72 | 0.0000 |
thousand EUR per 1 ha of UAA | 0.9 | 1.3 | 1.5 | 1.8 | 1.5 | 3.791 | 0.0103 | |
Farm income | thousand EUR per farm | 4.3 | 11.3 | 22.8 | 34.9 | 18.3 | 33.014 | 0.0000 |
thousand EUR per 1 ha of UAA | 0.18 | 0.3 | 0.48 | 0.65 | 0.5 | 3.625 | 0.0129 | |
related to the production value (production profitability) | 0.21 | 0.24 | 0.32 | 0.36 | 0.3 | 11.32 | 0.0000 | |
Total cost of chemical fertilizers, pesticides, and fungicides in relation to the production value | 0.2 | 0.19 | 0.16 | 0.14 | 0.2 | 7.598 | 0.0001 |
Sustainability Indicators | Eco-Efficiency Group | Differences Significance | ||||||
---|---|---|---|---|---|---|---|---|
Gr. I | Gr. II | Gr. III | Gr. IV | Total Sample | F-Test | p-Value | ||
Agro-environmental dimension | Indicator of the correctness of agricultural practice in plant production | 0.48 | 0.51 | 0.51 | 0.54 | 0.51 | 2.66 | 0.0475 |
Indicator of the correctness of practice in livestock production* | 0.59 | 0.60 | 0.62 | 0.63 | 0.61 | 1.75 | 0.1559 | |
Environmental perception indicator | 0.64 | 0.67 | 0.68 | 0.68 | 0.67 | 1.18 | 0.3180 | |
Aggregated indicator | 0.57 | 0.60 | 0.60 | 0.62 | 0.60 | 2.95 | 0.0321 | |
Economic and production dimension | Economic potential indicator | 0.36 | 0.50 | 0.59 | 0.61 | 0.51 | 40.56 | 0.0000 |
Production potential indicator | 0.46 | 0.52 | 0.52 | 0.53 | 0.50 | 4.72 | 0.0029 | |
Aggregated indicator | 0.41 | 0.51 | 0.55 | 0.57 | 0.51 | 62.23 | 0.0000 | |
Social dimension | Indicator of living conditions | 0.59 | 0.61 | 0.62 | 0.63 | 0.61 | 1.43 | 0.2338 |
Mental comfort indicator | 0.51 | 0.53 | 0.55 | 0.55 | 0.53 | 4.38 | 0.0046 | |
Aggregated indicator | 0.55 | 0.57 | 0.58 | 0.59 | 0.57 | 4.24 | 0.0056 | |
Sustainability indicator | 0.51 | 0.56 | 0.58 | 0.59 | 0.56 | 35.55 | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołaś, M.; Sulewski, P.; Wąs, A.; Kłoczko-Gajewska, A.; Pogodzińska, K. On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms. Agriculture 2020, 10, 438. https://doi.org/10.3390/agriculture10100438
Gołaś M, Sulewski P, Wąs A, Kłoczko-Gajewska A, Pogodzińska K. On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms. Agriculture. 2020; 10(10):438. https://doi.org/10.3390/agriculture10100438
Chicago/Turabian StyleGołaś, Marlena, Piotr Sulewski, Adam Wąs, Anna Kłoczko-Gajewska, and Kinga Pogodzińska. 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms" Agriculture 10, no. 10: 438. https://doi.org/10.3390/agriculture10100438
APA StyleGołaś, M., Sulewski, P., Wąs, A., Kłoczko-Gajewska, A., & Pogodzińska, K. (2020). On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms. Agriculture, 10(10), 438. https://doi.org/10.3390/agriculture10100438