Assessing the Physiological Relevance of Cough Simulators for Respiratory Droplet Dispersion
Abstract
:1. Introduction
2. Experimental Section
2.1. Evaluation of Droplet Sizes
2.2. Velocity Measurements
2.3. 3D Reconstruction of Simulated Coughs
2.4. Force Measurements
3. Results
3.1. Evaluation of Droplet Sizes and Velocity
3.2. Analysis of Simulated Cough Dispersion Using 3D Reconstruction
3.3. Simulated Cough Force Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prather, K.A.; Wang, C.C.; Schooley, R.T. Reducing Transmission of SARS-CoV-2. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 Virus by Droplets and Aerosols: A Critical Review on the Unresolved Dichotomy. Environ. Res. 2020, 188, 109819. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic Analysis of SARS-CoV-2 in Two Wuhan Hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. Available online: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on 7 September 2020).
- Shafaghi, A.H.; Rokhsar Talabazar, F.; Koşar, A.; Ghorbani, M. On the Effect of the Respiratory Droplet Generation Condition on COVID-19 Transmission. Fluids 2020, 5, 113. [Google Scholar] [CrossRef]
- Sahu, K.K.; Mishra, A.K.; Lal, A. Comprehensive Update on Current Outbreak of Novel Coronavirus Infection (2019-NCoV). Ann. Transl. Med. 2020, 8, 393. [Google Scholar] [CrossRef] [PubMed]
- Lolli, S.; Khor, W.Y.; Matjafri, M.Z.; Lim, H.S. Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote Sens. 2019, 11, 2660. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Atwood, S.A.; Boyd, T.J.; Ghate, V.P.; Xian, P.; Posselt, D.J.; Simpas, J.B.; et al. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study—Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior. Atmos. Chem. Phys. 2016, 16, 14057–14078. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, A.Y.; Ing, E.B. Efficacy of Slit Lamp Breath Shields. Am. J. Ophthalmol. 2020, 218, 120–127. [Google Scholar] [CrossRef]
- Poostchi, A.; Kuet, M.-L.; Pegg, K.; Wilde, C.; Richardson, P.S.; Patel, M.K. Efficacy of Slit Lamp Breath Shields. Eye 2020, 34, 1185–1186. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, W.G.; Reynolds, J.S.; Szalajda, J.V.; Noti, J.D.; Beezhold, D.H. A Cough Aerosol Simulator for the Study of Disease Transmission by Human Cough-Generated Aerosols. Aerosol Sci. Technol. 2013, 47, 937–944. [Google Scholar] [CrossRef]
- Canelli, R.; Connor, C.W.; Gonzalez, M.; Nozari, A.; Ortega, R. Barrier Enclosure during Endotracheal Intubation. N. Engl. J. Med. 2020, 382, 1957–1958. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.L.; Naidu, J.J.; Badh, C.S.; Duggan, L.V. Simulation as a Tool for Assessing and Evolving Your Current Personal Protective Equipment: Lessons Learned during the Coronavirus Disease (COVID-19) Pandemic. Can. J. Anesth. Can. Anesth. 2020, 67, 895–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, O.; Meir, M.; Shavit, D.; Idelman, R.; Shavit, I. Exposure to a Surrogate Measure of Contamination from Simulated Patients by Emergency Department Personnel Wearing Personal Protective Equipment. JAMA 2020, 323, 2091–2093. [Google Scholar] [CrossRef] [PubMed]
- Workman, A.D.; Welling, D.B.; Carter, B.S.; Curry, W.T.; Holbrook, E.H.; Gray, S.T.; Scangas, G.A.; Bleier, B.S. Endonasal Instrumentation and Aerosolization Risk in the Era of COVID-19: Simulation, Literature Review, and Proposed Mitigation Strategies. Int. Forum Allergy Rhinol. 2020, 10, 798–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.H.; Burnham, C.-A.D.; Reske, K.A.; Liang, S.Y.; Hink, T.; Wallace, M.A.; Shupe, A.; Seiler, S.; Cass, C.; Fraser, V.J.; et al. Assessment of Healthcare Worker Protocol Deviations and Self-Contamination During Personal Protective Equipment Donning and Doffing. Infect. Control Hosp. Epidemiol. 2017, 38, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Chua, H.; Lim, W.Y.; Mok, M.; Wong, P. “Closed” Supraglottic Airway-Guided Intubation During the COVID-19 Pandemic: A Glo Germ Follow-Up. Anesth. Analg. 2020, 131, e168–e169. [Google Scholar] [CrossRef]
- Osei-Bonsu, K.; Masroor, N.; Cooper, K.; Doern, C.; Jefferson, K.K.; Major, Y.; Adamson, S.; Thomas, J.; Lovern, I.; Albert, H.; et al. Alternative Doffing Strategies of Personal Protective Equipment to Prevent Self-Contamination in the Health Care Setting. Am. J. Infect. Control 2019, 47, 534–539. [Google Scholar] [CrossRef]
- Schirmer, A.; Swan, C.; Hughes, S.J.; Vasilopoulos, T.; Oli, M.; Chaudhry, S.; Gravenstein, N.; Giordano, C. Break Scrub to Take That Phone Call? J. Am. Coll. Surg. 2018, 226, 1117–1121. [Google Scholar] [CrossRef]
- Anon, J.B.; Denne, C.; Rees, D. Patient-Worn Enhanced Protection Face Shield for Flexible Endoscopy. Otolaryngol. Neck Surg. 2020, 163, 280–283. [Google Scholar] [CrossRef]
- Brady, T.M.; Strauch, A.L.; Almaguer, C.M.; Niezgoda, G.; Shafer, R.E.; Yorio, P.L.; Fisher, E.M. Transfer of Bacteriophage MS2 and Fluorescein from N95 Filtering Facepiece Respirators to Hands: Measuring Fomite Potential. J. Occup. Environ. Hyg. 2017, 14, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Loudon, R.G.; Roberts, R.M. Relation between the Airborne Diameters of Respiratory Droplets and the Diameter of the Stains Left after Recovery. Nature 1967, 213, 95–96. [Google Scholar] [CrossRef]
- Scharfman, B.E.; Techet, A.H.; Bush, J.W.M.; Bourouiba, L. Visualization of Sneeze Ejecta: Steps of Fluid Fragmentation Leading to Respiratory Droplets. Exp. Fluids 2016, 57, 24. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, Y.; Chwang, A.T.Y.; Ho, P.L.; Seto, W.H. How Far Droplets Can Move in Indoor Environments--Revisiting the Wells Evaporation-Falling Curve. Indoor Air 2007, 17, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Somsen, G.A.; van Rijn, C.; Kooij, S.; Bem, R.A.; Bonn, D. Small Droplet Aerosols in Poorly Ventilated Spaces and SARS-CoV-2 Transmission. Lancet Respir. Med. 2020, 8, 658–659. [Google Scholar] [CrossRef] [PubMed]
- Mhetre, M.R.; Abhyankar, H.K. Human Exhaled Air Energy Harvesting with Specific Reference to PVDF Film. Eng. Sci. Technol. Int. J. 2017, 20, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Y. Human Cough as a Two-Stage Jet and Its Role in Particle Transport. PLoS ONE 2017, 12, e0169235. [Google Scholar] [CrossRef] [Green Version]
- VanSciver, M.; Miller, S.; Hertzberg, J. Particle Image Velocimetry of Human Cough. Aerosol Sci. Technol. 2011, 45, 415–422. [Google Scholar] [CrossRef]
- Gupta, J.K.; Lin, C.-H.; Chen, Q. Flow Dynamics and Characterization of a Cough. Indoor Air 2009, 19, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Nicolle, A.D.; Klettner, C.A.; Pantelic, J.; Wang, L.; Suhaimi, A.B.; Tan, A.Y.L.; Ong, G.W.X.; Su, R.; Sekhar, C.; et al. Airflow Dynamics of Human Jets: Sneezing and Breathing—Potential Sources of Infectious Aerosols. PLoS ONE 2013, 8, e59970. [Google Scholar] [CrossRef] [Green Version]
Cough Simulator | Droplet Size | Velocity | 3D Spread | Force |
---|---|---|---|---|
MAD Nasal | +/− | − | − | + |
GloGermTM MIST | +/− | + | +/− | + |
Spray Gun | +/− | − | +/− | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.H.; Yim, W.; Garg, A.K.; Shah, S.H.; Jokerst, J.V.; Chao, D.L. Assessing the Physiological Relevance of Cough Simulators for Respiratory Droplet Dispersion. J. Clin. Med. 2020, 9, 3002. https://doi.org/10.3390/jcm9093002
Patel SH, Yim W, Garg AK, Shah SH, Jokerst JV, Chao DL. Assessing the Physiological Relevance of Cough Simulators for Respiratory Droplet Dispersion. Journal of Clinical Medicine. 2020; 9(9):3002. https://doi.org/10.3390/jcm9093002
Chicago/Turabian StylePatel, Shiv H., Wonjun Yim, Anupam K. Garg, Sahil H. Shah, Jesse V. Jokerst, and Daniel L. Chao. 2020. "Assessing the Physiological Relevance of Cough Simulators for Respiratory Droplet Dispersion" Journal of Clinical Medicine 9, no. 9: 3002. https://doi.org/10.3390/jcm9093002
APA StylePatel, S. H., Yim, W., Garg, A. K., Shah, S. H., Jokerst, J. V., & Chao, D. L. (2020). Assessing the Physiological Relevance of Cough Simulators for Respiratory Droplet Dispersion. Journal of Clinical Medicine, 9(9), 3002. https://doi.org/10.3390/jcm9093002