Next Article in Journal
Review of Pharmacological Strategies with Repurposed Drugs for Hereditary Hemorrhagic Telangiectasia Related Bleeding
Next Article in Special Issue
Minimal Residual Disease in Multiple Myeloma: State of the Art and Future Perspectives
Previous Article in Journal
Self-Rated Health in Migrant and Non-Migrant Women before, during and after Pregnancy: A Population-Based Study of 0.5 Million Pregnancies from the Swedish Pregnancy Register
Previous Article in Special Issue
Resistance Mechanisms towards CD38−Directed Antibody Therapy in Multiple Myeloma
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Anti-VEGF Drugs in the Treatment of Multiple Myeloma Patients

Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2020, 9(6), 1765; https://doi.org/10.3390/jcm9061765
Submission received: 29 April 2020 / Revised: 29 May 2020 / Accepted: 3 June 2020 / Published: 6 June 2020
(This article belongs to the Special Issue New Therapies and Therapeutic Approaches in Multiple Myeloma)

Abstract

:
The interaction between the bone marrow microenvironment and plasma cells plays an essential role in multiple myeloma progression and drug resistance. The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway in vascular endothelial cells activates and promotes angiogenesis. Moreover, VEGF activates and promotes vasculogenesis and vasculogenic mimicry when it interacts with VEGF receptors expressed in precursor cells and inflammatory cells, respectively. In myeloma bone marrow, VEGF and VEGF receptor expression are upregulated and hyperactive in the stromal and tumor cells. It has been demonstrated that several antiangiogenic agents can effectively target VEGF-related pathways in the preclinical phase. However, they are not successful in treating multiple myeloma, probably due to the vicarious action of other cytokines and signaling pathways. Thus, the simultaneous blocking of multiple cytokine pathways, including the VEGF/VEGFR pathway, may represent a valid strategy to treat multiple myeloma. This review aims to summarize recent advances in understanding the role of the VEGF/VEGFR pathway in multiple myeloma, and mainly focuses on the transcription pathway and on strategies that target this pathway.

1. Introduction

Multiple myeloma (MM), a hematological cancer, accounts for about 1% of all human tumors, and is characterized by the infiltration of rich bone marrow (BM) by mature plasma cells (PCs) that produce monoclonal immunoglobulins [1,2,3]. The clonal PCs produce and release cytokines that are responsible for the typical clinical manifestation of the disease: (i) bone resorption (lytic lesions, hypercalcemia, bone pain) caused by alteration in the activity of osteoclasts/osteoblasts; (ii) anemia caused by modification of the maturation and differentiation of erythroblasts; (iii) renal insufficiency due to Ig light chain deposition; (iv) hypercalcemia and hyperuricemia; and (v) hyper-viscosity syndrome caused by high circulating protein levels [4].
MM progression is accompanied by and strictly dependent on changes in the microenvironment of the BM [5,6]. These modifications of the microenvironment induce a permissive environment that protects and stimulates plasma cell survival and proliferation [5,6,7,8]. The interaction of MM PCs with BM stromal cells (SCs) and extracellular matrix (ECM) components in the BM microenvironment is mediated by a plethora of autocrine and paracrine cytokine loops, as well as direct cell–cell and cell–ECM interactions. These direct and indirect interactions result in the activation of multiple signaling pathways that are responsible for modifications in the microenvironment during MM progression [9] and that are responsible for MM plasma cell apoptosis inhibition, survival, proliferation, and invasion. The expansion of neoplastic PCs in BM causes bone lysis and promotes microenvironment modulation and neovessel formation [10,11,12].
MM-associated microenvironment modifications include BM neovessel formation for assembling the “vascular niche” and bone cell activation for the constitution of the “osteoblastic niche” [13]. In these two specialized niches, myelomatous PCs grow, survive, and are protected from external attacks [13,14]. The alterations occurring in these niches represent predisposing events that facilitate the survival and expansion of neoplastic PCs. Moreover, the cells that comprise these specialized niches contribute to protecting MM PCs from the aggression of chemotherapy and immunological cells. The elucidation of key niche-associated pathways, including the primary driver of mutations in BM stromal cells, the role of hypoxia, angiogenesis, and inflammation can increase our knowledge of immune evasion and activation of survival pathways, and could indicate ways to improve modern therapeutic approaches [14].
The development of a new vascular tree in the BM of MM patients is a pathologic process in which angiogenesis (the formation of new vessels from existing ones) [9], vasculogenesis (the formation of new vessels from endothelial precursors) [15], and vasculogenic mimicry (the completion of neovessels by other non-endothelial cells [ECs]) [16] work simultaneously for the constitution of the vascular niche [9]. BM neovascularization is related to the MM stage, disease progression, and patients’ response to therapy and survival [15,16,17,18,19,20].
Taken together, these processes lead to modifications in the BM microenvironment and its controllers (activated cells, cytokines, and their autocrine and paracrine loops, signaling pathways), which are useful targets in the treatment of MM, for example, the direct targeting of MM PCs [5,21,22].

2. Angiogenesis in MM Progression

2.1. The Bone Marrow Microenvironment

The components of the BM microenvironment (SCs and ECM) surround MM PCs and support them by direct cell–cell and cell–ECM interaction, and by the production of cytokines and growth factors [23,24].
BM ECs express adhesion molecules and receptors on their cell surface, which is characteristic of a typical “activated” phenotype [25]. This activated phenotype is related to a specific genotype of MM BM ECs [26], unlike those of monoclonal gammopathy of undetermined significance (MGUS) or normal resting ECs. Phenotypic and genotypic activation causes the quick and uncontrolled proliferation of ECs, and angiogenesis self-maintenance [27,28,29,30,31]. Activated MM ECs modulate the expression of receptors, increasing VEGF receptor (VEGFR)-2, tyrosine-protein kinase Met (cMet, also called hepatocyte growth factor receptor), fibroblast growth factor receptor (FGFR), and Tie2/Tek density, integrins, and other adhesion molecules responsible for adhesion to the ECM components and cell motility. Moreover, integrin-activated signaling, particularly the β3-integrin pathway, sustains cell survival, proliferation, migration, and capillarogenesis. The interaction of MM PCs and activated ECs is mediated by endoglin and favors PCs entrance into neovessels. Finally, MM ECs express aquaporin 1 on their membrane, which is a water transporter that is responsible for plasma extravasation and increases interstitial pressure by increasing vascular permeability [25,32,33]. Aquaporin 1 also upregulates hypoxia-inducible Factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) because of hypoxia induction [25,32,33].
The recruitment of progenitor cells to differentiate into a subset of mature ECs is demonstrated by the expression on their surface of the CD133 staminal antigen, which shows active vasculogenesis [7,29,30,31,32,33,34,35,36,37,38,39]. The down or upregulation of some genes like tumor cells and cells with a well-defined proteomic signature render MM ECs different from MGUS and other resting ECs, characterizing their over-angiogenic, and transformed phenotype [34].
The presence of fibroblasts, also called “activated myofibroblasts” or “cancer-associated fibroblasts”(CAFs) that are derived from cells undergoing the endothelial-mesenchymal or mesenchymal transition has been demonstrated in the BM of patients with active MM [6,40,41,42,43]. The precursors of CAFs are resident fibroblasts and progenitor cells. BM infiltrating fibroblasts promote neovessel formation by the secretion of high amounts of growth factors and angiogenic cytokines, such as VEGF-A, FGF-2, tumor necrosis factor-alpha (TNF-α), urokinase, and matrix metalloproteinases–MMPs [7,9,13,40,41,42,43]. Moreover, fibroblasts synthesize inducible nitric oxide synthase, which increases blood flow [41].
Immune changes during MM progression play an essential role in the BM microenvironment. The distribution and phenotypic and behavioral features of the natural killer cells, cytotoxic and other T cells, monocytes, and macrophages play an essential role in the progression from premalignant MM to active disease. A precise understanding of these modifications will help to develop new therapeutic strategies as well as accurate patient stratification [44].
Circulating monocytes are recruited to differentiate into active macrophages in the BM of MM patients through the activation of VEGF-A/VEGFR-1 and FGF-2/FGFR-1, -2, and -3 pathways. Here they acquire phenotypic and functional adaptations that contribute to the completion of neovessel walls through vasculogenic mimicry [16]. They also secrete VEGF and FGF-2, which play a role in promoting and auto-maintaining angiogenesis, vasculogenesis, and vasculogenic mimicry. Mast cells are also recruited in the BM by stem cell factor (SCF), FGF-2, VEGF-A, and platelet-derived growth factor (PDGF) secreted by MM PCs and other SCs [18,38,39]. Mast cells release angiogenic factors (VEGF-A, FGF-2, transforming growth factor (TGF)-β, TNF-α, interleukin (IL)-8, heparin, histamine, tryptase, and chymase) by degranulation [38,45]. Moreover, like macrophages, mast cells contribute to vasculogenesis mimicry by phenotypic adaptation [38,45,46]. They maintain typical tryptase-positivity and acquire endothelial cell-like properties. In the BM of MM patients, mast cells interact physically with ECs participating in the completion of the vascular wall [38,45,46].
MM PCs unbalance the osteoblasts/osteoclasts equilibrium and this induces bone disease [13,47,48,49]. In the BM niches, there is an interplay between MM PCs, osteoclasts, and vascular ECs [13]. This close link induces a vicious circle between angiogenesis, bone lysis, and favors BM myeloma cells survival and expansion [13,48,49].
Hematopoietic stem cells (HSCs–CD133+) and endothelial progenitor cells (EPCs-CD146+ CD105+ CD34+) residing in the BM and recruited from other sites, are induced to differentiate into mature ECs by angiogenic cytokines (VEGF-A, FGF-2, insulin-like growth factor (IGF-1)) released in the BM. This biological process, known as vasculogenesis, is an ancestral process that is active during prenatal life, and has been demonstrated to be reactivated in the BM of MM patients with active disease [50,51,52,53].
Mesenchymal stem cells (MSCs) are one of the main components of BM niches [15,54,55,56,57]. Their origin remains unclear, but MSCs can differentiate into fibroblasts, adipocytes, chondrocytes, and osteoblasts [54,56,57,58]. MSCs support MM plasma cell growth, survival, and immune system evasion [54,55,56].
Lastly, high amounts of tumor-infiltrating adipocytes have been found in the BM of MM patients [59,60]. BM adipocytes sustain angiogenesis by secretion of VEGF, Angiopoietin (Ang)-1 and -2, leptin, adiponectin, TNF-α, FGF, TGF-β, hepatocyte growth factor (HGF), IL-6, and IL-8 [59,60]. The hypoxic environment of MM BM further stimulates tumor-infiltrating adipocytes to produce angiogenic factors, particularly VEGF-A, which have been demonstrated to promote disease progression through paracrine and autocrine loops in the BM of MM patients [57,58,59,60].

2.2. Angiogenesis in MM

BM neovessels in MM patients have an impaired structure [15]. The vascular tree is formed by highly permeable and fenestrated thin, tortuous, and arborized blood vessels. The ECs that line newly formed vessels contain cytoplasmic vesicles and inclusions, broaden intercellular junctions, and are supported by an incomplete and highly permeable basement membrane [15]. These alterations are a result of microenvironment activation and stimulation induced by myeloma PCs, which promotes three different processes: (i) angiogenesis, (ii) vasculogenesis, and (iii) vasculogenic mimicry [9].
BM microvessel density is remarkably higher in patients with active MM compared to those with MGUS or healthy subjects and neovessel density correlates with the disease stage, shrinking during the remission/plateau phase, increasing in density in the diagnosis, relapse/refractory phase, and reaching maximum expansion in the leukemic phase [9,11,32,58].
Angiogenesis, that is, the rise of neovessels from already formed and stable ones, is the primary, active biological process in the BM of MM patients [9,11,32,58]. Angiogenesis is essential for cancer cell proliferation, spread, and diffusion. Angiogenesis starts when the preneoplastic disease (MGUS), which is characterized by plasma cell growth equilibrium and poor vascularization (avascular phase), and progresses to active proliferation and spread of PCs with uncontrolled and unlimited neovessel formation (the vascular phase). MM progression is related to the activation of many oncogenes (i.e., c-myc, c-fos, c-jun, ets-1, etc.), which is induced by immunoglobulin translocations and genetic instability [12,32,57]. The activation of angiogenesis in this phase is due to the release of angiogenic cytokines, such as VEGF-A, FGF-2, HGF, etc., by transformed PCs [12,32,58].
Like angiogenesis, vasculogenesis contributes to neovascularization in the BM of MM patients [28,29,30]. This biological process is active during prenatal life, where it induces the primary development of the yolk sac vasculature, the heart, and the dorsal aortae during embryogenesis [27]. The aggregation of EPCs (angioblasts) in a primitive capillary plexus stored in the mesoderm and their differentiation into mature ECs are the basis for the formation of the new vascular system [27]. During neovascularization in the BM of MM patients, this ancestral biological process is reactivated to release angiogenic cytokines into the microenvironment. It has been demonstrated that peripheral blood-purified CD34+ VEGFR-2+ cells from MM patients exposed to VEGF-A, FGF-2, and IGF, in appropriate culture conditions, acquire a typical morphology (spindle-shaped) and change their phenotype to acquire typical EC markers such as factor VIII-related antigen (FVIII-RA), vascular endothelial-cadherin (VE-cadherin), CD34, CD31, VEGFR-2, Tie-2/Tek, and E-selectin [29]. These in vitro results have been confirmed in the BM of MM patients where some neovessel forming ECs express the CD133 staminal antigen on their surface, like the typical EC markers [29]. The expression of the CD133 staminal antigen was absent in MGUS patients. Moreover, several studies have demonstrated the presence of circulating EPCs in MM patients [28,29].
Vasculogenesis mimicry is another pathological process of neovascularization that is found in aggressive solid and hematologic tumors. In this particular process, malignant cells and/or other non-ECs, such as inflammatory cells, acquire the capacity to assemble a vessel-like network [16,30,38,39,59]. The Vasculogenic mimicry is a process in which epithelial-mesenchymal transition plays a very important role. Cancer cells, cancer stem cells, inflammatory cells, tumor-associated fibroblasts, under the stimulus of angiogenic cytokines (FGF-2, VEGF-A, HGF, IGF), inflammatory cytokines (IL-6 and -8, TGF-α and -β, TNF-α, CCL-2), and other signaling pathways (stromal cell-derived factor 1 (SDF1), cyclooxygenase-2 (COX-2), Twist, E-cadherin, EPH receptor A2 (EphA2)-phosphatidylinositol 3-kinase (PI3K), Wnt, and Notch signaling pathway) undergo an epithelial–mesenchymal transition by downregulation of E-cadherin, zonula occludins-1, and α-catenin, and upregulation of VE-cadherin, fibronectin, cadherin-2, and vimentin. HIFs and hypoxia-responsive elements (HREs) play an important role in this context. In MM, inflammatory cells (i.e., macrophages and mast cells) isolated from the BM of patients with active disease contribute to BM neovascularization by vasculogenic mimicry. In appropriate culture conditions, when these cells are exposed to angiogenic cytokines (VEGF and FGF-2), they modify their phenotype and acquire biologic properties similar to those of ECs producing functional capillary-like structures in vitro [16,30,38,39,59]. Vasculogenic mimicry mediated by inflammatory cells has been demonstrated in the BM biopsies of MM patients [16,38].

3. The VEGF/VEGFR Pathway

VEGF is a member of a family of six structurally related proteins, namely, VEGF-A, -B, -C, -D, -E (viral factor), and PDGF [61,62]. Their activity is mediated by interaction with the relative receptor and mediate angiogenesis (VEGF-A, -E/VEGFR-2-neuropilin (NRP)-1, -2), or lymphangiogenesis (VEGF-C, -D/VEGFR-2, -3) [58,59]. The role of the bind VEGF-B/VEGFR-1 is unclear (Figure 1).
Ferrara and Henzel first purified VEGF, a glycoprotein with mitogenic activity for vascular ECs, from bovine pituitary folliculo-stellate cells [62,63]. The VEGF family is composed of six members: VEGF-A, -B, -C, -D, -E, and placental growth factor (PlGF) that recognize and specifically bind three different transmembrane receptor tyrosine kinases, which are VEGFR-1, -2 and -3 (Figure 1). The interaction between VEGFs and VERFRs promotes EC activation and endothelium regeneration (Figure 2). Moreover, VEGF-A, -B, and PlGF/VEGFR-1 interaction increase vascular permeability (Figure 2). The activation of VEGFR-2 (KDR or Flk-1 is predominantly expressed in vascular ECs) by interaction with its ligands (VEGF-A, -C, -D) mediates VEGF-dependent angiogenesis and increases vessel permeability [63,64]. VEGFR-3 is restricted to lymphatic ECs, and the binding of VEGF-C and VEGF-D mediates the regulation of lymphangiogenesis (Figure 2) [64,65].
The tyrosine kinases’ VEGFRs are differentially expressed in various cell types [66,67,68,69]. The main member of the family, VEGFR-2, is prevalently expressed in ECs, neuronal, megakaryocytes, and hematopoietic stem cells [68], VEGFR-1 is expressed on the hematopoietic cell surface, monocytes/macrophages and smooth muscle cells [66,67]. The heterodimerization of the VEGFR-1 and -2 subunit mediates the binding of VEGF-B and PlGF (Figure 2) [67]. The activation of VEGFR-2 by VEGF-A on ECs activates a tyrosine kinase pathway, via protein kinase C (PKC) or the Ras protein, that terminally activates the mitogen-activated protein kinase (MAPK) system [69].
Differently from other cytokines (i.e., fibroblast growth factor–FGF-2, and PDGF), VEGF-A shows specific activity in vascular ECs, which are a specific growth factor for angiogenesis. Other cytokines act on different cytotypes and have several effects on biological activity that is different from angiogenesis. Other activities modulated by VEGF-A include the stimulation/differentiation of hemopoietic stem cells, ECM remodeling, and modulation of inflammatory cytokines [30,69,71]. VEGF-A secretion has been observed in several leukemic cell lines as well as in primary cancer cells, including MM cells [25,72,73]. Moreover, in these cells, paracrine and autocrine loops have been reported and shown to modulate the malignant behavior of hematological cancer cells [70,71,72,73]. In MM cells, as in other leukemic cells, VEGF-A activates its specific receptor expressed by EC, inducing the production of growth factors that stimulate leukemic cells to proliferate and induce drug resistance [74,75,76,77]. Moreover, the constitutive activation of VEGFR-2 on ECs of BM-derived from MM patients has been described previously [25,26,72,73].
Some metabolic factors, such as hypoxia and hypoglycemia, regulate the production and release of VEGF-A [78]. HIF-1 is a crucial angiogenesis triggering factor because it induces the expression of VEGF mRNA [79,80]. The nuclear-stabilized HIF-1α forms an active complex with p300 and phosphorylated-STAT3. This active complex induces the activation of the VEGF promoter upregulating RNA polymerase II-dependent VEGF transcription [78,79,80,81].
An increase in VEGF-A production and secretion by lysophosphatidic acid (LPA) through the activation of c-Jun N-terminal kinase (JNK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been reported [82]. Several studies indicate that angiogenesis is strictly dependent on Akt/NF-κB activation [83,84]. In hematopoietic cancer cells, the inhibitors of the NF-κB pathway induce VEGF secretion inhibition, thus reducing EC proangiogenic activities [85]. NF-κB is also activated by the PI3K/Akt signaling pathway, suggesting that PI3K/Akt activation plays a role in angiogenesis and leukemia progression [86].
VEGF expression is also modulated by several transcription factors, such as activator protein-1 (AP-1), NF-κB, and stimulatory protein-1 (SP-1) [87,88,89]. Among those, AP-1 is a critical factor in the modulation of VEGF-A gene transcription in several hematopoietic and solid cancer cells [90,91,92].
Published data indicate that VEGF-A directly stimulates the proliferation of cancer cells. In MM, VEGF mainly stimulates plasma cell migration, proliferation, and survival via autocrine and paracrine VEGF-A/VEGFR-2 loops (Figure 2) [9,93]. Also, leukemic cell resistance to apoptosis induced by serum deprivation is caused by VEGF-A by means of the expression of heat shock protein 90 (Hsp90), which binds B-cell lymphoma 2 (Bcl-2) and apoptotic protease activating factor-1 (Apaf-1) [94]. Moreover, EC exposure to VEGF-A induces the production and release of several hematopoietic growth factors including granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF) and IL-6, which act as growth factors for hematopoietic cancers including MM [94,95]. It has been reported that VEGF-A expression is related to disease stage and tumor burden [96,97,98].
The migration of MM PCs during disease progression as well as of ECs during angiogenesis is related to ECM lytic enzymes, including matrix metalloproteinase (MMP)-2 and -9, and urokinase-type plasminogen activator (uPA) [98]. The production of ECM lytic enzymes by PCs and BM SCs is modulated by VEGF-A/VEGFR-2 engagement and activation of relative tyrosine kinase pathway [75,98,99].
VEGF-C is implicated in tumor lymphangiogenesis by activation of its specific receptor VEGF-R3 expressed in lymphatic ECs (Figure 2) [65]. VEGF-C acts by c-Jun binding and activation of the promoter of the cyclic adenosine 3′,5′-monophosphate-response element of the cyclooxygenase-2 (COX-2) inducing COX-2 expression [100,101,102]. COX-2 enhances cancer cell survival and proliferation and inhibits anti-tumor immunity. COX-2 upregulation is also due to VEGF-R2 activation, which induces p38 MAPK/JNK signaling pathways in human vascular ECs [101]. On the other hand, VEGF-A may also influence the upregulation of COX-2 in cancer cells. So, cancer tumor angiogenesis may be increased through the induction of COX-2/prostanoids produced by VEGFs (Figure 2) [102].

4. VEGF/VEGFR Inhibition in MM

Improved outcomes have been obtained for MM patients thanks to the addition of “target” biological drugs active in the microenvironment to the therapeutic strategies of MM [9,103,104,105].
Antiangiogenic activity, as well as the inhibition of BM SCs, has been demonstrated for proteasome inhibitors, immunomodulators (IMIDs), bisphosphonates, monoclonal antibodies, tyrosine kinase inhibitors, PI3K/Akt-MEK/ERK pathway inhibitors, focal adhesion kinase (FAK) inhibitors, interleukin inhibitors, farnesyltransferase inhibitors, and marine cartilage extract [106,107,108,109,110].

4.1. Preclinical Evidence on the Anti-Angiogenic Effect of Currently Used Therapy

4.1.1. Proteasome Inhibitors

Several preclinical studies have described the antiangiogenetic activity of proteasome inhibitors (PIs). The first-generation PI, bortezomib inhibits the proliferation and migration of human umbilical venous endothelial cells (HUVEC), EC lines, and primary isolated BM ECs from MM patients. It downregulates several angiogenic cytokines, such as VEGFs, FGF-2, IGF-1, interleukins, and the expression of angiopoietins by MM PCs, ECs, and other SCs (fibroblasts and inflammatory cells) [111,112]. Moreover, bortezomib induces EC apoptosis, reduces the proliferation and motility of MM ECs, and inhibits neovessel formation in vitro [113,114]. The antiangiogenic activities of bortezomib are mediated by the inhibition of IKB degradation and the consequent block of NF-κB activity (Figure 3) [115,116]. Moreover, the block of NFκB causes inhibition of the expression and release of VEGF-A mediated by the stabilization of HIF-1α [117] and the CXC chemokines-mediated signaling [118]. In experimental in vivo systems, bortezomib inhibits neovascularization in both chick embryo chorioallantoic membrane in a dose-dependent fashion and PC-tumors in human plasmacytoma xenograft mouse [119,120,121]. In bortezomib-treated MM patients, the reduction in BM microvessel density and the reduction in circulating angiogenic cytokines levels have been demonstrated [122,123,124].
The primary target of PIs is the ubiquitin-proteasome system involved in the regulation of cellular homeostasis, cell death, and angiogenesis, both carfilzomib, a second-generation PI and ixazomib, the first orally available PI, have shown the same antiangiogenic activity [125,126].

4.1.2. Immunomodulators (IMIDs)

Thalidomide, the first immunomodulatory drug, has been demonstrated to have antiangiogenic properties that increase its efficacy as an anticancer drug. Various metabolites of thalidomide have antiangiogenic activities [127,128,129]. They inhibit tubulin cytoskeletal rearrangement and filopodial formation, thus causing a reduction in the proliferation, migration, and tube formation of stimulated ECs [130]. Thalidomide and its derivatives, cause microtubules depolymerization by binding the same site of vinblastine on tubulin. Moreover, they inhibit the reassembly of microtubules, alter the dynamics of individual microtubules, decrease the growth rates, and shorten the excursions. These are the bases of the antimitotic effect of thalidomide and its derivatives because the reduction in the dynamicity of microtubules blocks cell mitosis. [131,132]. In chick and rabbit embryo limbs as well as in zebrafish embryos, thalidomide causes loss of FGF and Shh signaling [133,134,135]. Thalidomide’s antiangiogenic action is based on the destruction of vessels without smooth muscle, which typically creates a newly formed cancer vascular tree [133]. Moreover, thalidomide-induced vessel loss is due to nitric oxide expression inhibition [136,137,138], VEGF receptor depletion [139], and destruction of FGF-induced blood vessels in rodent and rabbit corneal assays [140,141]. Finally, thalidomide modulates the expression and activity of actin and tubulin, integrins, vascular endothelial growth factor, PDGFβ, nitric oxide, ceramide, angiopoietins, Notch, HIF, Slit2/Robo signaling and ROS, all molecules that are fundamental in neovessel development [142,143,144,145,146,147].
The second-generation IMiD, lenalidomide, inhibits the VEGF-induced PI3K-Akt signaling pathway (Figure 3) and HIF-1 expression [148], induces apoptosis of tumor cells, blocks the activity of TNF, and modulates T cells and NK cells activities [149,150,151,152,153]. Moreover, it inhibits MM PCs/stromal cell interaction by blocking cell adhesion [149,150,151,152,153]. It has been demonstrated that lenalidomide inhibits the proliferation and migration of ECs in patients with active MM by downregulating angiogenesis-related key genes and proteins [154]. Finally, lenalidomide inhibits in vitro neovessel formation in the Matrigel assay and in vivo PCs-induced angiogenesis in the chorioallantoic membrane (CAM) assay [154]. The anti-angiogenic effect of lenalidomide has been suggested in treated MM patients, but no significant reduction in BM neovascularization has been demonstrated [155].
Pomalidomide, like thalidomide and lenalidomide, inhibits experimental angiogenesis in MM ECs by targeting VEGF and HIF-1 [156].

4.1.3. Bisphosphonates

Bisphosphonates, are antiresorptive drugs used in bone disease treatment, that have antiangiogenic activity [157]. Zoledronic acid in therapeutic doses, inhibits ECs proliferation, chemotaxis, tube forming in vitro and MM plasma cell and EC-induced angiogenesis in the in vivo CAM assay [157,158,159]. Synergistic activities in BM macrophages from MM patients have been demonstrated for bortezomib and zoledronic acid [158]. The association of these two drugs inhibits the in vitro macrophage expression of FVIII-RA, Tie2/Tek, and VEGFR-2/VE-cadherin, proliferation, adhesion, migration, and tube formation in the Matrigel assay. Moreover, bortezomib and zoledronic acid synergistically inhibit the production and release of angiogenic cytokines, VEGFR-2 expression, and phospho-activation, ERK1/2 phosphorylation, and NF-κB activation induced by VEGF-2/FGF-2 stimulation [158]. The inhibition of these biological activities blocks macrophage trans-differentiation into endothelial-like cells and inhibits the vasculogenic mimicry process [158,159].

4.2. Preclinical Evidence for Novel Anti-Angiogenic Inhibitors

4.2.1. Monoclonal Antibodies

Evidence of the role of VEGF and its receptors in cancer progression has resulted in the development of monoclonal antibodies targeting the VEGF/VEGFR complex. In preclinical studies, the inhibition of VEGF-mediated proangiogenic activity in BM ECs derived from patients with MM has been described [72,73]. In vivo, neutralizing anti-VEGF-A antibody (Figure 3), and more efficaciously, anti-VEGFR-2 antibody (Figure 3) inhibits the constitutive autophosphorylation of both VEGFR-2 and the associated extracellular signal-regulated kinase-2 (ERK-2), proliferation, and capillarogenesis ability in MM ECs [72,73].

4.2.2. Other Molecules

PTK787/ZK 222584 (PTK787), a molecule specifically designed to block the tyrosine kinase domain of VEGFR, inhibits constitutive and VEGF-induced receptor phosphorylation (Figure 3). In vitro, at clinically achievable concentrations, PTK787 can inhibit VEGF-induced cell proliferation, migration, growth, and survival, and overcome drug resistance of MM cells (cell lines and patient-derived) in the presence of Dex and IL-6 and/or cultured with BMSCs [160].
Aplidin (originally isolated from the Mediterranean tunicate Aplidium Albicans) and its analogs inhibit cell proliferation, angiogenic sprouting, and neovessel formation in vitro of human ECs [161]. Moreover, they block VEGF-induced neovascularization in the in vivo CAM system [161].

4.2.3. Dual Inhibition of VEGF/cMET

There is some evidence that VEGF/VEGFR and HGF/cMet signaling are both dysregulated in MM BM ECs and have a synergistic effect in the progression of the disease [22,162,163]. Following VEGF and HGF binding to their respective receptors, dimerization and autophosphorylation of VEGFR and cMet induce the recruitment of signaling proteins to the docking site. This leads to the activation of downstream pathways such as PI3K/AKT and Ras/ERK and translates into biological responses such as cell survival, growth, migration, proliferation, metabolism, and, finally, angiogenesis [22,77,164]. These observations support the evidence that blocking a single growth factor cannot suppress the entire process of angiogenesis and may be ineffective [165]. The dual inhibition of VEGF/VEGFR and HGF/c-Met signaling may produce more satisfactory results (Figure 3).
Pazopanib (GW786034) is a second-generation multi-targeted tyrosine kinase inhibitor against vascular endothelial growth factor receptor-1, -2, and -3, platelet-derived growth factor receptor-alpha, platelet-derived growth factor receptor-beta, and c-kit (Figure 3). In vitro pazopanib modulates the expression of surface adhesion molecule (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1). This inhibits MM plasma cell and BM SCs adhesion which causes a reduction in plasma cell proliferation and migration and an increase of apoptosis. Moreover, pazopanib inhibits neovessel formation in the Matrigel assay, increases HUVEC apoptosis, and sensitizes both MM PCs to melphalan and bortezomib [166].
Sorafenib, a multi-kinase inhibitor that acts predominantly through inhibition of Raf-kinase and VEGF receptor 2 (Figure 3), affects the BM microenvironment and its interaction with myeloma cells by inhibition of VEGF-induced tubule formation and downregulation of VEGF and IL-6 secretion [162,163,167].
Derivatives of quinolone and quinazoline (i.e., gefitinib, erlotinib, foretinib, golvatinib, and cabozantinib) have long attracted attention because of their ability to inhibit a variety of tyrosine kinase, including c-Kit, c-Met, VEGFRs, epidermal growth factor receptor (EGFR), PDGFR, FGFR and so on [50,51] (Figure 3). So, quinolones and quinazolines are a series of promising anti-tumor compounds, especially in targeting dual c-Met and VEGFR tyrosine kinase. These small molecules are potent inhibitors of EC tubule formation, c-Met and VEGFR-2 phosphorylation, cellular invasion, and migration-disrupted tumor vasculature and promote tumor and EC death [168].
A new class of drugs includes a multi-domain designed ankyrin repeat protein (DARPin®), which simultaneously binds more target molecules. MP0250, a DARPin that simultaneously binds VEGF and HGF (Figure 3) has been investigated for its antiangiogenic activity in MM [169]. MPO250 reduces the ligand-mediated VEGFR-2 and cMET phosphorylation and inhibits the downstream signaling cascades of both receptors. In MM EC, MPO250 modulates the cytokine secretion profile and inhibits all their angiogenic activities [169]. Finally, MPO250, in combination with bortezomib, decreases the tumor burden and microvessel density in the syngeneic 5T33MM tumor model [169].

4.3. Clinical Experiences

4.3.1. Proteasome Inhibitors

Bortezomib is active in relapsed/refractory MM patients, and in those with poor-risk cytogenetics because of its dual activity on PCs and the BM stromal compartment [170]. In this MM setting, an increase in progression-free and overall survival has been obtained when compared with dexamethasone treatment alone. No significant adverse event has been found except for reversible peripheral neuropathy and thrombocytopenia. A synergistic effect, in combination with other anti-MM drugs, is the primary goal of bortezomib treatment [170].

4.3.2. Immunomodulators (IMIDs)

The major strength of thalidomide in MM patients treatment, and also for bortezomib, is dual activity on MM PCs (direct anti-MM activity) and the BM stromal compartment (immunomodulation, anti-angiogenic activity, and inhibition of the secretion of angiogenic cytokines) [146,171]. In the first trial (single-agent compassionate-use) which included 84 patients, 32% responded [172]. This led to several clinical trials in both relapsed/refractory and newly diagnosed patients [172,173,174,175,176,177], and thalidomide became the standard of care in MM patients. Also, the use of thalidomide as maintenance therapy following autologous stem cell transplantation (ASCT) has been investigated [178], and the results demonstrate a progression-free survival (PFS) benefit but no consistent overall survival (OS) benefit. Moreover, the prolonged use of thalidomide was generally limited due to toxicities [178].
Multiple different agents have been combined with thalidomide (i.e., melphalan, cyclophosphamide, liposomal doxorubicin, bortezomib, carfilzomib, elotuzumab, intensive chemotherapy regimens such as D-PACE-dexamethasone, cisplatin, doxorubicin, cyclophosphamide, etoposide) with good results in term of PFS and OS, particularly with thalidomide-containing triplets [179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199].
Lenalidomide, the second-generation IMiD, has demonstrated few of the typical thalidomide side effects [200]. Its association with dexamethasone achieves overall response rates (ORR) of 48–61% in patients previously treated with thalidomide [201,202,203]. In two studies of newly diagnosed patients, lenalidomide with dexamethasone, had an ORR of 68–91% [204,205]. Moreover, the reduced dose (“low-dose”) of dexamethasone, in combination with lenalidomide, revealed an improved side effect profile with a better one-year overall survival rate [205]. Finally, in newly diagnosed patients, a significant PFS benefit with lenalidomide in combination with bortezomib and dexamethasone has been obtained [206]. More recently, the use of lenalidomide as maintenance therapy following ASCT has also been investigated, and showed a significant OS benefit [207,208,209].
Multiple different agents including cyclophosphamide [210,211,212], bendamustine [213,214], melphalan [215], liposomal doxorubicin [216,217], proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) [218,219,220,221,222,223,224,225], histone deacetylases (HDAC) inhibitors (panobinostat and ricolinostat) [226,227], and monoclonal antibodies (elotuzumab, daratumumab, and pembrolizumab) [228,229,230,231,232] have been combined with lenalidomide with convincing results. Other trials evaluating the association of lenalidomide with new molecules are ongoing.
The third member of the IMID class, pomalidomide, in combination with dexamethasone, has reported a 35–63% ORR with an ORR of up to 40% in lenalidomide-refractory patients and a 37% ORR in thalidomide-refractory patients [232,233,234,235,236].
As for other IMIDs, the association of pomalidomide with other classes of anti-MM drugs has been shown promising results [237,238,239,240,241,242,243,244].

4.3.3. Anti-VEGF Monoclonal Antibodies

Bevacizumab is a humanized monoclonal anti-VEGF antibody with a high affinity for all human VEGF isoforms [245]. Two Phase II randomized trial with bevacizumab alone or in combination with anti-MM drugs have been conducted in the relapsed/refractory MM setting. In the first trial [246], which aimed to test the efficacy and safety of bevacizumab alone and in combination with thalidomide, only 12 patients, six per arm, were enrolled. Bevacizumab-associated adverse events were reported in three patients including grade 3 hypertension, fatigue, and hyponatremia. Regarding the hematological toxicity, only one grade 3 neutropenia was reported. The addition of thalidomide did not result in more toxicity with a grade 4 pulmonary hypertension in one patient, one grade 3 fatigue, and one grade 3 lymphopenia.
The AMBER trial [247] was designed to evaluate the clinical benefit and tolerability of bevacizumab with bortezomib versus bortezomib alone and 102 patients were enrolled (49 and 53 patients, respectively). Toxicity was approximately equal in both treatment arms. Diarrhea and dehydration were more frequent in the bortezomib alone group, whereas in the bortezomib/bevacizumab group, more anemia, neutropenia, fatigue, upper respiratory tract infection, neuralgia, and hypertension were reported. No differences in peripheral neuropathy were observed.
In both these studies, the addition of bevacizumab to anti-MM therapies did not result in a significant improvement in the outcome of patients. Two partial responses (PR) and three stable diseases (SD) have been achieved in the California Cancer Consortium trial [246].
No significant differences in ORR were observed in the two treatment arms of the AMBER study [247], with 51% in the bortezomib/bevacizumab arm and 43.4% in the bortezomib alone arm. One patient per arm achieved a complete response (CR) with no significant difference in PR percentage across the two groups. The only very good partial response (VGPR) was seen in the bortezomib/bevacizumab arm (16.3% vs. 7.5% of patients). The median duration of response (DOR) was 6.9 months in the bortezomib/bevacizumab and 6.0 months in the bortezomib alone arm.
These disappointing results are related to the role played by hypoxia and other active pro-angiogenic pathways in the BM microenvironment.

4.3.4. Dual Inhibition of VEGF/cMET

In a phase II trial, sorafenib taken orally at a dose of 2 × 200 mg twice daily was administered to eleven relapsed/refractory MM patients up to the completion of 13 cycles or progression [248]. One patient achieved a PR, one patient an SD, seven patients experienced disease progression (DP), one patient died early because of sepsis, and one was lost to follow-up. The median PFS was 2.6 months. The specific drug-related adverse events were mild or moderate, with only one grade 4 toxicity (cardiac infarction) [248]. Twenty-three patients were enrolled in a more extensive phase II study of sorafenib for relapsed/refractory MM patients [249]. Patients received 400 mg sorafenib twice daily for 28-day treatment cycles until progression of the disease or unacceptable toxicity. No responses were observed in this study. Only two patients with MM have been enrolled in phase I/II trial of sorafenib combined with everolimus [250] No response was observed in the two enrolled MM patients.
Vandetanib (ZD6474) is a vascular endothelial growth factor receptor (VEGFR)-2, epidermal growth factor receptor (EGFR), and rearranged during transfection (RET) tyrosine kinases inhibitor [251,252]. In a phase II study [246], vandetanib was well tolerated with only Grade 1–2 adverse events, except for rare cases of Grade 3 anemia. Despite its in vitro activity, and reduction of plasma levels of VEGF in treated MM patients, no responses or clinical benefits have been achieved.
MPO250, a bispecific VEGF/HGF-targeting DARPin®, was administered with bortezomib and dexamethasone to 20 highly pretreated relapsed/refractory MM patients in the MiRRoR Study [253]. All 20 patients had prior exposure to IMiDs, and PIs and nine patients received PI-based regimens as their last treatment. Preliminary results showed an ORR of 45% with one CR, three VGPR, and five PR. The median duration of response was five months (range 2–24 months).

5. Conclusions

In MM patients, the expression levels of VEGF in BM plasma and peripheral blood are strictly related to BM neovessel density and plasma cell infiltration. Moreover, these two parameters are correlated with the disease stage and the clinical outcome of patients. The importance of angiogenesis in MM is unquestionable, as well as the central role of VEGF in the survival, proliferation, and diffusion of PCs with paracrine and autocrine mechanisms. The interference of VEGF signaling represents a useful antiangiogenic approach in the treatment of MM. The employment of monoclonal antibody against VEGF/VEGFR and small molecule tyrosine kinase inhibitors plays a pivotal role in antiangiogenic therapy.
Although impressive preclinical results in vitro and in vivo have been obtained, the inhibition of a single proangiogenic cytokine, and in particular the use of anti-VEGF drugs alone have not performed nearly as well in MM patients. Thus, the disparity between preclinical results and the clinical ones are a significant obstacle to the development of effective anti-VEGF therapy for MM patients. These disappointing results are probably due to the vicarious action of other cytokines and signaling pathways that are active in the BM microenvironment and can bypass the block of circulating VEGF or the path started by this cytokines. The constitutive activation of VEGFR may also contribute to making the anti-VEGF antibody ineffective in humans.
Although possible modalities of resistance to blocking the VEGF/VEGFR pathway have been shown, the specific, direct molecular consequences of VEGF depletion on MM BM stromal cells, MM cell lines and primary MM PCs have also been demonstrated. This indicates that VEGF inhibition may be possible in MM patients by combiningantiangiogenic activity with the inhibition of VEGF/VEGFR signaling in the other BM stromal cells and on myeloma PCs.
Although the clinical benefits of anti-VEGF monoclonal antibodies and other anti-VEGF target molecules in MM alone do not seem to be as good as was hoped, all the reported pieces of evidence justify further research into the potential of VEGF/VEGFR inhibition for the treatment of MM patients. Future studies should address strategies for multi-target inhibitors (e.g., dual inhibitors, bispecific antibodies) as well as the combination of anti-VEGF/VEGFR inhibitors with currently used anti-MM drugs such as PIs, IMIDs, and monoclonal antibodies. Greater efficacy is emerging with drugs that simultaneously block multiple cytokines. The improved outcome of MM patients treated with the new biological drugs is also related to the critical activity in tumor microenvironment, including antiangiogenesis activity, which has an anticancer effect. So, the inhibition of cytokines pathways, which mediate the interaction between cancer cells and their microenvironment near the anti-MM activity, represents one of the primary goals of modern therapeutic approaches, and better results with regard to ORR, PFS, and OS, have been achieved in the last few years. Moreover, the evidence from preliminary results on the efficacy of the aforementioned new strategies in MM relapsed/refractory MM patients support the assumption that VEGF/VEGFR inhibition represents a useful strategy in the treatment of MM patients.
Finally, we need further studies to better elucidate the pathways involved in the BM neovascularization biological process, and the mechanisms underlying the development of microenvironment-mediated PCs resistance. Innovative approaches to bypass the vicariate pathways active after the inhibition of a single molecule, such as the use of multi-target agents or combined treatment strategies are required. The combination of multiple targeted agents could achieve the goal of maximizing the efficacy of biological treatment for MM patients. Finally, we need validated biomarkers that are different from the traditional ones (e.g., β2 microglobulin, albumin, serum, and urine protein electrophoresis, etc.) to establish personalized treatments and select responsive patient sub-populations. These markers will be identified and validated thanks to continued research in the field of microenvironment activity in cancer.

Author Contributions

Conceptualization, data curation, writing—review and editing, R.R., A.M., V.R., A.V.; funding acquisition, R.R., V.R. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) Investigator Grant (no. 20441 to V.R.), and grants from MIUR PRIN 2009WCNS5C_004 (to R.R.).

Acknowledgments

In this section you can acknowledge any support given which is not covered by the author contribution or funding sections. This may include administrative and technical support, or donations in kind (e.g., materials used for experiments).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kumar, S.K.; Rajkumar, V.; Kyle, R.A. Multiple myeloma. Nat. Rev. Dis. Prim. 2017, 3, 17046. [Google Scholar] [CrossRef]
  2. Rajkumar, S.; Kumar, S. Multiple myeloma: Diagnosis and treatment. Mayo Clin. Proc. 2016, 91, 101–119. [Google Scholar] [CrossRef] [Green Version]
  3. Rajkumar, S.V. Multiple myeloma: Every year a new standard? Hematol. Oncol. 2019, 37 (Suppl. 1), 62–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Eslick, R.; Talaulikar, D. Multiple myeloma: From diagnosis to treatment. Aust. Fam. Phys. 2013, 42, 684–688. [Google Scholar] [PubMed]
  5. Ria, R.; Reale, A.; Mangialardi, G.; Dammacco, F.; Ribatti, D.; Vacca, A. The Bone Marrow Microenvironment in Multiple Myeloma: Cellular and Molecular Basis of Disease Progression. In Cell Respiration and Cell Survival. Process, Type and Effects; Osterhoudt, G., Barhydt, J., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 93–124. [Google Scholar]
  6. Langley, R.R.; Fidler, I.J. Tumor Cell-Organ Microenvironment Interactions in the Pathogenesis of Cancer Metastasis. Endocr. Rev. 2007, 28, 297–321. [Google Scholar] [CrossRef] [PubMed]
  7. Ribatti, D.; Nico, B.; Vacca, A. Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. Int. Rev. Cell. Mol. Biol. 2015, 314, 259–282. [Google Scholar]
  8. Glavey, S.V.; Manier, S.; Sacco, A.; Salem, K.; Kawano, Y.; Bouyssou, J.; Ghobrial, I.M.; Roccaro, A.M. Epigenetics in Multiple Myeloma. Cancer Treat. Res. 2016, 169, 35–49. [Google Scholar]
  9. Ria, R.; Solimando, A.; Melaccio, A.; Sportelli, A.; Vacca, A. Angiogenesis and Antiangiogenesis in Multiple Myeloma. In Update on Multiple Myeloma; Ahmed Al-Anazi, K., Ed.; IntechOpen Pub.: London, UK, 2018; pp. 97–123. [Google Scholar]
  10. Patel, U.; Luthra, R.; Medeiros, L.J.; Patel, K.P. Diagnostic, Prognostic, and Predictive Utility of Recurrent Somatic Mutations in Myeloid Neoplasms. Clin. Lymphoma Myeloma Leuk. 2017, 17S, S62–S74. [Google Scholar] [CrossRef]
  11. Alzrigat, M.; Párraga, A.A.; Jernberg-Wiklund, H. Epigenetics in multiple myeloma: From mechanisms to therapy. Semin. Cancer. Biol. 2017, 51, 101–115. [Google Scholar] [CrossRef]
  12. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
  13. Ria, R.; Vacca, A. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Méndez-Ferrer, S.; Bonnet, D.; Steensma, D.P.; Hasserjian, R.P.; Ghobrial, I.M.; Gribben, J.G.; Andreeff, M.; Krause, D.S. BM niches in haematological malignancies. Nat. Rev. Cancer 2020, 20, 285–298. [Google Scholar] [CrossRef] [PubMed]
  15. Vacca, A.; Ribatti, D.; Roncali, L.; Ranieri, G.; Serio, G.; Silvestris, F.; Dammacco, F. Bone marrow angiogenesis and progression in multiple myeloma. Br. J. Haematol. 1994, 87, 503–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Scavelli, C.; Nico, B.; Cirulli, T.; Ria, R.; Di Pietro, G.; Mangieri, D.; Bacigalupo, A.; Mangialardi, G.; Coluccia, A.M.; Caravita, T.; et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 2008, 27, 663–674. [Google Scholar] [CrossRef]
  17. Ria, R.; Piccoli, C.; Cirulli, T.; Falzetti, F.; Mangialardi, G.; Guidolin, D.; Tabilio, A.; Di Renzo, N.; Guarini, A.; Ribatti, D.; et al. Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin. Cancer Res. 2008, 14, 1678–1685. [Google Scholar] [CrossRef] [Green Version]
  18. Kastrinakis, N.G.; Gorgoulis, V.G.; Foukas, P.G.; Dimopoulos, M.A.; Kittas, C. Molecular aspects of multiple myeloma. Ann. Oncol. 2000, 11, 1217–1228. [Google Scholar] [CrossRef]
  19. Bergsagel, P.L.; Chesi, M.V. Molecular classification and risk stratification of myeloma. Hematol. Oncol. 2013, 31 (Suppl. 1), 38–41. [Google Scholar] [CrossRef] [Green Version]
  20. Mondello, P.; Cuzzocrea, S.; Navarra, M.; Mian, M. Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget 2017, 8, 20394–20409. [Google Scholar] [CrossRef] [Green Version]
  21. Bhutani, M.; Landgren, O.; Usmani, S.Z. Multiple myeloma: Is it time for biomarker-driven therapy? Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e493–e503. [Google Scholar] [CrossRef] [Green Version]
  22. Moschetta, M.; Kawano, Y.; Podar, K. Targeting the Bone Marrow Microenvironment. Cancer Treat. Res. 2016, 169, 63–102. [Google Scholar]
  23. Robak, P.; Drozdz, I.; Szemraj, J.; Robak, T. Drug resistance in multiple myeloma. Cancer Treat. Rev. 2018, 70, 199–208. [Google Scholar] [CrossRef] [PubMed]
  24. Calcinotto, A.; Ponzoni, M.; Ria, R.; Grioni, M.; Cattaneo, E.; Villa, I.; Sabrina Bertilaccio, M.T.; Chesi, M.; Rubinacci, A.; Tonon, G.; et al. Modifications of the mouse bone marrow microenvironment favour angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncoimmunology 2015, 4, e1008850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Vacca, A.; Ria, R.; Semeraro, F.; Merchionne, F.; Coluccia, M.; Boccarelli, A.; Scavelli, C.; Nico, B.; Gernone, A.; Battelli, F.; et al. Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 2003, 102, 3340–3348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Ria, R.; Todoerti, K.; Berardi, S.; Coluccia, A.M.; De Luisi, A.; Mattioli, M.; Ronchetti, D.; Morabito, F.; Guarini, A.; Petrucci, M.T.; et al. Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma. Clin. Cancer Res. 2009, 15, 5369–5378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Risau, W.; Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 1995, 11, 73–91. [Google Scholar] [CrossRef] [PubMed]
  28. Ribatti, D. Postnatal vasculogenesis. Mech. Dev. 2001, 100, 157–163. [Google Scholar] [CrossRef]
  29. Reale, A.; Melaccio, A.; Lamanuzzi, A.; Saltarella, I.; Dammacco, F.; Vacca, A.; Ria, R. Functional and Biological Role of Endothelial Precursor Cells in Tumour Progression: A New Potential Therapeutic Target in Haematological Malignancies. Stem Cells Int. 2016, 2016, 7954580. [Google Scholar] [CrossRef] [Green Version]
  30. Moschetta, M.; Mishima, Y.; Sahin, I.; Manier, S.; Glavey, S.; Vacca, A.; Roccaro, A.M.; Ghobrial, I.M. Role of endothelial progenitor cells in cancer progression. Biochim. Biophys. Acta 2014, 1846, 26–39. [Google Scholar] [CrossRef]
  31. Berardi, S.; Caivano, A.; Ria, R.; Nico, B.; Savino, R.; Terracciano, R.; De Tullio, G.; Ferrucci, A.; De Luisi, A.; Moschetta, M.; et al. Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets. Oncogene 2012, 31, 2258–2269. [Google Scholar] [CrossRef] [Green Version]
  32. Vacca, A.; Ria, R.; Reale, A.; Ribatti, D. Angiogenesis in multiple myeloma. Chem. Immunol. Allergy 2014, 99, 180–196. [Google Scholar]
  33. Ria, R.; Catacchio, I.; Berardi, S.; De Luisi, A.; Caivano, A.; Piccoli, C.; Ruggieri, V.; Frassanito, M.A.; Ribatti, D.; Nico, B.; et al. HIF-1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target. Clin. Cancer Res. 2014, 20, 847–858. [Google Scholar] [CrossRef] [Green Version]
  34. Döme, B.; Hendrix, M.J.; Paku, S.; Tóvári, J.; Tímár, J. Alternative vascularisation mechanisms in cancer: Pathology and therapeutic implications. Am. J. Pathol. 2007, 170, 1–15. [Google Scholar] [CrossRef] [Green Version]
  35. Pinto, M.P.; Sotomayor, P.; Carrasco-Avino, G.; Corvalan, A.H.; Owen, G.I. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells. Int. J. Mol. Sci. 2016, 17, 1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Vacca, A.; Ribatti, D. Angiogenesis and vasculogenesis in multiple myeloma: Role of inflammatory cells. Recent Res. Cancer Res. 2011, 183, 187–195. [Google Scholar]
  37. Rehman, J.; Li, J.; Orschell, C.M.; March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003, 107, 1164–1169. [Google Scholar] [CrossRef] [Green Version]
  38. Nico, B.; Mangieri, D.; Crivellato, E.; Vacca, A.; Ribatti, D. Mast Cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev. 2008, 17, 19–22. [Google Scholar] [CrossRef]
  39. Manier, S.; Sacco, A.; Leleu, X.; Ghobrial, I.M.; Roccaro, A.M. Bone marrow microenvironment in multiple myeloma progression. J. Biomed. Biotechnol. 2012, 2012, 157496. [Google Scholar] [CrossRef] [PubMed]
  40. Paulsson, J.; Micke, P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin. Cancer Biol. 2014, 25, 61–68. [Google Scholar] [CrossRef] [PubMed]
  41. Ribatti, D.; Vacca, A. Role of Endothelial Cells and Fibroblasts in Multiple Myeloma Angiogenic Switch. Cancer Treat. Res. 2016, 169, 51–61. [Google Scholar] [PubMed]
  42. Asosingh, K.; De Raeve, H.; Menu, E.; Van Riet, I.; Van Marck, E.; Van Camp, B.; Vanderkerken, K. Angiogenic switch during 5T2MM murine myeloma tumorigenesis: Role of CD45 heterogeneity. Blood 2004, 103, 3131–3177. [Google Scholar] [CrossRef]
  43. Frassanito, M.A.; Rao, L.; Moschetta, M.; Ria, R.; Di Marzo, L.; De Luisi, A.; Racanelli, V.; Catacchio, I.; Berardi, S.; Basile, A.; et al. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: In vitro and in vivo studies. Leukemia 2014, 28, 904–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Zavidij, O.; Haradhvala, N.J.; Mouhieddine, T.H.; Sklavenitis-Pistofidis, R.; Cai, S.; Reidy, M.; Rahmat, M.; Flaifel, A.; Ferland, B.; Su, N.K.; et al. Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nat. Cancer 2020, 1, 493–506. [Google Scholar] [CrossRef]
  45. Ribatti, D.; Vacca, A.; Nico, B.; Quondamatteo, F.; Ria, R.; Minischetti, M.; Marzullo, A.; Herken, R.; Roncali, L.; Dammacco, F. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br. J. Cancer 1999, 79, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Ribatti, D.; Vacca, A. The role of inflammatory cells in angiogenesis in multiple myeloma. Adv. Exp. Med. Biol. 2014, 816, 361–376. [Google Scholar]
  47. Jurczyszyn, A.; Czepiel, J.; Gdula-Argasińska, J.; Paśko, P.; Czapkiewicz, A.; Librowski, T.; Perucki, W.; Butrym, A.; Castillo, J.J.; Skotnicki, A.B. The Analysis of the Relationship between Multiple Myeloma Cells and Their Microenvironment. J. Cancer 2015, 6, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Horenstein, A.L.; Quarona, V.; Toscani, D.; Costa, F.; Chillemi, A.; Pistoia, V.; Giuliani, N.; Malavasi, F. Adenosine Generated in the Bone Marrow Niche Through a CD38-Mediated Pathway Correlates with Progression of Human Myeloma. Mol. Med. 2016, 22, 694–704. [Google Scholar] [CrossRef] [Green Version]
  49. Costa, F.; Toscani, D.; Chillemi, A.; Bolzoni, M.; Marchica, V.; Vescovini, R.; Mancini, C.; Martella, E.; Campanini, N.; Schifano, C.; et al. Expression of CD38 in myeloma bone niche: A rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation. Oncotarget 2017, 8, 56598–56611. [Google Scholar] [CrossRef] [Green Version]
  50. Tamma, R.; Ribatti, D. Bone Niches, Hematopoietic Stem Cells, and Vessel Formation. Int. J. Mol. Sci. 2017, 18, 151. [Google Scholar] [CrossRef] [Green Version]
  51. Zhang, H.; Vakil, V.; Braunstein, M.; Smith, E.L.; Maroney, J.; Chen, L.; Dai, K.; Berenson, J.R.; Hussain, M.M.; Klueppelberg, U.; et al. Circulating endothelial progenitor cells in multiple myeloma: Implications and significance. Blood 2005, 105, 3286–3294. [Google Scholar] [CrossRef]
  52. Wang, L.; Du, F.; Zhang, H.M.; Zhang, W.J.; Wang, H.X. Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone. Braz. J. Med. Biol. Res. 2015, 48, 736–742. [Google Scholar] [CrossRef] [Green Version]
  53. Rigolin, G.M.; Fraulini, C.; Ciccone, M.; Mauro, E.; Bugli, A.M.; De Angeli, C.; Negrini, M.; Cuneo, A.; Castoldi, G. Neoplastic circulating endothelial cells in multiple myeloma 13q14 deletion. Blood 2006, 107, 2531–2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Xu, S.; De Veirman, K.; De Becker, A.; Vanderkerken, K.; Van Riet, I. Mesenchymal stem cells in multiple myeloma: A therapeutical tool or target? Leukemia 2018, 32, 155–1514. [Google Scholar] [CrossRef] [PubMed]
  55. Reagan, M.R.; Ghobrial, I.M. Multiple myeloma mesenchymal stem cells: Characterization, origin, and tumor-promoting effects. Clin. Cancer Res. 2012, 18, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Herrero, C.; Pérez-Simón, J.A. Immunomodulatory effect of mesenchymal stem cells. Braz. J. Med. Biol. Res. 2010, 43, 425–430. [Google Scholar] [CrossRef] [PubMed]
  57. Stasi, R.; Amadori, S. The role of angiogenesis in hematologic Malignancies. J. Hematother. Stem Cell Res. 2002, 11, 49–68. [Google Scholar] [CrossRef]
  58. Vacca, A.; Ribatti, D.; Roccaro, A.M.; Frigeri, A.; Dammacco, F. Bone marrow angiogenesis in patients with active multiple myeloma. Semin. Oncol. 2001, 28, 543–550. [Google Scholar] [CrossRef]
  59. Yang, Z.; Yao, H.; Fei, F.; Li, Y.; Qu, J.; Li, C.; Zhang, S. Generation of erythroid cells from polyploid giant cancer cells: Re-thinking about tumor blood supply. J. Cancer Res. Clin. Oncol. 2018, 144, 617–627. [Google Scholar] [CrossRef]
  60. Medinger, M.; Passweg, J. Role of tumour angiogenesis in haematological malignancies. Swiss Med. Wkly 2014, 144, w14050. [Google Scholar] [CrossRef]
  61. Ria, R.; Roccaro, A.M.; Merchionne, F.; Vacca, A.; Dammacco, F.; Ribatti, D. Vascular endothelial growth factor and its receptors in multiple myeloma. Leukemia 2003, 17, 1961–1966. [Google Scholar] [CrossRef] [Green Version]
  62. Ferrara, N.; Henzel, W.J. Pituitary follicular cell secrete a novel heparin-binding growth factor specific for vascular endothelial cell. Biochem. Biophys. Res. Commun. 2012, 161, 8511989. [Google Scholar] [CrossRef]
  63. Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
  64. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal 2009, 2, re12009. [Google Scholar] [CrossRef] [PubMed]
  65. Zhang, L.; Zhou, F.; Han, W.; Shen, B.; Luo, J.; Shibuya, M.; He, Y. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010, 20, 1319–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  66. Wu, Y.; Hooper, A.T.; Zhong, Z.; Witte, L.; Bohlen, P.; Rafii, S.; Hicklin, D.J. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int. J. Cancer 2006, 119, 1519–1529. [Google Scholar] [CrossRef]
  67. Autiero, M.; Luttun, A.; Tjwa, M.; Carmeliet, P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: Novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J. Thromb. Haemost. 2003, 1, 1356–1370. [Google Scholar] [CrossRef]
  68. Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 2007, 19, 2003–2012. [Google Scholar] [CrossRef]
  69. Brekken, R.A.; Overholser, J.P.; Stastny, V.A.; Waltenberger, J.; Minna, J.D.; Thorpe, P.E. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. 2000, 60, 5117–5124. [Google Scholar]
  70. Katoh, O.; Tauchi, H.; Kawaishi, K.; Kimura, A.; Satow, Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 1995, 55, 5687–5692. [Google Scholar]
  71. Cursiefen, C.; Chen, L.; Borges, L.P.; Jackson, D.; Cao, J.; Radziejewski, C.; D’Amore, P.A.; Dana, M.R.; Wiegand, S.J.; Streilein, J.W. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 2004, 113, 1040–1050. [Google Scholar] [CrossRef] [Green Version]
  72. Vacca, A.; Ria, R.; Ribatti, D.; Semeraro, F.; Djonov, V.; Di Raimondo, F.; Dammacco, F. A Paracrine Loop in The Vascular Endothelial Growth Factor Pathway Triggers Tumor Angiogenesis And Growth in Multiple Myeloma. Haematologica 2003, 88, 176–185. [Google Scholar]
  73. Ria, R.; Vacca, A.; Russo, F.; Cirulli, T.; Massaia, M.; Tosi, P.; Cavo, M.; Guidolin, D.; Ribatti, D.; Dammacco, F. A VEGF-dependent autocrine loop mediates proliferation and capillarogenesis in bone marrow endothelial cells of patients with multiple myeloma. Thromb. Haemost. 2004, 92, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
  74. Adams, J.; Carder, P.J.; Downey, S.; Forbes, M.A.; MacLennan, K.; Allgar, V.; Kaufman, S.; Hallam, S.; Bicknell, R.; Walker, J.J.; et al. Vascular endothelial growth factor (VEGF) in breast cancer: Comparison of plasma, serum and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 2000, 60, 2898–2905. [Google Scholar] [PubMed]
  75. Kay, N.E.; Bone, N.D.; Tschumper, R.C.; Howell, K.H.; Geyer, S.M.; Dewald, G.W.; Hanson, C.A.; Jelinek, D.F. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 2002, 16, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Rafii, S.; Lyden, D.; Benezra, R.; Hattori, K.; Heissig, B. Vascular and haematopoietic stem cells: Novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer. 2002, 2, 826–835. [Google Scholar] [CrossRef]
  77. Moschetta, M.; Basile, A.; Ferrucci, A.; Frassanito, M.A.; Rao, L.; Ria, R.; Solimando, A.G.; Giuliani, N.; Boccarelli, A.; Fumarola, F.; et al. Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin. Cancer Res. 2013, 19, 4371–4382. [Google Scholar] [CrossRef] [Green Version]
  78. Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359, 843–845. [Google Scholar] [CrossRef]
  79. Dor, Y.; Porat, R.; Keshet, E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am. J. Physiol. Cell Physiol. 2001, 280, C1367–C1374. [Google Scholar] [CrossRef]
  80. Kaelin, W.G., Jr. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin. Cancer Res. 2007, 13, 680s–682s. [Google Scholar] [CrossRef] [Green Version]
  81. Cong, X.L.; Li, B.; Yang, R.C.; Feng, S.Z.; Chen, S.J.; Han, Z.C. Enhanced growth suppression of Philadephia1 leukemia cells by targeting bcr3/abl2 and VEGF through antisense strategy. Leukemia 2005, 19, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
  82. Kumar, S.A.; Hu, X.; Brown, M.; Kuschak, B.; Hernandez, T.A.; Johnston, J.B.; Gibson, S.B. Lysophosphatidic acid receptor expression in chronic lymphocytic leukemia leads to cell survival mediated though vascular endothelial growth factor expression. Leuk. Lymphoma 2009, 50, 2038–2048. [Google Scholar] [CrossRef]
  83. Aguayo, A.; Kantarjian, H.; Manshouri, T.; Gidel, C.; Estey, E.; Thomas, D.; Koller, C.; Estrov, Z.; O’Brien, S.; Keating, M.; et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000, 96, 2240–2245. [Google Scholar] [CrossRef] [PubMed]
  84. Bellamy, W.T.; Richter, L.; Sirjani, D.; Roxas, C.; Glinsmann-Gibson, B.; Frutiger, Y.; Grogan, T.M.; List, A.F. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001, 97, 1427–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Braun, T.; Carvalho, G.; Fabre, C.; Grosjean, J.; Fenaux, P.; Kroemer, G. Targeting NF-kappaB in hematologic malignancies. Cell Death Differ. 2006, 13, 748–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Sujobert, P.; Bardet, V.; Cornillet-Lefebvre, P.; Hayflick, J.S.; Prie, N.; Verdier, F.; Vanhaesebroeck, B.; Muller, O.; Pesce, F.; Ifrah, N.; et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005, 106, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Shi, Q.; Le, X.; Abbruzzese, J.L.; Peng, Z.; Qian, C.N.; Tang, H.; Xiong, Q.; Wang, B.; Li, X.C.; Xie, K. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 2001, 61, 4143–4154. [Google Scholar]
  88. Hsu, T.C.; Young, M.R.; Cmarik, J.; Colburn, N.H. Activator protein 1 (AP-1) and nuclear factor kappaB (NF-kappa B)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 2000, 28, 1338–1348. [Google Scholar] [CrossRef]
  89. Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta 1991, 1072, 129–157. [Google Scholar] [CrossRef]
  90. Pollmann, C.; Huang, X.; Mall, J.; Bech-Otschir, D.; Naumann, M.; Dubiel, W. The constitutive photomorphogenesis 9 signalosome directs vascular endothelial growth factor production in tumor cells. Cancer Res. 2001, 61, 8416–8421. [Google Scholar]
  91. Poulaki, V.; Mitsiades, C.S.; McMullan, C.; Sykoutri, D.; Fanourakis, G.; Kotoula, V.; Tseleni-Balafouta, S.; Koutras, D.A.; Mitsiades, N. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J. Clin. Endocrinol. Metab. 2003, 88, 5392–5398. [Google Scholar] [CrossRef] [Green Version]
  92. Chuang, C.H.; Huang, C.S.; Hu, M.L. Vitamin E and rutin synergistically inhibit expression of vascular endothelial growth factor through down-regulation of binding activity of activator protein-1 in human promyelocytic leukemia (HL-60) cells. Chem. Biol. Interact. 2010, 183, 434–441. [Google Scholar] [CrossRef]
  93. Venables, J.P. Unbalanced alternative splicing and its significance in cancer. Bioessays 2006, 28, 378–386. [Google Scholar] [CrossRef] [PubMed]
  94. Podar, K.; Tai, Y.T.; Davies, F.E. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001, 98, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Hussong, J.W.; Rodgers, G.M.; Shami, P.J. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000, 95, 309–313. [Google Scholar] [CrossRef]
  96. Padró, T.; Ruiz, S.; Bieker, R.; Bürger, H.; Steins, M.; Kienast, J.; Büchner, T.; Berdel, W.E.; Mesters, R.M. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000, 95, 2637–2644. [Google Scholar] [CrossRef] [PubMed]
  97. Gora-Tybor, J.; Blonski, J.Z.; Robak, T. Circulating vascular endothelial growth factor (VEGF) and its soluble receptors in patients with chronic lymphocytic leukemia. Eur. Cytokine Netw. 2005, 16, 41–46. [Google Scholar]
  98. Vacca, A.; Ribatti, D.; Presta, M.; Minischetti, M.; Iurlaro, M.; Ria, R.; Albini, A.; Bussolino, F.; Dammacco, F. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 1999, 93, 3064–3073. [Google Scholar] [CrossRef]
  99. Ugarte-Berzal, E.; Redondo-Muñoz, J.; Eroles, P.; Del Cerro, M.H.; García-Marco, J.A.; Terol, M.J.; García-Pardo, A. VEGF/VEGFR2 interaction down-regulates matrix metalloproteinase-9 via STAT1 activation and inhibits B chronic lymphocytic leukemia cell migration. Blood 2010, 115, 846–849. [Google Scholar] [CrossRef] [Green Version]
  100. Hata, A.N.; Breyer, R.M. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol. Ther. 2004, 103, 147–166. [Google Scholar] [CrossRef]
  101. Wu, G.; Luo, J.; Rana, J.S.; Laham, R.; Sellke, F.W.; Li, J. Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc. Res. 2006, 69, 512–519. [Google Scholar] [CrossRef] [Green Version]
  102. Su, J.L.; Shih, J.Y.; Yen, M.L.; Jeng, Y.M.; Chang, C.C.; Hsieh, C.Y.; Wei, L.H.; Yang, P.C.; Kuo, M.L. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: A novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 2004, 64, 554–564. [Google Scholar] [CrossRef] [Green Version]
  103. Ria, R.; Reale, A.; Vacca, A. Novel agents and new therapeutic approaches for treatment of multiple myeloma. World J. Methodol. 2014, 4, 73–90. [Google Scholar] [CrossRef] [PubMed]
  104. Barchnicka, A.; Olejniczak-Nowakowska, M.; Krupa-Kotara, K.; Grosicki, S. The importance of antiangiogenic effect in multiple myeloma treatment. Adv. Clin. Exp. Med. 2018, 27, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Kumar, S. Emerging options in multiple myeloma: Targeted, immune, and epigenetic therapies. Hematology. Am. Soc. Hematol. Ed. Prog. 2017, 2017, 518–524. [Google Scholar] [CrossRef] [Green Version]
  106. Podar, K.; Anderson, K.C. The pathophysiologic role of VEGF in hematologic malignancies: Therapeutic implications. Blood 2005, 105, 1383–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Zagouri, F.; Terpos, E.; Kastritis, E.; Dimopoulos, M.A. Emerging antibodies for the treatment of multiple myeloma. Exp. Opin. Emerging Drugs 2016, 21, 225–237. [Google Scholar] [CrossRef]
  108. Cook, K.M.; Figg, W.D. Angiogenesis inhibitors: Current strategies and future prospects. CA A Cancer J. Clin. 2010, 60, 222–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Mo, H.N.; Liu, P. Targeting MET in cancer therapy. Chronic Dis. Transl. Med. 2017, 3, 148–153. [Google Scholar] [CrossRef]
  110. Lopuch, S.; Kawalec, P.; Wiśniewska, N. Effectiveness of targeted therapy as monotherapy or combined therapy in patients with relapsed or refractory multiple myeloma: A systematic review and meta-analysis. Hematology 2015, 20, 1–10. [Google Scholar] [CrossRef]
  111. Hideshima, T.; Chauhan, D.; Hayashi, T.; Akiyama, M.; Mitsiades, N.; Mitsiades, C.; Podar, K.; Munshi, N.C.; Richardson, P.G.; Anderson, K.C. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 2003, 22, 8386–8393. [Google Scholar] [CrossRef] [Green Version]
  112. Roccaro, A.M.; Hideshima, T.; Raje, N.; Kumar, S.; Ishitsuka, K.; Yasui, H.; Shiraishi, N.; Ribatti, D.; Nico, B.; Vacca, A.; et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006, 66, 184–191. [Google Scholar] [CrossRef] [Green Version]
  113. Williams, S.; Pettaway, C.; Song, R.; Papandreou, C.; Logothetis, C.; McConkey, D.J. Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts. Mol. Cancer Ther. 2003, 2, 835–843. [Google Scholar] [PubMed]
  114. Sunwoo, J.B.; Chen, Z.; Dong, G.; Yeh, N.; Crowl Bancroft, C.; Sausville, E.; Adams, J.; Elliott, P.; Van Waes, C. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. 2001, 7, 1419–1428. [Google Scholar]
  115. Shono, T.; Ono, M.; Izumi, H.; Jimi, S.I.; Matsushima, K.; Okamoto, T.; Kohno, K.; Kuwano, M. Involvement of the transcription factor NF-kB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol. Cell Biol. 1996, 16, 4231–4239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Scatena, M.; Almeida, M.; Chaisson, M.L.; Fausto, N.; Nicosia, R.F.; Giachelli, C.M. NF-kB mediates avb3 indegrin-induced endothelial cell survival. J. Cell. Biol. 1998, 141, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
  117. McConkey, D.J.; Zhu, K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 2008, 11, 164–179. [Google Scholar] [CrossRef] [PubMed]
  118. Karl, E.; Warner, K.; Zeitlin, B.; Kaneko, T.; Wurtzel, L.; Jin, T.; Chang, J.; Wang, S.; Wang, C.Y.; Strieter, R.M.; et al. Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kB and CXC chemokines. Cancer Res. 2005, 65, 5063–5069. [Google Scholar] [CrossRef] [Green Version]
  119. Oikawa, T.; Sasaki, T.; Nakamura, M.; Shimamura, M.; Tanahashi, N.; Omra, S.; Tanaka, K. The proteasome is involved in angiogenesis. Biochem. Biophys. Res. Commun. 1998, 8, 243–248. [Google Scholar] [CrossRef]
  120. Drexler, H.C.A.; Risau, W.; Konerding, M.A. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J. 2000, 14, 65–77. [Google Scholar] [CrossRef]
  121. LeBlanc, R.; Catley, L.P.; Hideshima, T.; Lentzsch, S.; Mitsiades, C.S.; Mitsiades, N.; Neuberg, D.; Goloubeva, O.; Pien, C.S.; Adams, J.; et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 2002, 62, 4996–5000. [Google Scholar]
  122. Anargyrou, K.; Terpos, E.; Vassilakopoulos, T.P.; Pouli, A.; Sachanas, S.; Tzenou, T.; Masouridis, S.; Christoulas, D.; Angelopoulou, M.K.; Dimitriadou, E.M.; et al. Greek Myeloma Study Group. Normalization of the serum angiopoietin-1 to angiopoietin-2 ratio reflects response in refractory/resistant multiple myeloma patients treated with bortezomib. Haematologica 2008, 93, 451–454. [Google Scholar] [CrossRef] [Green Version]
  123. Politou, M.; Naresh, K.; Terpos, E.; Crawley, D.; Lampert, I.; Apperley, J.F.; Rahemtulla, A. Anti-angiogenic effect of bortezomib in patients with multiple myeloma. Acta Haematol. 2005, 114, 170–173. [Google Scholar] [CrossRef] [PubMed]
  124. Saltarella, I.; Morabito, F.; Giuliani, N.; Terragna, C.; Omedè, P.; Palumbo, A.; Bringhen, S.; De Paoli, L.; Martino, E.; Larocca, A.; et al. Prognostic or predictive value of circulating cytokines and angiogenic factors for initial treatment of multiple myeloma in the GIMEMA MM0305 randomized controlled trial. J. Hematol. Oncol. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
  125. Roy, S.S.; Kirma, N.B.; Santhamma, B.; Tekmal, R.R.; Agyin, J.K. Effects of a novel proteasome inhibitor BU-32 on multiple myeloma cells. Cancer Chemother. Pharmacol. 2014, 73, 1263–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  126. Chauhan, D.; Tian, Z.; Zhou, B.; Orlowski, R.; Raje, N.; Richardson, P.; Anderson, K.C. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin. Cancer Res. 2011, 17, 5311–5321. [Google Scholar] [CrossRef] [Green Version]
  127. Price, D.K.; Ando, Y.; Kruger, E.A.; Weiss, M.; Figg, W.D. 5’-OH-thalidomide, a metabolite of thalidomide, inhibits angiogenesis. Ther. Drug Monit. 2002, 24, 104–110. [Google Scholar] [CrossRef]
  128. Ng, S.S.; Gutschow, M.; Weiss, M.; Hauschildt, S.; Teubert, U.; Hecker, T.K.; Luzzio, F.A.; Kruger, E.A.; Eger, K.; Figg, W.D. Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res. 2003, 63, 3189–3194. [Google Scholar]
  129. Franks, M.E.; Macpherson, G.R.; Figg, W.D. Thalidomide. Lancet 2004, 363, 1802–1811. [Google Scholar] [CrossRef] [Green Version]
  130. Therapontos, C.; Erskine, L.; Gardner, E.; Figg, W.D.; Vargesson, N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc. Natl. Acad. Sci. USA 2009, 106, 8573–8578. [Google Scholar] [CrossRef] [Green Version]
  131. Rashid, A.; Kuppa, A.; Kunwar, A.; Panda, D. Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 2015, 54, 2149–2159. [Google Scholar] [CrossRef]
  132. Inatsuki, S.; Noguchi, T.; Miyachi, H.; Oda, S.; Iguchi, T.; Kizaki, M.; Hashimoto, Y.; Kobayashi, H. Tubulin-polymerization inhibitors derived from thalidomide. Bioorg. Med. Chem. Lett. 2005, 15, 321–325. [Google Scholar] [CrossRef]
  133. Hansen, J.M.; Gong, S.G.; Philbert, M.; Harris, C. Misregulation of gene expression in the redox-sensitive NF-kappab-dependent limb outgrowth pathway by thalidomide. Dev. Dyn. 2002, 225, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Knobloch, J.; Jungck, D.; Koch, A. Apoptosis induction by thalidomide: Critical for limb teratogenicity but therapeutic potential in idiopathic pulmonary fibrosis? Curr. Mol. Pharmacol. 2011, 4, 26–61. [Google Scholar] [CrossRef] [PubMed]
  136. Tamilarasan, K.P.; Kolluru, G.K.; Rajaram, M.; Indhumathy, M.; Saranya, R.; Chatterjee, S. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell. Biol. 2006, 7, 17. [Google Scholar] [CrossRef] [Green Version]
  137. Majumder, S.; Rajaram, M.; Muley, A.; Reddy, H.S.; Tamilarasan, K.P.; Kolluru, G.K.; Sinha, S.; Siamwala, J.H.; Gupta, R.; Ilavarasan, R.; et al. Thalidomide attenuates nitric oxide-driven angiogenesis by interacting with soluble guanylyl cyclase. Br. J. Pharmacol. 2009, 158, 1720–1734. [Google Scholar] [CrossRef] [Green Version]
  138. Siamwala, J.H.; Veeriah, V.; Priya, M.K.; Rajendran, S.; Saran, U.; Sinha, S.; Nagarajan, S.; Pradeep, T.; Chatterjee, S. Nitric oxide rescues thalidomide mediated teratogenicity. Sci. Rep. 2012, 2, 679. [Google Scholar] [CrossRef] [Green Version]
  139. Yabu, T.; Tomimoto, H.; Taguchi, Y.; Yamaoka, S.; Igarashi, Y.; Okazaki, T. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 2005, 106, 125–134. [Google Scholar] [CrossRef]
  140. D’Amato, R.J.; Loughnan, M.S.; Flynn, E.; Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 1994, 91, 4082–4085. [Google Scholar] [CrossRef] [Green Version]
  141. Kenyon, B.M.; Browne, F.; D’Amato, R.J. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularisation. Exp. Eye Res. 1997, 64, 971–978. [Google Scholar] [CrossRef]
  142. Stephens, T.D.; Bunde, C.J.; Fillmore, B.J. Mechanism of action in thalidomide teratogenesis. Biochem. Pharmacol. 2000, 59, 1489–1499. [Google Scholar] [CrossRef]
  143. Vargesson, N. Thalidomide-induced limb defects: Resolving a 50-year-old puzzle. BioEssays 2009, 31, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
  144. Vargesson, N. Thalidomide embryopathy: An enigmatic challenge. ISRN Dev. Biol. 2013, 2013, 241016. [Google Scholar] [CrossRef] [Green Version]
  145. Feng, Q.; Tan, H.H.; Ge, Z.Z.; Gao, Y.J.; Chen, H.M.; Xiao, S.D. Thalidomide-induced angiopoietin 2, Notch1 and Dll4 downregulation under hypoxic condition in tissues with gastrointestinal vascular malformation and human umbilical vein endothelial cells. J. Dig. Dis. 2014, 15, 85–95. [Google Scholar] [CrossRef] [PubMed]
  146. Li, Y.; Fu, S.; Chen, H.; Feng, Q.; Gao, Y.; Xue, H.; Ge, Z.; Fang, J.; Xiao, S. Inhibition of endothelial Slit2/Robo1 signalling by thalidomide restrains angiogenesis by blocking the PI3K/Akt pathway. Dig. Dis. Sci. 2014, 59, 2958–2966. [Google Scholar] [CrossRef]
  147. Vacca, A.; Scavelli, C.; Montefusco, V.; Di Pietro, G.; Neri, A.; Mattioli, M.; Bicciato, S.; Nico, B.; Ribatti, D.; Dammacco, F.; et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J. Clin. Oncol. 2005, 23, 5334–5346. [Google Scholar] [CrossRef]
  148. Lu, L.; Payvandi, F.; Wu, L.; Zhang, L.-H.; Hariri, R.J.; Man, H.-W.; Chen, R.S.; Muller, G.W.; Hughes, C.C.W.; Stirling, D.I.; et al. The anti-cancer drug lenalidomide inhibits angiogenesis andmetastasis viamultiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc. Res. 2009, 77, 78–86. [Google Scholar] [CrossRef]
  149. Mitsiades, N. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: Therapeutic implications. Blood 2002, 99, 4525–4530. [Google Scholar] [CrossRef] [Green Version]
  150. Chang, D.H. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: Therapeutic implications. Blood 2006, 108, 618–621. [Google Scholar] [CrossRef] [Green Version]
  151. Dredge, K.; Horsfall, R.; Robinson, S.P.; Zhang, L.-H.; Lu, L.; Tang, Y.; Shirley, M.A.; Muller, G.; Schafer, P.; Stirling, D.; et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc. Res. 2005, 69, 56–63. [Google Scholar] [CrossRef]
  152. Gorgun, G.; Calabrese, E.; Soydan, E.; Hideshima, T.; Perrone, G.; Bandi, M.; Cirstea, D.; Santo, L.; Hu, Y.; Tai, Y.T.; et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 2010, 116, 3227–3237. [Google Scholar] [CrossRef] [Green Version]
  153. Hideshima, T.; Mitsiades, C.; Tonon, G.; Richardson, P.G.; Anderson, K.C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat. Rev. Cancer 2007, 7, 585–598. [Google Scholar] [CrossRef] [PubMed]
  154. De Luisi, A.; Ferrucci, A.; Coluccia, A.M.L.; Ria, R.; Moschetta, M.; de Luca, E.; Pieroni, L.; Maffia, M.; Urbani, A.; Di Pietro, G.; et al. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin. Cancer Res. 2011, 17, 1935–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Cibeira, M.T.; Rozman, M.; Segarra, M.; Lozano, E.; Rosiñol, L.; Cid, M.C.; Filella, X.; Bladé, J. Bone marrow angiogenesis and angiogenic factors in multiple myeloma treated with novel agents. Cytokine 2008, 41, 244–253. [Google Scholar] [CrossRef] [PubMed]
  156. Chanan-Khan, A.A.; Swaika, A.; Paulus, A.; Kumar, S.K.; Mikhael, J.R.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q. Pomalidomide: The new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer J. 2013, 3, e143. [Google Scholar] [CrossRef] [PubMed]
  157. Scavelli, C.; Di Pietro, G.; Cirulli, T.; Coluccia, M.; Boccarelli, A.; Giannini, T.; Mangialardi, G.; Bertieri, R.; Coluccia, A.M.L.; Ribatti, D.; et al. Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma. Mol. Cancer Ther. 2007, 6, 3256–3262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  158. Moschetta, M.; Di Pietro, G.; Ria, R.; Gnoni, A.; Mangialardi, G.; Guarini, A.; Ditonno, P.; Musto, P.; D’Auria, F.; Ricciardi, M.R.; et al. Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. Eur. J. Cancer 2010, 46, 420–429. [Google Scholar] [CrossRef]
  159. Kim, J.; Denu, R.A.; Dollar, B.A.; Escalante, L.E.; Kuether, J.P.; Callander, N.S.; Asimakopoulos, F.; Hematti, P. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br. J. Haematol. 2012, 158, 336–346. [Google Scholar] [CrossRef]
  160. Lin, B.; Podar, K.; Gupta, D.; Tai, Y.T.; Li, S.; Weller, E.; Hideshima, T.; Lentzsch, S.; Davies, F.; Li, C.; et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2002, 62, 5019–5026. [Google Scholar]
  161. Borjan, B.; Steiner, N.; Karbon, S.; Kern, J.; Francesch, A.; Hermann, M.; Willenbacher, W.; Gunsilius, E.; Untergasser, G. The Aplidin analogs PM01215 and PM02781 inhibit angiogenesis in vitro and in vivo. BMC Cancer 2015, 15, 738. [Google Scholar] [CrossRef] [Green Version]
  162. Gentile, M.; Martino, M.; Recchia, A.G.; Vigna, E.; Morabito, L.; Morabito, F. Sorafenib for the treatment of multiple myeloma. Expert Opin. Investig. Drugs 2016, 25, 743–749. [Google Scholar] [CrossRef]
  163. Ramakrishnan, V.; Timm, M.; Haug, J.L.; Kimlinger, T.K.; Wellik, L.E.; Witzig, T.E.; Rajkumar, S.V.; Adjei, A.A.; Kumar, S. Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 2010, 29, 1190–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Ferrucci, A.; Moschetta, M.; Frassanito, M.A.; Berardi, S.; Catacchio, I.; Ria, R.; Racanelli, V.; Caivano, A.; Solimando, A.G.; Vergara, D.; et al. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin. Cancer Res. 2014, 20, 5796–5807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Zhang, J.; Jiang, X.; Jiang, Y.; Guo, M.; Zhang, S.; Li, J.; He, J.; Liu, J.; Wang, J.; Ouyang, L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur. J. Med. Chem. 2016, 108, 495–504. [Google Scholar] [CrossRef] [PubMed]
  166. Podar, K.; Tonon, G.; Sattler, M.; Tai, Y.T.; Legouill, S.; Yasui, H.; Ishitsuka, K.; Kumar, S.; Kumar, R.; Pandite, L.N.; et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl. Acad. Sci. USA 2006, 103, 19478–19483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  168. Hennequin, L.F.; Stokes, E.S.; Thomas, A.P.; Johnstone, C.; Plé, P.A.; Ogilvie, D.J.; Dukes, M.; Wedge, S.R.; Kendrew, J.; Curwen, J.O. Novel 4-anilinoquinazolines with C-7 basic side chains: Design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem. 2002, 45, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
  169. Rao, L.; De Veirman, K.; Giannico, D.; Saltarella, I.; Desantis, V.; Frassanito, M.A.; Solimando, A.G.; Ribatti, D.; Prete, M.; Harstrick, A.; et al. Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin ® protein MP0250: A preclinical study. Oncotarget 2018, 9, 13366–13381. [Google Scholar] [CrossRef] [Green Version]
  170. Field-Smith, A.; Morgan, G.J.; Davies, F.E. Bortezomib (Velcade trade mark) in the Treatment of Multiple Myeloma. Ther. Clin. Risk Manag. 2006, 2, 271–279. [Google Scholar] [CrossRef] [Green Version]
  171. Ribatti, D.; Vacca, A. Therapeutic renaissance of thalidomide in the treatment of haematological malignancies. Leukemia 2005, 19, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
  172. Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, N.; Anaissie, E.; Wilson, C.; Dhodapkar, M.; et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 1999, 341, 1565–1571. [Google Scholar] [CrossRef] [Green Version]
  173. Palumbo, A.; Giaccone, L.; Bertola, A.; Pregno, P.; Bringhen, S.; Rus, C.; Triolo, S.; Gallo, E.; Pileri, A.; Boccadoro, M. Low-dose thalidomide plus dexamethasone is an effective salvage therapy for advanced myeloma. Haematologica 2001, 86, 399–403. [Google Scholar] [PubMed]
  174. Dimopoulos, M.A.; Zervas, K.; Kouvatseas, G.; Galani, E.; Grigoraki, V.; Kiamouris, C.; Vervessou, E.; Samantas, E.; Papadimitriou, C.; Economou, O.; et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann. Oncol. 2001, 12, 991–995. [Google Scholar] [CrossRef] [PubMed]
  175. Rajkumar, S.V.; Hayman, S.; Gertz, M.A.; Dispenzieri, A.; Lacy, M.Q.; Greipp, P.R.; Geyer, S.; Iturria, N.; Fonseca, R.; Lust, J.A.; et al. Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J. Clin. Oncol. 2002, 20, 4319–4323. [Google Scholar] [CrossRef] [PubMed]
  176. Weber, D.; Rankin, K.; Gavino, M.; Delasalle, K.; Alexanian, R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J. Clin. Oncol. 2003, 21, 16–19. [Google Scholar] [CrossRef] [PubMed]
  177. Cavo, M.; Zamagni, E.; Tosi, P.; Cellini, C.; Cangini, D.; Tacchetti, P.; Testoni, N.; Tonelli, M.; de Vivo, A.; Palareti, G.; et al. First-line therapy with thalidomide and dexamethasone in preparation for autologous stem cell transplantation for multiple myeloma. Haematologica 2004, 89, 826–831. [Google Scholar]
  178. McCarthy, P.L.; Palumbo, A. Maintenance therapy for multiple myeloma. Hematol. Oncol. Clin. N. Am. 2014, 28, 839–859. [Google Scholar] [CrossRef]
  179. Palumbo, A.; Avonto, I.; Bruno, B.; Ambrosini, M.T.; Bringhen, S.; Cavallo, F.; Falco, P.; Boccadoro, M. Intravenous melphalan, thalidomide and prednisone in refractory and relapsed multiple myeloma. Eur. J. Haematol. 2006, 76, 273–277. [Google Scholar] [CrossRef]
  180. Garcia-Sanz, R.; Gonzalez-Porras, J.R.; Hernandez, J.M.; Polo-Zarzuela, M.; Sureda, A.; Barrenetxea, C.; Palomera, L.; López, R.; Grande-García, C.; Alegre, A.; et al. The oral combination of thalidomide, cyclophosphamide and dexamethasone (ThaCyDex) is effective in relapsed/refractory multiple myeloma. Leukemia 2004, 18, 856–863. [Google Scholar] [CrossRef]
  181. Dimopoulos, M.A.; Hamilos, G.; Zomas, A.; Gika, D.; Efstathiou, E.; Grigoraki, V.; Poziopoulos, C.; Xilouri, I.; Zorzou, M.P.; Anagnostopoulos, N.; et al. Pulsed cyclophosphamide, thalidomide and dexamethasone: An oral regimen for previously treated patients with multiple myeloma. Hematol. J. 2004, 5, 112–117. [Google Scholar] [CrossRef]
  182. Hovenga, S.; Daenen, S.M.; de Wolf, J.T.; van Imhoff, G.W.; Kluin-Nelemans, H.C.; Sluiter, W.J.; Vellenga, E. Combined thalidomide and cyclophosphamide treatment for refractory or relapsed multiple myeloma patients: A prospective phase II study. Ann. Hematol. 2005, 84, 311–316. [Google Scholar] [CrossRef]
  183. Kyriakou, C.; Thomson, K.; D’Sa, S.; Flory, A.; Hanslip, J.; Goldstone, A.H.; Yong, K.L. Low-dose thalidomide in combination with oral weekly cyclophosphamide and pulsed dexamethasone is a well tolerated and effective regimen in patients with relapsed and refractory multiple myeloma. Br. J. Haematol. 2005, 129, 763–770. [Google Scholar] [CrossRef] [PubMed]
  184. Offidani, M.; Corvatta, L.; Marconi, M.; Visani, G.; Alesiani, F.; Brunori, M.; Galieni, P.; Catarini, M.; Burattini, M.; Centurioni, R.; et al. Low-dose thalidomide with pegylated liposomal doxorubicin and high-dose dexamethasone for relapsed/refractory multiple myeloma: A prospective, multicenter, phase II study. Haematologica 2006, 91, 133–136. [Google Scholar] [PubMed]
  185. Offidani, M.; Corvatta, L.; Piersantelli, M.N.; Visani, G.; Alesiani, F.; Brunori, M.; Galieni, P.; Catarini, M.; Burattini, M.; Centurioni, R.; et al. Thalidomide, dexamethasone, and pegylated liposomal doxorubicin (ThaDD) for patients older than 65 years with newly diagnosed multiple myeloma. Blood 2006, 108, 2159–2164. [Google Scholar] [CrossRef] [PubMed]
  186. Zervas, K.; Dimopoulos, M.A.; Hatzicharissi, E.; Anagnostopoulos, A.; Papaioannou, M.; Mitsouli, C.; Panagiotidis, P.; Korantzis, J.; Tzilianos, M.; Maniatis, A. Greek Myeloma Study Group. Primary treatment of multiple myeloma with thalidomide, vincristine, liposomal doxorubicin and dexamethasone (T-VAD doxil): A phase II multicenter study. Ann. Oncol. 2004, 15, 134–138. [Google Scholar] [CrossRef] [PubMed]
  187. Hussein, M.A.; Baz, R.; Srkalovic, G.; Agrawal, N.; Suppiah, R.; His, E.; Andresen, S.; Karam, M.A.; Reed, J.; Faiman, B.; et al. Phase 2 study of pegylated liposomal doxorubicin, vincristine, decreased-frequency dexamethasone, and thalidomide in newly diagnosed and relapsed-refractory multiple myeloma. Mayo Clin. Proc. 2006, 81, 889–895. [Google Scholar] [CrossRef]
  188. Ciolli, S.; Leoni, F.; Gigli, F.; Rigacci, L.; Bosi, A. Low dose Velcade, thalidomide and dexamethasone (LD-VTD): An effective regimen for relapsed and refractory multiple myeloma patients. Leuk. Lymphoma 2006, 47, 171–173. [Google Scholar] [CrossRef]
  189. Palumbo, A.; Ambrosini, M.T.; Benevolo, G.; Pregno, P.; Pescosta, N.; Callea, V.; Cangialosi, C.; Caravita, T.; Morabito, F.; Musto, P.; et al. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 2007, 109, 2767–2772. [Google Scholar] [CrossRef] [Green Version]
  190. Wang, M.; Giralt, S.; Delasalle, K.; Handy, B.; Alexanian, R. Bortezomib in combination with thalidomide-dexamethasone for previously untreated multiple myeloma. Hematology 2007, 12, 235–239. [Google Scholar] [CrossRef]
  191. Pineda-Roman, M.; Zangari, M.; van Rhee, F.; Anaissie, E.; Szymonifka, J.; Hoering, A.; Petty, N.; Crowley, J.; Shaughnessy, J.; Epstein, J.; et al. VTD combination therapy with bortezomib-thalidomide-dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 2008, 22, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
  192. Sonneveld, P.; Asselbergs, E.; Zweegman, S.; van der Holt, B.; Kersten, M.J.; Vellenga, E.; van Marwijk-Kooy, M.; Broyl, A.; de Weerdt, O.; Lonergan, S.; et al. Phase 2 study of carfilzomib, thalidomide, and dexamethasone as induction/consolidation therapy for newly diagnosed multiple myeloma. Blood 2015, 125, 449–456. [Google Scholar] [CrossRef] [Green Version]
  193. Mikhael, J.R.; Reeder, C.B.; Libby, E.N.; Costa, L.J.; Bergsagel, P.L.; Buadi, F.; Mayo, A.; Nagi Reddy, S.K.; Gano, K.; Dueck, A.C.; et al. Phase Ib/II trial of CYKLONE (cyclophosphamide, carfilzomib, thalidomide and dexamethasone) for newly diagnosed myeloma. Br. J. Haematol. 2015, 169, 219–227. [Google Scholar] [CrossRef] [PubMed]
  194. Mateos, M.V.; Granell, M.; Oriol, A.; Martinez-Lopez, J.; Blade, J.; Hernandez, M.T.; Martín, J.; Gironella, M.; Lynch, M.; Bleickardt, E.; et al. Elotuzumab in combination with thalidomide and low-dose dexamethasone: A phase 2 single-arm safety study in patients with relapsed/refractory multiple myeloma. Br. J. Haematol. 2016, 175, 448–456. [Google Scholar] [CrossRef] [PubMed]
  195. Lee, C.K.; Barlogie, B.; Munshi, N.; Zangari, M.; Fassas, A.; Jacobson, J.; van Rhee, F.; Cottler-Fox, M.; Muwalla, F.; Tricot, G. DTPACE: An effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J. Clin. Oncol. 2003, 21, 2732–2739. [Google Scholar] [CrossRef] [PubMed]
  196. Kropff, M.H.; Lang, N.; Bisping, G.; Domine, N.; Innig, G.; Hentrich, M.; Mitterer, M.; Südhoff, T.; Fenk, R.; Straka, C.; et al. Hyperfractionated cyclophosphamide in combination with pulsed dexamethasone and thalidomide (HyperCDT) in primary refractory or relapsed multiple myeloma. Br. J. Haematol. 2003, 122, 607–616. [Google Scholar] [CrossRef] [PubMed]
  197. Facon, T.; Mary, J.Y.; Hulin, C.; Benboubker, L.; Attal, M.; Pegourie, B.; Renaud, M.; Harousseau, J.L.; Guillerm, G.; Chaleteix, C.; et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): A randomised trial. Lancet 2007, 370, 1209–1218. [Google Scholar] [CrossRef]
  198. Palumbo, A.; Bringhen, S.; Caravita, T.; Merla, E.; Capparella, V.; Callea, V.; Cangialosi, C.; Grasso, M.; Rossini, F.; Galli, M.; et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: Randomised controlled trial. Lancet 2006, 367, 825–831. [Google Scholar] [CrossRef]
  199. Cavo, M.; Pantani, L.; Petrucci, M.T.; Patriarca, F.; Zamagni, E.; Donnarumma, D.; Crippa, C.; Boccadoro, M.; Perrone, G.; Falcone, A.; et al. Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood 2012, 120, 9–19. [Google Scholar] [CrossRef] [Green Version]
  200. Richardson, P.G.; Schlossman, R.L.; Weller, E.; Hideshima, T.; Mitsiades, C.; Davies, F.; LeBlanc, R.; Catley, L.P.; Doss, D.; Kelly, K.; et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002, 100, 3063–3067. [Google Scholar] [CrossRef]
  201. Weber, D.M.; Chen, C.; Niesvizky, R.; Wang, M.; Belch, A.; Stadtmauer, E.A.; Siegel, D.; Borrello, I.; Rajkumar, S.V.; Chanan-Khan, A.A.; et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med. 2007, 357, 2133–2142. [Google Scholar] [CrossRef]
  202. Hou, J.; Du, X.; Jin, J.; Cai, Z.; Chen, F.; Zhou, D.B.; Yu, L.; Ke, X.; Li, X.; Wu, D.; et al. A multicenter, open-label, phase 2 study of lenalidomide plus low-dose dexamethasone in Chinese patients with relapsed/refractory multiple myeloma: The MM-021 trial. J. Hematol. Oncol. 2013, 6, 41. [Google Scholar] [CrossRef] [Green Version]
  203. Dimopoulos, M.; Spencer, A.; Attal, M.; Prince, H.M.; Harousseau, J.L.; Dmoszynska, A.; San Miguel, J.; Hellmann, A.; Facon, T.; Foà, R.; et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 2007, 357, 2123–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  204. Rajkumar, S.V.; Hayman, S.R.; Lacy, M.Q.; Dispenzieri, A.; Geyer, S.M.; Kabat, B.; Zeldenrust, S.R.; Kumar, S.; Greipp, P.R.; Fonseca, R.; et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 2005, 106, 4050–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  205. Rajkumar, S.V.; Jacobus, S.; Callander, N.S.; Fonseca, R.; Vesole, D.H.; Williams, M.E.; Abonour, R.; Siegel, D.S.; Katz, M.; Greipp, P.R. Eastern Cooperative Oncology Group. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: An open-label randomised controlled trial. Lancet Oncol. 2010, 11, 29–37. [Google Scholar] [CrossRef] [Green Version]
  206. Richardson, P.G.; Weller, E.; Lonial, S.; Jakubowiak, A.J.; Jagannath, S.; Raje, N.S.; Avigan, D.E.; Xie, W.; Ghobrial, I.M.; Schlossman, R.L.; et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010, 116, 679–686. [Google Scholar] [CrossRef] [Green Version]
  207. McCarthy, P.L.; Owzar, K.; Hofmeister, C.C.; Hurd, D.D.; Hassoun, H.; Richardson, P.G.; Giralt, S.; Stadtmauer, E.A.; Weisdorf, D.J.; Vij, R.; et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2012, 366, 1770–1781. [Google Scholar] [CrossRef] [Green Version]
  208. Attal, M.; Lauwers-Cances, V.; Marit, G.; Caillot, D.; Moreau, P.; Facon, T.; Stoppa, A.M.; Hulin, C.; Benboubker, L.; Garderet, L.; et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2012, 366, 1782–1791. [Google Scholar] [CrossRef] [Green Version]
  209. Palumbo, A.; Cavallo, F.; Gay, F.; Di Raimondo, F.; Ben Yehuda, D.; Petrucci, M.T.; Pezzatti, S.; Caravita, T.; Cerrato, C.; Ribakovsky, E.; et al. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 2014, 371, 895–905. [Google Scholar] [CrossRef]
  210. Nijhof, I.S.; Franssen, L.E.; Levin, M.D.; Bos, G.M.J.; Broijl, A.; Klein, S.K.; Koene, H.R.; Bloem, A.C.; Beeker, A.; Faber, L.M.; et al. Phase 1/2 study of lenalidomide combined with low-dose cyclophosphamide and prednisone in lenalidomide-refractory multiple myeloma. Blood 2016, 128, 2297–2306. [Google Scholar] [CrossRef] [Green Version]
  211. Schey, S.A.; Morgan, G.J.; Ramasamy, K.; Hazel, B.; Ladon, D.; Corderoy, S.; Jenner, M.; Phekoo, K.; Boyd, K.; Davies, F.E. The addition of cyclophosphamide to lenalidomide and dexamethasone in multiply relapsed/refractory myeloma patients; a phase I/II study. Br. J. Haematol. 2010, 150, 326–333. [Google Scholar] [CrossRef] [Green Version]
  212. Kumar, S.K.; Lacy, M.Q.; Hayman, S.R.; Stewart, K.; Buadi, F.K.; Allred, J.; Laumann, K.; Greipp, P.R.; Lust, J.A.; Gertz, M.A.; et al. Lenalidomide, cyclophosphamide and dexamethasone (CRd) for newly diagnosed multiple myeloma: Results from a phase 2 trial. Am. J. Hematol. 2011, 86, 640–645. [Google Scholar] [CrossRef] [Green Version]
  213. Lentzsch, S.; O’Sullivan, A.; Kennedy, R.C.; Abbas, M.; Dai, L.; Pregja, S.L.; Burt, S.; Boyiadzis, M.; Roodman, G.D.; Mapara, M.Y.; et al. Combination of bendamustine, lenalidomide, and dexamethasone (BLD) in patients with relapsed or refractory multiple myeloma is feasible and highly effective: Results of phase 1/2 open-label, dose escalation study. Blood 2012, 119, 4608–4613. [Google Scholar] [CrossRef] [PubMed]
  214. Kumar, S.K.; Krishnan, A.; LaPlant, B.; Laumann, K.; Roy, V.; Zimmerman, T.; Gertz, M.A.; Buadi, F.K.; Stockerl Goldstein, K.; Birgin, A.; et al. Bendamustine, lenalidomide, and dexamethasone (BRD) is highly effective with durable responses in relapsed multiple myeloma. Am. J. Hematol. 2015, 90, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
  215. Palumbo, A.; Falco, P.; Corradini, P.; Falcone, A.; Di Raimondo, F.; Giuliani, N.; Crippa, C.; Ciccone, G.; Omedè, P.; Ambrosini, M.T.; et al. Melphalan, prednisone, and lenalidomide treatment for newly diagnosed myeloma: A report from the GIMEMA--Italian Multiple Myeloma Network. J. Clin. Oncol. 2007, 25, 4459–4465. [Google Scholar] [CrossRef] [PubMed]
  216. Baz, R.; Walker, E.; Karam, M.A.; Choueiri, T.K.; Jawde, R.A.; Bruening, K.; Reed, J.; Faiman, B.; Ellis, Y.; Brand, C.; et al. Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: Safety and efficacy. Ann. Oncol. 2006, 17, 1766–1771. [Google Scholar] [CrossRef]
  217. Baz, R.C.; Shain, K.H.; Hussein, M.A.; Lee, J.H.; Sullivan, D.M.; Oliver, E.F.; Nardelli, L.A.; Nodzon, L.A.; Zhao, X.; Ochoa-Bayona, J.L.; et al. Phase II study of pegylated liposomal doxorubicin, low-dose dexamethasone, and lenalidomide in patients with newly diagnosed multiple myeloma. Am. J. Hematol. 2014, 89, 62–67. [Google Scholar] [CrossRef] [Green Version]
  218. Richardson, P.G.; Weller, E.; Jagannath, S.; Avigan, D.E.; Alsina, M.; Schlossman, R.L.; Mazumder, A.; Munshi, N.C.; Ghobrial, I.M.; Doss, D.; et al. Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J. Clin. Oncol. 2009, 27, 5713–5719. [Google Scholar] [CrossRef] [Green Version]
  219. Richardson, P.G.; Xie, W.; Jagannath, S.; Jakubowiak, A.; Lonial, S.; Raje, N.S.; Alsina, M.; Ghobrial, I.M.; Schlossman, R.L.; Munshi, N.C.; et al. A phase 2 trial of lenalidomide, bortezomib, and dexamethasone in patients with relapsed and relapsed/refractory myeloma. Blood 2014, 123, 1461–1469. [Google Scholar] [CrossRef] [Green Version]
  220. Stewart, A.K.; Rajkumar, S.V.; Dimopoulos, M.A.; Masszi, T.; Spicka, I.; Oriol, A.; Hájek, R.; Rosiñol, L.; Siegel, D.S.; Mihaylov, G.G.; et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 2015, 372, 142–152. [Google Scholar] [CrossRef]
  221. Jakubowiak, A.J.; Dytfeld, D.; Griffith, K.A.; Lebovic, D.; Vesole, D.H.; Jagannath, S.; Al-Zoubi, A.; Anderson, T.; Nordgren, B.; Detweiler-Short, K.; et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood 2012, 120, 1801–1809. [Google Scholar] [CrossRef]
  222. Niesvizky, R.; Martin, T.G., 3rd; Bensinger, W.I.; Alsina, M.; Siegel, D.S.; Kunkel, L.A.; Wong, A.F.; Lee, S.; Orlowski, R.Z.; Wang, M. Phase Ib dose-escalation study (PX-171–006) of carfilzomib, lenalidomide, and low-dose dexamethasone in relapsed or progressive multiple myeloma. Clin. Cancer Res. 2013, 19, 2248–2256. [Google Scholar] [CrossRef] [Green Version]
  223. Wang, M.; Martin, T.; Bensinger, W.; Alsina, M.; Siegel, D.S.; Kavalerchik, E.; Huang, M.; Orlowski, R.Z.; Niesvizky, R. Phase 2 dose-expansion study (PX-171–006) of carfilzomib, lenalidomide, and low-dose dexamethasone in relapsed or progressive multiple myeloma. Blood 2013, 122, 3122–3128. [Google Scholar] [CrossRef]
  224. Kumar, S.K.; Berdeja, J.G.; Niesvizky, R.; Lonial, S.; Laubach, J.P.; Hamadani, M.; Stewart, A.K.; Hari, P.; Roy, V.; Vescio, R.; et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: An open-label phase 1/2 study. Lancet Oncol. 2014, 15, 1503–1512. [Google Scholar] [CrossRef]
  225. Moreau, P.; Masszi, T.; Grzasko, N.; Bahlis, N.J.; Hansson, M.; Pour, L.; Sandhu, I.; Ganly, P.; Baker, B.W.; Jackson, S.R.; et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 374, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
  226. Chari, A.; Cho, H.J.; Dhadwal, A.; Morgan, G.; La, L.; Zarychta, K.; Catamero, D.; Florendo, E.; Stevens, N.; Verina, D.; et al. A Phase II Study of Panobinostat with Lenalidomide and Weekly Dexamethasone in Myeloma. Blood Adv. 2017, 1, 1575–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  227. Yee, A.J.; Bensinger, W.I.; Supko, J.G.; Voorhees, P.M.; Berdeja, J.G.; Richardson, P.G.; Libby, E.N.; Wallace, E.E.; Birrer, N.E.; Burke, J.N.; et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A multicentre phase 1b trial. Lancet Oncol. 2016, 17, 1569–1578. [Google Scholar] [CrossRef]
  228. Lonial, S.; Dimopoulos, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.V.; Magen, H.; et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [Green Version]
  229. Lonial, S.; Vij, R.; Harousseau, J.L.; Facon, T.; Moreau, P.; Mazumder, A.; Kaufman, J.L.; Leleu, X.; Tsao, L.C.; Westland, C.; et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J. Clin. Oncol. 2012, 30, 1953–1959. [Google Scholar] [CrossRef]
  230. Plesner, T.; Arkenau, H.-T.; Gimsing, P.; Krejcik, J.; Lemech, C.; Minnema, M.C.; Lassen, U.; Laubach, J.P.; Palumbo, A.; Lisby, S.; et al. Phase 1/2 study of daratumumab, lenalidomide, and dexamethasone for relapsed multiple myeloma. Blood 2016, 128, 1821–1828. [Google Scholar] [CrossRef] [Green Version]
  231. San Miguel, J.; Mateos, M.V.; Shah, J.J.; Ocio, E.M.; Rodriguez-Otero, P.; Reece, D.; Munshi, N.C.; Avigan, D.; Ge, Y.; Balakumaran, A.; et al. Pembrolizumab in Combination with Lenalidomide and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma (RRMM): Keynote-023. Blood 2015, 126, 505. [Google Scholar] [CrossRef]
  232. Richardson, P.G.; Siegel, D.; Baz, R.; Kelley, S.L.; Munshi, N.C.; Laubach, J.; Sullivan, D.; Alsina, M.; Schlossman, R.; Ghobrial, I.M.; et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood 2013, 121, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
  233. Dimopoulos, M.A.; Palumbo, A.; Corradini, P.; Cavo, M.; Delforge, M.; Di Raimondo, F.; Weisel, K.C.; Oriol, A.; Hansson, M.; Vacca, A.; et al. Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): A phase 3b study in refractory multiple myeloma. Blood 2016, 128, 497–503. [Google Scholar] [CrossRef] [PubMed]
  234. Lacy, M.Q.; Hayman, S.R.; Gertz, M.A.; Dispenzieri, A.; Buadi, F.; Kumar, S.; Greipp, P.R.; Lust, J.A.; Russell, S.J.; Dingli, D.; et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J. Clin. Oncol. 2009, 27, 5008–5014. [Google Scholar] [CrossRef] [PubMed]
  235. Richardson, P.G.; Siegel, D.S.; Vij, R.; Hofmeister, C.C.; Baz, R.; Jagannath, S.; Chen, C.; Lonial, S.; Jakubowiak, A.; Bahlis, N.; et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: A randomized phase 2 study. Blood 2014, 123, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
  236. Leleu, X.; Attal, M.; Arnulf, B.; Moreau, P.; Traulle, C.; Marit, G.; Mathiot, C.; Petillon, M.O.; Macro, M.; Roussel, M.; et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009–02. Blood 2013, 121, 1968–1975. [Google Scholar] [CrossRef]
  237. Paludo, J.; Mikhael, J.R.; LaPlant, B.R.; Halvorson, A.E.; Kumar, S.; Gertz, M.A.; Hayman, S.R.; Buadi, F.K.; Dispenzieri, A.; Lust, J.A.; et al. Pomalidomide, Bortezomib and Dexamethasone (PVD) for Patients with Relapsed Lenalidomide Refractory Multiple Myeloma (MM). Blood 2017, 130, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
  238. Richardson, P.G.; Hofmeister, C.; Raje, N.S.; Siegel, D.; Lonial, S.; Laubach, J.P.; Efebera, Y.A.; Vesole, D.H.; Nooka, A.K.; Rosenblatt, J.; et al. A Phase 1, Multicenter Study of Pomalidomide, Bortezomib, and Low-Dose Dexamethasone in Patients with Proteasome Inhibitor Exposed and Lenalidomide-Refractory Myeloma (Trial MM-005). Blood 2015, 126, 3036. [Google Scholar] [CrossRef]
  239. Shah, J.J.; Stadtmauer, E.A.; Abonour, R.; Cohen, A.D.; Bensinger, W.I.; Gasparetto, C.; Kaufman, J.L.; Lentzsch, S.; Vogl, D.T.; Gomes, C.L.; et al. Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma. Blood 2015, 126, 2284–2290. [Google Scholar] [CrossRef]
  240. Krishnan, A.; Kapoor, P.; Palmer, J.M.; Tsai, N.C.; Kumar, S.; Lonial, S.; Htut, M.; Karanes, C.; Nathwani, N.; Rosenzweig, M.; et al. Phase I/II trial of the oral regimen ixazomib, pomalidomide, and dexamethasone in relapsed/refractory multiple myeloma. Leukemia 2018, 32, 1567–1574. [Google Scholar] [CrossRef]
  241. Larocca, A.; Montefusco, V.; Bringhen, S.; Rossi, D.; Crippa, C.; Mina, R.; Galli, M.; Marcatti, M.; La Verde, G.; Giuliani, N.; et al. Pomalidomide, cyclophosphamide, and prednisone for relapsed/refractory multiple myeloma: A multicenter phase 1/2 open-label study. Blood 2013, 122, 2799–2806. [Google Scholar] [CrossRef]
  242. Baz, R.C.; Martin, T.G., 3rd; Lin, H.Y.; Zhao, X.; Shain, K.H.; Cho, H.J.; Wolf, J.L.; Mahindra, A.; Chari, A.; Sullivan, D.M.; et al. Randomized multicenter phase 2 study of pomalidomide, cyclophosphamide, and dexamethasone in relapsed refractory myeloma. Blood 2016, 127, 2561–2568. [Google Scholar] [CrossRef] [Green Version]
  243. Hussain, M.J.; Robinson, M.M.; Hamadeh, I.; Arnall, J.; Bhutani, M.; Atrash, S.; Friend, R.; Pineda-Roman, M.; Symanowski, J.T.; Usmani, S.Z.; et al. Daratumumab, pomalidomide and dexamethasone combination therapy in daratumumab and/or pomalidomide refractory multiple myeloma. Br. J. Haematol. 2019, 186, 140–144. [Google Scholar] [CrossRef] [PubMed]
  244. Mateos, M.V.; Blacklock, H.; Schjesvold, F.; Oriol, A.; Simpson, D.; George, A.; Goldschmidt, H.; Larocca, A.; Chanan-Khan, A.; Sherbenou, D.; et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): A randomised, open-label, phase 3 trial. Lancet Haematol. 2019, 6, e459–e469. [Google Scholar] [CrossRef]
  245. Assoun, S.; Brosseau, S.; Steinmetz, C.; Gounant, V.; Zalcman, G. Bevacizumab in advanced lung cancer: State of the art. Future Oncol. 2017, 13, 2515–2535. [Google Scholar] [CrossRef] [PubMed]
  246. Somlo, G.; Lashkari, A.; Bellamy, W.; Zimmerman, T.M.; Tuscano, J.M.; O’Donnell, M.R.; Mohrbacher, A.F.; Forman, S.J.; Frankel, P.; Chen, H.X.; et al. Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: A California Cancer Consortium trial. Br. J. Haematol. 2011, 154, 533–535. [Google Scholar] [CrossRef] [Green Version]
  247. White, D.; Kassim, A.; Bhaskar, B.; Yi, J.; Wamstad, K.; Paton, V.E. Results from AMBER, a randomized phase 2 study of bevacizumab and bortezomib versus bortezomib in relapsed or refractory multiple myeloma. Cancer 2013, 119, 339–347. [Google Scholar] [CrossRef]
  248. Yordanova, A.; Hose, D.; Neben, K.; Witzens-Harig, M.; Gütgemann, I.; Raab, M.S.; Moehler, T.; Goldschmidt, H.; Schmidt-Wolf, I.G. Sorafenib in patients with refractory or recurrent multiple myeloma. Hematol. Oncol. 2013, 31, 197–200. [Google Scholar] [CrossRef]
  249. Srkalovic, G.; Hussein, M.A.; Hoering, A.; Zonder, J.A.; Popplewell, L.L.; Trivedi, H.; Mazzoni, S.; Sexton, R.; Orlowski, R.Z.; Barlogie, B. A phase II trial of BAY 43-9006 (sorafenib) (NSC-724772) in patients with relapsing and resistant multiple myeloma: SWOG S0434. Cancer Med. 2014, 3, 1275–1283. [Google Scholar] [CrossRef]
  250. Kumar, S.; Porrata, L.F.; Ansell, S.M.; Colgan, J.P.; LaPlant, B.; Gertz, M.A.; Inwards, D.J.; Johnston, P.B.; Haberman, T.; Micallef, I.N.; et al. Phase 1 Trial of Sorafenib and Everolimus In Patients with Lymphoma or Multiple Myeloma. Blood 2010, 116, 2802. [Google Scholar] [CrossRef]
  251. Carlomagno, F.; Vitagliano, D.; Guida, T.; Ciardiello, F.; Tortora, G.; Vecchio, G.; Ryan, A.J.; Fontanini, G.; Fusco, A.; Santoro, M. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002, 62, 7284–7290. [Google Scholar]
  252. Kovacs, M.J.; Reece, D.E.; Marcellus, D.; Meyer, R.M.; Mathews, S.; Dong, R.P.; Eisenhauer, E. A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma--NCIC CTG IND.145. Invest. New Drugs 2006, 24, 529–535. [Google Scholar]
  253. Grząśko, N.; Knop, S.; Goldschmidt, H.; Raab, M.S.; Dürig, J.; Bringhen, S.; D’Agostino, M.; Gamberi, B.; Rivolti, E.; Vacca, A.; et al. The MP0250-CP201 Mirror Study: A Phase 2 Study Update of MP0250 Plus Bortezomib and Dexamethasone in Relapse/Refractory Multiple Myeloma (RRMM) Patients Previously Exposed to Proteasome Inhibitors and Immunomodulatory Drugs. Blood 2019, 134 (Suppl. 1), 1899. [Google Scholar] [CrossRef]
Figure 1. Schematic representation of VEGFRs and relative ligands. VEGFR-1 is expressed in a subset of hematopoietic bone marrow progenitor cells, monocytes/macrophages, smooth muscle cells, and several cancer cells. VEGFR-2 is expressed prevalently in vascular endothelial cells and progenitors, neurons, and megakaryocytes, but it can be expressed on the surface of several cancer cells. VEGFR-3 is restricted to lymphatic endothelial cells. Neuropilins are expressed prevalently by cells of the nervous system, and they work as co-receptors in the endothelial cell during the angiogenic process. VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; PLGF: placental growth factor; Flt-1: Fms-like tyrosine kinase-1; KDR: Kinase insert domain receptor; Flk-1: Fetal Liver Kinase-1; FLT-4: Fms-like tyrosine kinase-4; NRP: neuropilin.
Figure 1. Schematic representation of VEGFRs and relative ligands. VEGFR-1 is expressed in a subset of hematopoietic bone marrow progenitor cells, monocytes/macrophages, smooth muscle cells, and several cancer cells. VEGFR-2 is expressed prevalently in vascular endothelial cells and progenitors, neurons, and megakaryocytes, but it can be expressed on the surface of several cancer cells. VEGFR-3 is restricted to lymphatic endothelial cells. Neuropilins are expressed prevalently by cells of the nervous system, and they work as co-receptors in the endothelial cell during the angiogenic process. VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; PLGF: placental growth factor; Flt-1: Fms-like tyrosine kinase-1; KDR: Kinase insert domain receptor; Flk-1: Fetal Liver Kinase-1; FLT-4: Fms-like tyrosine kinase-4; NRP: neuropilin.
Jcm 09 01765 g001
Figure 2. VEGFs and PlGF are is produced and released by all cells in the bone marrow microenvironment and displays several biological activities correlated to multiple myeloma (MM) progression. VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; PlGF: placental growth factor; NRP: neuropilin.
Figure 2. VEGFs and PlGF are is produced and released by all cells in the bone marrow microenvironment and displays several biological activities correlated to multiple myeloma (MM) progression. VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; PlGF: placental growth factor; NRP: neuropilin.
Jcm 09 01765 g002
Figure 3. VEGFR and cMet pathways in MM microenvironment. Sites of inhibition of anti-VEGF drugs. VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; KDR: kinase insert domain receptor; Flk-1: fetal liver kinase-1; HGF: hepatocyte growth factor; cMet: tyrosine-protein kinase Met or HGF receptor; GAB1: GRB2-associated-binding protein 1; FAK: focal adhesion kinase; PI3K: phosphatidylinositol 3-kinase; AKT: also know as protein kinase B (PKB); IKK: inhibitor of nuclear factor kappa-B kinase subunits; IKB: inhibitor of nuclear factor kappa-B kinase complex; mTOR: mammalian target of rapamycin; MEK: Mitogen-activated protein kinase kinase; ERK: extracellular signal-regulated kinase; RAC1: Ras-related C3 botulinum toxin substrate 1; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells; PI: proteasome inhibitors; IMIDs: immunomodulators; TK: tyrosine kinase.
Figure 3. VEGFR and cMet pathways in MM microenvironment. Sites of inhibition of anti-VEGF drugs. VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; KDR: kinase insert domain receptor; Flk-1: fetal liver kinase-1; HGF: hepatocyte growth factor; cMet: tyrosine-protein kinase Met or HGF receptor; GAB1: GRB2-associated-binding protein 1; FAK: focal adhesion kinase; PI3K: phosphatidylinositol 3-kinase; AKT: also know as protein kinase B (PKB); IKK: inhibitor of nuclear factor kappa-B kinase subunits; IKB: inhibitor of nuclear factor kappa-B kinase complex; mTOR: mammalian target of rapamycin; MEK: Mitogen-activated protein kinase kinase; ERK: extracellular signal-regulated kinase; RAC1: Ras-related C3 botulinum toxin substrate 1; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells; PI: proteasome inhibitors; IMIDs: immunomodulators; TK: tyrosine kinase.
Jcm 09 01765 g003

Share and Cite

MDPI and ACS Style

Ria, R.; Melaccio, A.; Racanelli, V.; Vacca, A. Anti-VEGF Drugs in the Treatment of Multiple Myeloma Patients. J. Clin. Med. 2020, 9, 1765. https://doi.org/10.3390/jcm9061765

AMA Style

Ria R, Melaccio A, Racanelli V, Vacca A. Anti-VEGF Drugs in the Treatment of Multiple Myeloma Patients. Journal of Clinical Medicine. 2020; 9(6):1765. https://doi.org/10.3390/jcm9061765

Chicago/Turabian Style

Ria, Roberto, Assunta Melaccio, Vito Racanelli, and Angelo Vacca. 2020. "Anti-VEGF Drugs in the Treatment of Multiple Myeloma Patients" Journal of Clinical Medicine 9, no. 6: 1765. https://doi.org/10.3390/jcm9061765

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop