Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA)
2.3. Trabecular Bone Score
2.4. Statistical Analysis
2.5. Ethical Aspects
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Cornish, J.; Callon, K.E.; Reid, I.R. Insulin increases histomorphometric indices of bone formation in vivo. Calcif. Tissue Int. 1996, 59, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Fulzele, K.; Riddle, R.C.; DiGirolamo, D.J.; Cao, X.; Wan, C.; Chen, D.; Faugere, M.-C.; Aja, S.; Hussain, M.A.; Brüning, J.C.; et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 2010, 142, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pun, K.K.; Lau, P.; Ho, P.W. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line. J. Bone Miner. Res. 1989, 4, 853–862. [Google Scholar] [CrossRef]
- Compston, J. Type 2 diabetes mellitus and bone. J. Intern. Med. 2018, 283, 140–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R.; Evans, M.C.; Cooper, G.J.; Ames, R.W.; Stapleton, J. Circulating insulin levels are related to bone density in normal postmenopausal women. Am. J. Physiol. 1993, 265 Pt 1, 655–659. [Google Scholar] [CrossRef]
- Shanbhogue, V.V.; Finkelstein, J.S.; Bouxsein, M.L.; Yu, E.W. Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women. J. Clin. Endocrinol. Metab. 2016, 101, 3114–3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanthan, P.; Crandall, C.J.; Miller-Martinez, D.; Seeman, T.E.; Greendale, G.A.; Binkley, N.; Karlamangla, A.S. Insulin resistance and bone strength: Findings from the study of midlife in the United States. J. Bone Min. Res. 2014, 29, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Napoli, N.; Conte, C.; Pedone, C.; Strotmeyer, E.S.; Barbour, K.E.; Black, D.M.; Samelson, E.J.; Schwartz, A.V. Effect of Insulin Resistance on BMD and Fracture Risk in Older Adults. J. Clin. Endocrinol. Metab. 2019, 104, 3303–3310. [Google Scholar] [CrossRef]
- Yang, J.; Hong, N.; Shim, J.-S.; Rhee, Y.; Kim, H.C. Association of Insulin Resistance with Lower Bone Volume and Strength Index of the Proximal Femur in Nondiabetic Postmenopausal Women. J. Bone Metab. 2018, 25, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Starup-Linde, J.; Frost, M.; Vestergaard, P.; Abrahamsen, B. Epidemiology of Fractures in Diabetes. Calcif. Tissue Int. 2017, 100, 109–121. [Google Scholar] [CrossRef]
- Harvey, N.C.; Glüer, C.C.; Binkley, N.; McCloskey, E.V.; Brandi, M.-L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.M.; et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015, 78, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winzenrieth, R.; Humbert, L.; Di Gregorio, S.; Bonel, E.; García, M.; Del Rio, L. Effects of osteoporosis drug treatments on cortical and trabecular bone in the femur using DXA-based 3D modeling. Osteoporos. Int. 2018, 29, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Humbert, L.; Bagué, A.; Di Gregorio, S.; Winzenrieth, R.; Sevillano, X.; González Ballester, M.Á.; Del Rio, L. DXA-Based 3D Analysis of the Cortical and Trabecular Bone of Hip Fracture Postmenopausal Women: A Case-Control Study. J. Clin. Densitom. 2018, 18, 1094–6950. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. National Osteoporosis Foundation Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [Green Version]
- Zysset, P.; Qin, L.; Lang, T.; Khosla, S.; Leslie, W.D.; Shepherd, J.A.; Schousboe, J.T.; Engelke, K. Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: The 2015 ISCD Official Positions-Part II. J. Clin. Densitom. 2015, 18, 359–392. [Google Scholar] [CrossRef] [PubMed]
- Genant, H.K.; Libanati, C.; Engelke, K.; Zanchetta, J.R.; Høiseth, A.; Yuen, C.K.; Stonkus, S.; Bolognese, M.A.; Franek, E.; Fuerst, T.; et al. Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone 2013, 56, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Engelke, K.; Lang, T.; Khosla, S.; Qin, L.; Zysset, P.; Leslie, W.D.; Shepherd, J.A.; Shousboe, J.T. Clinical Use of Quantitative Computed Tomography-Based Advanced Techniques in the Management of Osteoporosis in Adults: The 2015 ISCD Official Positions-Part III. J. Clin. Densitom. 2015, 18, 393–407. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Fragomen, A.T.; Rozbruch, S.R. Noninvasive quantitative assessment of bone healing after distraction osteogenesis. HSS J. 2010, 6, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Humbert, L.; Martelli, Y.; Fonolla, R.; Steghofer, M.; Di Gregorio, S.; Malouf, J.; Romera, J.; Barquero, L.M.D.R. 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images. IEEE Trans. Med. Imaging 2017, 36, 27–39. [Google Scholar] [CrossRef]
- Väänänen, S.P.; Grassi, L.; Flivik, G.; Jurvelin, J.S.; Isaksson, H. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med. Image Anal. 2015, 24, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Dempster, D.W.; Müller, R.; Zhou, H.; Kohler, T.; Shane, E.; Parisien, M.; Silverberg, S.J.; Bilezikian, J.P. Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone 2007, 41, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewiecki, E.M.; Miller, P.D. Skeletal effects of primary hyperparathyroidism: Bone mineral density and fracture risk. J. Clin. Densitom. 2013, 16, 28–32. [Google Scholar] [CrossRef] [PubMed]
- McClung, M.R.; San Martin, J.; Miller, P.D.; Civitelli, R.; Bandeira, F.; Omizo, M.; Donley, D.W.; Dalsky, G.P.; Eriksen, E.F. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch. Intern. Med. 2005, 165, 1762–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haffner, S.M.; Bauer, R.L. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metab. Clin. Exp. 1993, 42, 735–738. [Google Scholar] [CrossRef]
- Kalimeri, M.; Leek, F.; Wang, N.X.; Koh, H.R.; Roy, N.C.; Cameron-Smith, D.; Kruger, M.C.; Henry, C.J.; Totman, J.J. Association of Insulin Resistance with Bone Strength and Bone Turnover in Menopausal Chinese-Singaporean Women without Diabetes. Int. J. Environ. Res. Public Health 2018, 15, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef]
- Savvidis, C.; Tournis, S.; Dede, A.D. Obesity and bone metabolism. Hormones (Athens) 2018, 17, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.E.; Bava, U.; Lin, C.; Naot, D.; Hill, B.L.; Grey, A.B.; Broom, N.; Myers, D.E.; Nicholson, G.C.; et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 2002, 175, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Ootsuka, T.; Nakanishi, A.; Tsukamoto, I. Increase in osteoclastogenesis in an obese Otsuka Long-Evans Tokushima fatty rat model. Mol. Med. Rep. 2015, 12, 3874–3880. [Google Scholar] [CrossRef]
- Sheng, M.H.C.; Lau, K.H.W.; Baylink, D.J. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone. J. Bone Metab. 2014, 21, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Wędrychowicz, A.; Sztefko, K.; Starzyk, J.B. Sclerostin and its association with insulin resistance in children and adolescents. Bone 2019, 120, 232–238. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, A.; Rozas-Moreno, P.; Reyes-García, R.; Morales-Santana, S.; García-Fontana, B.; García-Salcedo, J.A.; Muñoz-Torres, M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2012, 97, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, W.D.; Aubry-Rozier, B.; Lamy, O.; Hans, D. Manitoba Bone Density Program TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 2013, 98, 602–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, A.L.; Donlon, C.M.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Copeland, T.; Yu, C.Y.; LeBoff, M.S. VITamin D and OmegA-3 TriaL (VITAL) bone health ancillary study: Clinical factors associated with trabecular bone score in women and men. Osteoporos. Int. 2018, 29, 2505–2515. [Google Scholar] [CrossRef] [PubMed]
- Mesinovic, J.; McMillan, L.B.; Shore-Lorenti, C.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sex-specific associations between insulin resistance and bone parameters in overweight and obese older adults. Clin. Endocrinol. (Oxf.) 2019, 90, 680–689. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, I.M.; Parreiras-E-Silva, L.T.; Carvalho, A.L.; Elias, J.; Salmon, C.E.G.; de Paula, F.J.A. Insulin resistance negatively affects bone quality not quantity: The relationship between bone and adipose tissue. Osteoporos. Int. 2020, 31, 1125–1133. [Google Scholar] [CrossRef]
- Burr, D.B. Changes in bone matrix properties with aging. Bone 2019, 120, 85–93. [Google Scholar] [CrossRef]
- Sanches, C.P.; Vianna, A.G.D.; Barreto, F.C. The impact of type 2 diabetes on bone metabolism. Diabetol. Metab. Syndr. 2017, 9, 85. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649056/ (accessed on 15 April 2019). [CrossRef] [Green Version]
- Neumann, T.; Lodes, S.; Kästner, B.; Lehmann, T.; Hans, D.; Lamy, O.; Müller, U.A.; Wolf, G.; Sämann, A. Trabecular bone score in type 1 diabetes—A cross-sectional study. Osteoporos. Int. 2016, 27, 127–133. [Google Scholar] [CrossRef]
Non-Osteoporotic | Osteoporotic | p-Value | |
---|---|---|---|
Age, mean ± SD (years) | 5987 ± 8.19 | 63.41 ± 8.89 | <0.001 |
BMI, mean ± SD (Kg/m2) | 2618 ± 4.56 | 25.64 ± 3.83 | 0.226 |
Age of menopause, mean ± SD (years) | 4810 ± 5.68 | 47.23 ± 5.85 | 0.163 |
Smoking, n (%) | 62 (53.9%) | 53 (46.1%) | 0.106 |
Alcohol, n (%) | 4 (57.1%) | 3 (42.9%) | 0.457 |
Corticosteroids, n (%) | 18 (46.2%) | 21 (53.8%) | 0.663 |
Familial history of osteoporosis, n (%) | 53 (40.5%) | 78 (59.5%) | 0.427 |
Familial history of hip fracture, n (%) | 20 (34.5%) | 38 (65.5%) | 0.147 |
Previous falls, n (%) | 7 (35.0%) | 13 (65.0%) | 0.434 |
GENERAL CHARACTERISTICS | HOMA-IR | ||||
---|---|---|---|---|---|
Q1 (0.2–1) | Q2 (1.1–1.85) | Q3 (1.86–3.4) | Q4 (3.5–41.8) | p-Value | |
Age, mean ± SD (years) | 61.84 ± 8.78 | 60.53 ± 8.57 | 61.87 ± 8.61 | 62.04 ± 8.62 | 0.657 |
BMI, mean ± SD (Kg/m2) | 23.79 ± 3.09 | 25.12 ± 3.01 | 26.18 ± 3.81 | 27.62 ± 4.80 | <0.001 |
Age of menopause, mean ± SD (years) | 47.62 ± 5.96 | 47.63 ± 6.41 | 47.69 ± 5.73 | 47.34 ± 6.27 | 0.986 |
Osteoporosis, n (%) | 36 (21.4%) | 44 (26.2%) | 48 (28.6%) | 40 (23.8%) | 0.560 |
Smoking, n (%) | 22 (34.9%) | 35 (36.5%) | 20 (20.8%) | 19 (19.8%) | 0.037 |
Alcohol, n (%) | 2 (33.3%) | 1 (16.7%) | 2 (33.3%) | 1 (16.7%) | 0.797 |
INSULIN | |||||
Q1 (1.3–5.1) | Q2 (5.2–8.6) | Q3 (8.7–16.1) | Q4 (16.2–131.3) | p-value | |
Age, mean ± SD (years) | 62.32 ± 9.25 | 60.67 ± 8.84 | 61.18 ± 8.63 | 61.67 ± 8.37 | 0.661 |
BMI, mean ± SD (Kg/m2) | 24.14 ± 3.07 | 25.38 ± 3.51 | 26.31 ± 3.97 | 27.11 ± 4.74 | <0.001 |
Age of menopause, mean ± SD (years) | 47.94 ± 5.96 | 48.07 ± 5.90 | 46.77 ± 6.28 | 47.38 ± 6.05 | 0.575 |
Osteoporosis, n (%) | 43 (25.1%) | 47 (27.5%) | 39 (22.8%) | 42 (24.6%) | 0.982 |
Smoking, n (%) | 24 (24.2%) | 38 (38.4%) | 19 (19.2%) | 18 (18.2%) | 0.024 |
Alcohol, n (%) | 2 (33.3%) | 3 (50.0%) | 1 (16.7%) | 0 (0%) | 0.414 |
HbA1c | |||||
Q1 (4.04–5.3) | Q2 (5.5–5.5) | Q3 (5.6–5.7) | Q4 (5.8–8) | p-value | |
Age, mean ± SD (years) | 58.61 ± 9.61 | 68.52 ± 8.07 | 62.61 ± 8.41 | 63.65 ± 8.15 | <0.001 |
BMI, mean ± SD (Kg/m2) | 24.90 ± 3.64 | 24.56 ± 2.95 | 25.98 ± 3.24 | 27.39 ± 4.87 | <0.001 |
Age of menopause, mean ± SD (years) | 47.33 ± 6.29 | 48.74 ± 4.79 | 47.45 ± 6.49 | 47.20 ± 6.16 | 0.457 |
Osteoporosis, n (%) | 27 (18.1%) | 33 (22.1%) | 43 (28.9%) | 46 (30.9%) | 0.730 |
Smoking, n (%) | 19 (21.8%) | 26 (29.9%) | 17 (19.5%) | 25 (28.7%) | 0.218 |
Alcohol, n (%) | 1 (16.7%) | 1 (16.7%) | 3 (33.3%) | 2 (33.3%) | 0.959 |
DENSITOMETRY PARAMETERS | HOMA-IR | ||||
---|---|---|---|---|---|
Q1 (0.2–1) | Q2 (1.1–1.85) | Q3 (1.86–3.4) | Q4 (3.5–41.8) | p-Value | |
Neck BMD (g/cm2) | 0.805 ± 0.13 | 0.827 ± 0.11 | 0.840 ± 0.13 | 0.858 ± 0.17 | 0.316 |
Hip BMD (g/cm2) | 0.822 ± 0.13 | 0.865 ± 0.12 | 0.876 ± 0.12 | 0.914 ± 0.14 | 0.001 Q1 vs. Q4 |
Sdensitometry (mg/cm2) | 139 ± 22 | 147 ± 20 | 150 ± 21 | 155 ± 23 | 0.025, Q1 vs. Q3 0.001 Q1 vs. Q4 |
vBMD trabecular (g/cm3) | 134 ± 38 | 144 ± 33 | 146 ± 35 | 156 ± 39 | 0.005 Q1 vs. Q4 |
vBMD cortical (g/cm3) | 763 ± 82 | 792± 75 | 791 ± 74 | 812 ± 84 | 0.003 Q1 vs. Q4 |
vBMD integral(g/cm3) | 279 ± 53 | 294 ± 47 | 297 ± 48 | 310 ± 52 | 0.003 Q1 vs. Q4 |
mCT (mm) | 1.82 ± 0.13 | 1.86 ± 0.13 | 1.90 ± 0.16 | 1.90 ± 0.13 | 0.007 Q1 vs. Q3 0.003 Q1 vs. Q4 |
TBS | 1.269 ± 0.16 | 1.267 ± 0.11 | 1.266 ± 0.14 | 1.269 ± 0.13 | 0.864 |
INSULIN | |||||
Q1 (1.3–5.1) | Q2 (5.2–8.6) | Q3 (8.7–16.1) | Q4 (16.2–131.3) | p-value | |
Neck BMD (g/cm2) | 0.800 ± 0.12 | 0.842 ± 0.11 | 0.841 ± 0.14 | 0.853 ± 0.17 | 0.125 |
Hip BMD (g/cm2) | 0.824 ± 0.13 | 0.878 ± 0.13 | 0.879 ± 0.13 | 0.902 ± 0.13 | 0.001 Q1 vs. Q4 |
Sdensitometry (mg/cm2) | 140 ± 21 | 148± 21 | 151 ± 22 | 153 ± 22 | 0.017 Q1 vs. Q3 0.002 Q1 vs. Q4 |
vBMD trabecular (g/cm3) | 136 ± 36 | 146 ± 34 | 146 ± 38 | 153 ± 31 | 0.039 Q1 vs. Q4 |
vBMD cortical (g/cm3) | 767 ± 80 | 790 ± 79 | 796 ± 76 | 806 ± 82 | 0.021 Q1 vs. Q4 |
vBMD integral(g/cm3) | 281 ± 51 | 296 ± 49 | 298 ± 53 | 307 ± 48 | 0.014 Q1 vs. Q4 |
mCT (mm) | 1.82 ± 0.13 | 1.87 ± 0.14 | 1.89 ± 0.16 | 1.89 ± 0.13 | 0.011 Q1 vs. Q3 0.008 Q1 vs. Q4 |
TBS | 1.266 ± 0.16 | 1.275 ± 0.10 | 1.268 ± 0.10 | 1.249 ± 0.14 | 0.651 |
HbA1c | |||||
Q1 (4.04–5.3) | Q2 (5.5–5.5) | Q3 (5.6–5.7) | Q4 (5.8–8) | p-value | |
Neck BMD (g/cm2) | 0.836 ± 0.13 | 0.839 ± 0.13 | 0.853 ± 0.17 | 0.830 ± 0.11 | 0.926 |
Hip BMD (g/cm2) | 0.859 ± 0.14 | 0.868 ± 0.12 | 0.876 ± 0.13 | 0.898 ± 0.13 | 0.304 |
Sdensitometry (mg/cm2) | 145 ± 22 | 147 ± 22 | 148 ± 22 | 153 ± 22 | 0.160 |
vBMD trabecular (g/cm3) | 145 ± 36 | 146 ± 35 | 144 ± 37 | 153 ± 31 | 0.446 |
vBMD cortical (g/cm3) | 776 ± 74 | 783 ± 68 | 794 ± 87 | 811 ± 83 | 0.073 |
vBMD integral(g/cm3) | 293 ± 50 | 295 ± 47 | 295 ± 52 | 306 ± 52 | 0.374 |
mCT (mm) | 1.86 ± 0.13 | 1.88 ± 0.17 | 1.87 ± 0.11 | 1.88 ± 0.13 | 0.676 |
TBS | 1.298 ± 0.11 | 1.280 ± 0.14 | 1.296 ± 0.10 | 1.229 ± 0.12 | 0.013,Q1 vs. Q4 |
Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|
ρ | p-Value | ρ | p-Value | ρ | p-Value | ||
BMI | BMD neck (g/cm2) | 0.009 | 0.053 | 0.195 | <0.001 | - | - |
BMD total (g/cm2) | 0.087 | <0.001 | 0.187 | <0.001 | - | - | |
Sdensitometry (mg/cm2) | 0.128 | <0.001 | 0.193 | <0.001 | - | - | |
vBMD trabecular (g/cm3) | 0.067 | <0.001 | 0.181 | <0.001 | - | - | |
vBMD cortical (g/cm3) | 0.106 | <0.001 | 0.157 | <0.001 | - | - | |
vBMD integral (g/cm3) | 0.078 | <0.001 | 0.181 | <0.001 | - | - | |
mCT (mm) | 0.075 | <0.001 | 0.12 | <0.001 | - | - | |
TBS | 0.024 | 0.003 | 0.083 | <0.001 | - | - | |
Insulin | BMD neck (g/cm2) | −0.002 | 0.541 | 0.162 | 0.289 | 0.221 | 0.738 |
BMD total (g/cm2) | 0.013 | 0.03 | 0.085 | 0.012 | 0.228 | 0.573 | |
Sdensitometry (mg/cm2) | 0.015 | 0.021 | 0.052 | 0.012 | 0.223 | 0.565 | |
vBMD trabecular (g/cm3) | 0.009 | 0.057 | 0.084 | 0.026 | 0.209 | 0.75 | |
vBMD cortical (g/cm3) | 0.002 | 0.102 | 0.037 | 0.068 | 0.176 | 0.933 | |
vBMD integral (g/cm3) | 0.009 | 0.054 | 0.082 | 0.024 | 0.212 | 0.674 | |
mCT (mm) | 0.015 | 0.021 | 0.036 | 0.013 | 0.137 | 0.365 | |
TBS | 0.086 | 0.005 | 0.021 | 0.008 | 0.091 | 0.009 | |
HOMA-IR | BMD neck (g/cm2) | −0.003 | 0.673 | 0.165 | 0.413 | 0.224 | 0.633 |
BMD total (g/cm2) | 0.016 | 0.018 | 0.088 | 0.007 | 0.225 | 0.382 | |
Sdensitometry (mg/cm2) | 0.016 | 0.017 | 0.053 | 0.01 | 0.217 | 0.466 | |
vBMD trabecular(g/cm3) | 0.012 | 0.033 | 0.091 | 0.014 | 0.21 | 0.472 | |
vBMD cortical (g/cm3) | 0.008 | 0.064 | 0.039 | 0.043 | 0.17 | 0.689 | |
vBMD integral (g/cm3) | 0.011 | 0.037 | 0.085 | 0.017 | 0.21 | 0.494 | |
mCT (mm) | 0.013 | 0.028 | 0.034 | 0.019 | 0.132 | 0.426 | |
TBS | 0.016 | 0.019 | 0.094 | 0.011 | 0.1 | 0.022 | |
Glucose | BMD neck (g/cm2) | 0 | 0.322 | 0.149 | 0.345 | 0.195 | 0.998 |
BMD total (g/cm2) | 0.026 | 0.002 | 0.09 | 0.002 | 0.203 | 0.065 | |
Sdensitometry (mg/cm2) | 0.025 | 0.003 | 0.055 | 0.003 | 0.206 | 0.112 | |
vBMD trabecular (g/cm3) | 0.024 | 0.003 | 0.095 | 0.003 | 0.189 | 0.068 | |
vBMD cortical (g/cm3) | 0.023 | 0.004 | 0.049 | 0.004 | 0.162 | 0.088 | |
vBMD integral (g/cm3) | 0.023 | 0.004 | 0.089 | 0.004 | 0.194 | 0.089 | |
mCT (mm) | 0.01 | 0.045 | 0.027 | 0.047 | 0.13 | 0.487 | |
TBS | −0.003 | 0.849 | 0.074 | 0.699 | 0.081 | 0.854 | |
HbA1c | BMD neck (g/cm2) | −0.002 | 0.53 | 0.136 | 0.099 | 0.18 | 0.705 |
BMD total (g/cm2) | 0.028 | 0.004 | 0.091 | <0.001 | 0.218 | 0.061 | |
Sdensitometry (mg/cm2) | 0.025 | 0.007 | 0.056 | 0.011 | 0.222 | 0.189 | |
vBMD trabecular (g/cm3) | 0.021 | 0.011 | 0.092 | 0.001 | 0.2 | 0.094 | |
vBMD cortical (g/cm3) | 0.03 | <0.001 | 0.057 | 0.001 | 0.185 | 0.071 | |
vBMD integral (g/cm3) | 0.02 | 0.014 | 0.083 | 0.002 | 0.2 | 0.127 | |
mCT (mm) | 0.004 | 0.167 | 0.02 | 0.085 | 0.129 | 0.909 | |
TBS | 0.031 | 0.003 | 0.091 | 0.01 | 0.096 | 0.032 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campillo-Sánchez, F.; Usategui-Martín, R.; Ruiz -de Temiño, Á.; Gil, J.; Ruiz-Mambrilla, M.; Fernández-Gómez, J.M.; Dueñas-Laita, A.; Pérez-Castrillón, J.L. Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women. J. Clin. Med. 2020, 9, 1732. https://doi.org/10.3390/jcm9061732
Campillo-Sánchez F, Usategui-Martín R, Ruiz -de Temiño Á, Gil J, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas-Laita A, Pérez-Castrillón JL. Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women. Journal of Clinical Medicine. 2020; 9(6):1732. https://doi.org/10.3390/jcm9061732
Chicago/Turabian StyleCampillo-Sánchez, Francisco, Ricardo Usategui-Martín, Ángela Ruiz -de Temiño, Judith Gil, Marta Ruiz-Mambrilla, Jose María Fernández-Gómez, Antonio Dueñas-Laita, and José Luis Pérez-Castrillón. 2020. "Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women" Journal of Clinical Medicine 9, no. 6: 1732. https://doi.org/10.3390/jcm9061732
APA StyleCampillo-Sánchez, F., Usategui-Martín, R., Ruiz -de Temiño, Á., Gil, J., Ruiz-Mambrilla, M., Fernández-Gómez, J. M., Dueñas-Laita, A., & Pérez-Castrillón, J. L. (2020). Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women. Journal of Clinical Medicine, 9(6), 1732. https://doi.org/10.3390/jcm9061732