The Effect of Sacubitril/Valsartan on Device Detected Arrhythmias and Electrical Parameters among Dilated Cardiomyopathy Patients with Reduced Ejection Fraction and Implantable Cardioverter Defibrillator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Protocol
2.3. Drug Administration
2.4. Clinical and Laboratory Evaluation
2.5. Electrocardiographic Measurements
2.6. Echocardiographic Evaluation
2.7. Device Interrogations
2.8. Statistical Analysis
3. Results
3.1. Patients Population
3.2. Clinical and Laboratory Evaluation
3.3. Electrocardiographic Evaluation
3.4. Echocardiographic Evaluation
3.5. ICD Electrical Parameters
3.6. ICD Electrical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, P.; Nuyens, D.; Rivero-Ayerza, M.; Van Herendael, H.; Vercammen, J.; Ceyssens, W.; Luwel, E.; Dupont, M.; Mullens, W. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin. Res. Cardiol. 2019, 108, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- De Diego, C.; Gonzalez-Torres, L.; Núñez, J.M.; Inda, R.C.; Martin-Langerwerf, D.A.; Sangio, A.D.; Chochowski, P.; Casasnovas, P.; Blazquez, J.C.; Almendral, J. Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices. Heart Rhythm 2018, 15, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Dujka, L.; Vranova, J.; Simon, J.; Petru, J.; Sediva, J.; Chovanec, M.; Janotka, M.; Hala, P.; Neuzil, P.; Malek, F.F. Effect of loading dose of sacubitril-valsartan on the incidence of ventricular tachycardia as assessed by ICD interrogation-single center experience. In Proceedings of the ESC Heart Failure Congress, Athens, Greece, 25–28 May 2019. Abstract: P405. [Google Scholar]
- Grabowski, M.; Ozierański, K.; Balsam, P.; Dąbrowski, R.; Farkowski, M.M.; Gackowski, A.; Jędrzejczyk-Patej, E.; Kalarus, Z.; Leszek, P.; Nessler, J.; et al. The effect of sacubitril/valsartan on the occurrence of ventricular arrhythmia and the risk of sudden cardiac death in patients with chronic heart failure with reduced left ventricular ejection fraction. Kardiol. Pol. 2019, 77, 987–993. [Google Scholar]
- El-Battrawy, I.; Pilsinger, C.; Liebe, V.; Lang, S.; Kuschyk, J.; Zhou, X.; Borggrefe, M.; Röger, S.; Akin, I. Impact of Sacubitril/Valsartan on the Long-Term Incidence of Ventricular Arrhythmias in Chronic Heart Failure Patients. J. Clin. Med. 2019, 8, 1582. [Google Scholar] [CrossRef] [Green Version]
- Vicent, L.; Juárez, M.; Martín, I.; García, J.; González-Saldívar, H.; Bruña, V.; Devesa, C.; Sousa-Casasnovas, I.; Fernández-Avilés, F.; Martínez-Sellés, M. Ventricular Arrhythmic Storm after Initiating Sacubitril/Valsartan. Cardiology 2018, 139, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Okutucu, S.; Oto, A. Electrical Storm after Initiating Sacubitril/Valsartan: Arrhythmic Paradox. Cardiology 2019, 142, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Valentim Gonçalves, A.; Pereira-da-Silva, T.; Galrinho, A.; Rio, P.; Moura Branco, L.; Soares, R.; Feliciano, J.; Ilhão Moreira, R.; Cruz Ferreira, R. Antiarrhythmic Effect of Sacubitril-Valsartan: Cause or Consequence of Clinical Improvement? J. Clin. Med. 2019, 8, 869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarrias, A.; Bayes-Genis, A. Is Sacubitril/Valsartan (Also) an Antiarrhythmic Drug? Circulation 2018, 138, 551–553. [Google Scholar] [CrossRef] [PubMed]
- Dilaveris, P.; Stefanadis, C. Electrocardiographic predictors of atrial fibrillation: Methodological considerations. Am. Heart J. 2010, 159, e3–e5. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.; Abhayaratna, W.P. Left Atrial Reverse Remodeling: Mechanisms, Evaluation, and Clinical Significance. JACC Cardiovasc. Imaging 2017, 10, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Prescott, M.F.; Butler, J.; Felker, G.M.; Maisel, A.S.; McCague, K.; Camacho, A.; Piña, I.L.; Rocha, R.A.; Shah, A.M.; et al. Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment with Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction. JAMA 2019, 322, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.S.; Solomon, S.D.; Shah, A.M.; Claggett, B.L.; Fang, J.C.; Izzo, J.; McCague, K.; Abbas, C.A.; Rocha, R.; Mitchell, G.F. Effect of Sacubitril-Valsartan vs Enalapril on Aortic Stiffness in Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2019, 322, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Peschar, M.; Vernooy, K.; Vanagt, W.Y.; Reneman, R.S.; Vos, M.A.; Prinzen, F.W. Absence of reverse electrical remodeling during regression of volume overload hypertrophy in canine ventricles. Cardiovasc. Res. 2003, 58, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Martens, P. Exploiting the Natriuretic Peptide Pathway to Preserve Glomerular Filtration in Heart Failure. JACC Heart Fail. 2018, 6, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Von Lueder, T.G.; Wang, B.H.; Kompa, A.R.; Huang, L.; Webb, R.; Jordaan, P.; Atar, D.; Krum, H. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ. Heart Fail. 2015, 8, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalta, K.; Sıvrı, N.; Yalta, T.; Geyik, B.; Aksoy, Y.; Yetkın, E. Copeptin (C-terminal provasopressin): A promising marker of arrhythmogenesis in arrhythmia prone subjects? Int. J. Cardiol. 2011, 148, 105. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Baseline |
---|---|
Age (years) | 68.1 ± 11.6 |
Male (%) | 84.5 |
Weight (Kg) | 77.3 ± 12.9 |
Body mass index (Kg/m2) | 28.5 (21.2–41) |
Ischaemic DCM (%) | 52.1 |
Non-ischaemic DCM (%) | 47.9 |
Ejection Fraction (%) | 28.1 ± 3.2 |
Smoke (%) | 60 |
Hypertension (%) | 68 |
Diabetes (%) | 41 |
Dyslipidemia (%) | 56 |
Previous stroke (%) | 4 |
COPD (%) | 27 |
Peripheral artery disease (%) | 38 |
ACE-I or ARB (%) | 100 |
Beta-blocker (%) | 98 |
Ivabradin (%) | 10 |
Calcium Antagonist (%) | 4 |
Amiodarone (%) | 10 |
Sotalol (%) | 5 |
Aldosterone antagonist (%) | 90 |
Loop diuretic (%) | 95 |
Thiazide diuretic (%) | 15 |
Baseline | 6 Months | 12 Months | p * | |
---|---|---|---|---|
Systolic blood pressure (SPB) | 122 ± 19 | 118 ± 18 | 120 ± 20 | 0.8 |
Diastolic blood pressure (SPB) | 68 ± 11 | 65 ± 13 | 67 ± 12 | 0.8 |
Heart rate (bpm) | 62 ± 4 | 60 ± 6 | 61 ± 5 | 0.8 |
NYHA Class I (%) | 0 | 15 | 18 | 0.01 |
NYHA Class II (%) | 67 | 75 | 71 | 0.4 |
NYHA Class III (%) | 33 | 10 | 10 | 0.04 |
6-MWT distance (m) | 257 ± 122 | 343 ± 134 | 338 ± 142 | 0.001 |
Hemoglobin, (g/dL) | 13.3 ± 1.5 | 13.2 ± 1.4 | 13.4 ± 1.3 | 0.7 |
Sodium (mmol/L) | 141 ± 4 | 145 ± 6 | 144 ± 5 | 0.8 |
Potassium (mmol/L) | 4.3 ± 0.6 | 4.4 ± 0.5 | 4.4 ± 0.7 | 0.8 |
Creatinine (mg/dL) | 1.2 ± 0.4 | 1.3 ± 0.3 | 1.2 ± 0.5 | 0.9 |
NT-proBNP (pg/mL) | 427.3 ± 69.3 | 380.1 ± 56.3 | 376.5 ± 62.3 | 0.02 |
CP (pmol/L) | 31.8 ± 9.1 | 14.22 ± 6.4 | 13.18 ± 9.6 | 0.003 |
Baseline | 6 Months | 12 Months | p * | |
---|---|---|---|---|
Heart Rate (bpm) | 62 ± 4 | 60 ± 6 | 61 ± 5 | 0.8 |
PR duration (ms) | 142 ± 17 | 144 ± 16 | 143 ± 18 | 0.7 |
QRS duration (ms) | 121 ± 8 | 119 ± 11 | 120 ± 9 | 0.7 |
Maximum P wave duration (ms) | 126 ± 12 | 115 ± 15 | 115 ± 16 | 0.03 |
P wave dispersion (ms) | 35 ± 6 | 26 ± 5 | 25 ± 7 | 0.02 |
QTc dispersion (ms) | 68 ± 9 | 65 ± 6 | 63 ± 7 | 0.07 |
JTc dispersion (ms) | 53 ± 4 | 49 ± 5 | 47 ± 6 | 0.06 |
TDR (ms) | 36 ± 15 | 34 ± 11 | 32 ± 9 | 0.06 |
Baseline | 12 Months | p | |
---|---|---|---|
LVEDV (ml) | 226.7 ± 33.7 | 208.2 ± 80.2 | 0.02 |
LVESV (ml) | 154.7 ± 24.2 | 137.1 ± 73.2 | 0.03 |
LAVI (ml/m2) | 48.2 ± 11.3 | 38.3 ± 8.1 | 0.02 |
RAVI (ml/m2) | 34.2 ± 17.1 | 26.3 ± 13.2 | 0.02 |
LV Ejection fraction (%) | 28.1 ± 3.2 | 33.4 ± 3.1 | 0.01 |
E/A ratio | 1.7 ± 1.2 | 0.8 ± 0.8 | 0.003 |
TAPSE (mm) | 13 ± 3 | 15 ± 7 | 0.4 |
MR 3–4 + (%) | 32 | 24 | 0.04 |
PAPs (mmHg) | 64 ± 8 | 40 ± 6 | 0.001 |
Baseline | 6 Months | 12 Months | p * | |
---|---|---|---|---|
P wave amplitude (mV) | 3.2 ± 1.9 | 3.4 ± 2.2 | 3.6 ± 2.1 | 0.003 |
Atrial pacing threshold (V) | 0.9 ± 0.3 | 0.5 ± 0.2 | 0.5 ± 0.3 | 0.001 |
Atrial lead impedance (Ohm) | 564.3 ± 163.6 | 528.2 ± 131.8 | 525.3 ± 126.7 | 0.04 |
R wave amplitude (mV) | 13.4 ± 7.6 | 12.9 ± 8.1 | 12.7 ± 7.9 | 0.4 |
Ventricular pacing threshold (V) | 0.8 ± 0.4 | 0.7 ± 0.4 | 0.7 ± 0.3 | 0.7 |
Ventricular lead impedance (Ohm) | 532.3 ± 170.9 | 528.4 ± 176.2 | 527.9 ± 173.9 | 0.5 |
Shock impedance (Ohm) | 64.8 ± 16.2 | 61.2 ± 15.3 | 58 ± 11.2 | 0.01 |
Atrial pacing percentage (%) | 5 ± 2 | 5 ± 1 | 4 ± 2 | 0.8 |
Ventricular pacing percentage (%) | 3 ± 2 | 3 ± 1 | 2 ± 1 | 0.8 |
Baseline | 12 Months | p | |
---|---|---|---|
Sustained VT/VF (n) | 15 | 4 | 0.03 |
Non-sustained VT (n) | 22 | 8 | 0.01 |
Appropriate shock (n) | 13 | 3 | 0.02 |
Appropriate ATP (n) | 2 | 1 | 0.9 |
Non-appropriate shock (n) | 4 | 0 | 0.1 |
Paroxysmal AT/AF (n) | 34 | 19 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, V.; Bottino, R.; Rago, A.; Papa, A.A.; Liccardo, B.; Proietti, R.; Manna, V.; Golino, P.; D’Onofrio, A.; Nigro, G. The Effect of Sacubitril/Valsartan on Device Detected Arrhythmias and Electrical Parameters among Dilated Cardiomyopathy Patients with Reduced Ejection Fraction and Implantable Cardioverter Defibrillator. J. Clin. Med. 2020, 9, 1111. https://doi.org/10.3390/jcm9041111
Russo V, Bottino R, Rago A, Papa AA, Liccardo B, Proietti R, Manna V, Golino P, D’Onofrio A, Nigro G. The Effect of Sacubitril/Valsartan on Device Detected Arrhythmias and Electrical Parameters among Dilated Cardiomyopathy Patients with Reduced Ejection Fraction and Implantable Cardioverter Defibrillator. Journal of Clinical Medicine. 2020; 9(4):1111. https://doi.org/10.3390/jcm9041111
Chicago/Turabian StyleRusso, Vincenzo, Roberta Bottino, Anna Rago, Andrea Antonio Papa, Biagio Liccardo, Riccardo Proietti, Vincenzo Manna, Paolo Golino, Antonio D’Onofrio, and Gerardo Nigro. 2020. "The Effect of Sacubitril/Valsartan on Device Detected Arrhythmias and Electrical Parameters among Dilated Cardiomyopathy Patients with Reduced Ejection Fraction and Implantable Cardioverter Defibrillator" Journal of Clinical Medicine 9, no. 4: 1111. https://doi.org/10.3390/jcm9041111
APA StyleRusso, V., Bottino, R., Rago, A., Papa, A. A., Liccardo, B., Proietti, R., Manna, V., Golino, P., D’Onofrio, A., & Nigro, G. (2020). The Effect of Sacubitril/Valsartan on Device Detected Arrhythmias and Electrical Parameters among Dilated Cardiomyopathy Patients with Reduced Ejection Fraction and Implantable Cardioverter Defibrillator. Journal of Clinical Medicine, 9(4), 1111. https://doi.org/10.3390/jcm9041111