Impact of Hyponatremia on COPD Exacerbation Prognosis
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cuesta, M.; Slattery, D.; Goulden, E.L.; Gupta, S.; Tatro, E.; Sherlock, M.; Tormey, W.; O’Neill, S.; Thompson, C.J. Hyponatremia in patients with community-acquired pneumonia; prevalence and aetiology, and natural history of SIAD. Clin. Endocrinol. 2019, 90, 744–752. [Google Scholar] [CrossRef]
- Chalela, R.; González-García, J.G.; Chillarón, J.J.; Varela-Hernández, L.; Montoya-Rangel, C.; Badenes, D.; Mojal, S.; Gea, J. Impact of hyponatremia on mortality and morbidity in patients with COPD exacerbations. Respir. Med. 2016, 117, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.H.; Kim, J.H.; Jang, S.Y.; Park, S.H.; Lee, J.H.; Yang, D.H.; Park, H.S.; Cho, Y.; Chae, S.C. Hyponatremia at discharge as a predictor of 12-month clinical outcomes in hospital survivors after acute myocardial infarction. Heart Vessel. 2017, 32, 126–133. [Google Scholar]
- Rudkovskaia, A.A.; Tonelli, A.R.; Rao, Y.; Hammel, J.P.; Buller, G.K.; Dweik, R.A.; Fares, W.H. Is hyponatremia associated with mortality in pulmonary arterial hypertension? Pulm. Circ. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, T.B.; Gebreyohannes, E.A.; Tefera, Y.G.; Bhagavathula, A.S.; Erku, D.A.; Belachew, S.A.; Gebresillassie, B.M.; Abegaz, T.M. The prognosis of heart failure patients: Does sodium level play a significant role? PLoS ONE 2018, 13, e0207242. [Google Scholar] [CrossRef]
- Ramírez, E.; Rodríguez, A.; Queiruga, J.; García, I.; Díaz, L.; Martínez, L.; Muñoz, R.; Muñoz, M.; Tong, H.Y.; Martínez, J.C.; et al. Severe Hyponatremia Is Often Drug Induced: 10-Year Results of a Prospective Pharmacovigilance Program. Clin. Pharmacol. Ther. 2019, 106, 1362–1379. [Google Scholar]
- Attar, B. Approach to Hyponatremia in Cirrhosis. Clin. Liver. Dis. Hoboken 2019, 13, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, S.; Zhang, M.; Cui, L. Hyponatremia in patients with chronic kidney disease. Hemodial. Int. 2017, 21, 3–10. [Google Scholar] [CrossRef]
- Liamis, G.; Barkas, F.; Megapanou, E.; Christopoulou, E.; Makri, A.; Makaritsis, K.; Ntaios, G.; Elisaf, M.; Milionis, H. Hyponatremia in Acute Stroke Patients: Pathophysiology, Clinical Significance, and Management Options. Eur. Neurol. 2019, 13, 1–9. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Fine, M.J.; Auble, T.E.; Yealy, D.M.; Hanusa, B.H.; Weissfeld, L.A.; Singer, D.E.; Coley, C.M.; Marrie, T.J.; Kapoor, W.N. A prediction rule to identify low-risk patients with community acquired pneumonia. N. Engl. J. Med. 1997, 336, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Flattet, Y.; Garin, N.; Serratrice, J.; Perrier, A.; Stirnemann, J.; Carballo, S. Determining prognosis in acute exacerbation of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brat, K.; Plutinsky, M.; Hejduk, K.; Svoboda, M.; Popelkova, P.; Zatloukal, J.; Volakova, E.; Fecaninova, M.; Heribanova, L.; Koblizek, V. Respiratory parameters predict poor outcome in COPD patients, category GOLD 2017 B. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1037–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Initiative for Chronic Obstructive Lung Disease. 2015. Available online: http://www.mscbs.gob.es/organizacion/sns/planCalidadSNS/pdf/GOLD_Report_2015_Apr2.pdf (accessed on 9 January 2016).
- Norman, E.M.; Mylotte, A.; Watson, P. Factors associated with length of stay and re-admissions in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 163, A508. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Pace, E.; Ferraro, M.; Minervini, M.I.; Vitulo, P.; Pipitone, L.; Chiappara, G.; Siena, L.; Montalbano, A.M.; Johnson, M.; Gjomarkaj, M. Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS ONE 2012, 7, 4–11. [Google Scholar]
- Dewan, N.A.; Rafique, S.; Kanwar, B.; Satpathy, H.; Ryschon, K.; Tillotson, G.S.; Niederman, M.S. Acute exacerbation of COPD: Factors associated with poor treatment outcome. Chest 2000, 117, 662–671. [Google Scholar]
- Hillier, T.A.; Abbott, R.D.; Barrett, E. Hyponatremia: Evaluating the correction factor for hyperglycemia. Am. J. Med. 1999, 106, 399–403. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Madias, N.E. Hyponatremia. N. Engl. J. Med. 2000, 342, 1581–1589. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Funk, G.C.; Leichtle, A.B.; Fiedler, G.M.; Schwarz, C.; Exadaktylos, A.K.; Lindner, G. Electrolyte disorders and in-hospital mortality during prolonged heat periods: A cross-sectional analysis. PLoS ONE 2014, 20, e92150. [Google Scholar] [CrossRef] [Green Version]
- Diamantea, F.; Kostias, K.; Bartziokas, K.; Karakontaki, F.; Tsikrika, S.; Pouriki, S.; Polychronopoulos, V.; Karagiannidis, N.; Haniotou, A.; Papaioannou, A.I. Prediction of hospitalization stay in COPD exacerbations: the AECOPD-F Score. Respir. Care 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saepudin, S.; Ball, P.A.; Morrissey, H. Hyponatremia during hospitalization and in-hospital mortality in patients hospitalized from heart failure. BMC Cardiovasc. Disord. 2015, 15, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Mawed, S.; Pankratz, V.S.; Chong, K.; Sandoval, M.; Roumelioti, M.E.; Unruh, M. Low serum sodium levels at hospital admission: Outcomes among 2.3 million hospitalized patients. PLoS ONE 2018, 13, e0194379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.Y.; Cheng, C.C.; Chen, Y.C.; Lin, Y.K.; Chen, S.A.; Chen, Y.J. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: A contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm. 2016, 3, 781–788. [Google Scholar] [CrossRef]
- Cavusoglu, Y.; Kaya, H.; Eraslan, S.; Yilmaz, M.B. Hyponatremia is associated with occurrence of atrial fibrillation in outpatients with heart failure and reduced ejection fraction. Hellenic. J. Cardiol. 2019, 60, 117–121. [Google Scholar] [CrossRef]
- Llorens, P.; Javaloyes, P.; Masip, J.; Gil, V.; Herrero-Puente, P.; Martín-Sánchez, F.J.; Jacob, J.; Garrido, J.M.; Herrera-Mateo, S.; López Díez, M.P.; et al. Prognostic value of chest radiographs in patients with acute heart failure: The Radiology in Acute Heart Failure (RAD-ICA) study. Emergencias 2019, 31, 318–326. [Google Scholar]
- Morales-Rull, J.L.; Bielsa, S.; Conde-Martel, A.; Aramburu-Bodas, O.; Llàcer, P.; Quesada, M.A.; Suárez-Pedreira, I.; Manzano, L.; Barquero, M.M.; Porcel, J.M.; et al. Pleural effusions in acute decompensated heart failure: Prevalence and prognostic implications. Eur. J. Intern. Med. 2018, 52, 49–53. [Google Scholar] [CrossRef]
- Mann, D.L.; Chakinila, M. Insuficiencia cardíaca: Fisiopatología y diagnóstico. In Harrison, Principios de Medicina Interna, 20 ed.; McGraw-Hill: New York, NY, USA, 2018; Available online: https://accessmedicina.mhmedical.com.mergullador.sergas.es/content.aspx?bookid=2461§ionid=208180034 (accessed on 11 July 2019).
- De Vecchis, R.; Di Maio, M.; Di Biase, G.; Ariano, C. Effects of hyponatremia normalization on the short-term mortality and rehospitalizations in patients with recent acute decompensated heart failure: A retrospective study. J. Clin. Med. 2016, 5, E92. [Google Scholar] [CrossRef] [Green Version]
- Finney, L.J.; Padmanaban, V.; Todd, S.; Ahmed, N.; Elkin, S.L.; Mallia, P. Validity of the diagnosis of pneumonia in hospitalised patients with COPD. ERJ Open Res. 2019, 5. [Google Scholar] [CrossRef]
- Shin, B.; Kim, S.H.; Yong, S.J.; Lee, W.Y.; Park, S.; Lee, S.J.; Lee, S.J.; Lee, M.K. Early readmission and mortality in acute exacerbation of chronic obstructive pulmonary disease with community-acquired pneumonia. Chron. Respir. Dis. 2019, 16, 1479972318809480. [Google Scholar] [CrossRef]
- Nair, V.; Niederman, M.S.; Masani, N.; Fishbane, S. Hyponatremia in community-acquired pneumonia. Am J. Nephrol. 2007, 27, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Schefold, J.C.; Guignard, V.; Exadaktylos, A.K. Hyponatremia is independently associated with in-hospital mortality in patients with pneumonia. Eur. J. Intern. Med. 2018, 54, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Karki, L.; Thapa, B.; Sah, M.K. Hyponatremia in Patients with Community Acquired Pneumonia. JNMA J. Nepal. Med. Assoc. 2016, 54, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.P.; Argese, N.; Chapman, M.; Boot, C.; Webster, R.; Dabhi, V.; Grossman, A.B.; Toogood, A.A.; Arlt, W.; Stewart, P.M.; et al. Adrenal suppression in patients taking inhaled glucocorticoids is highly prevalent and management can be guided by morning cortisol. Eur. J. Endocrinol. 2015, 173, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Lacasse, Y.; Bernard, S.; Sériès, F.; Nguyen, V.H.; Bourbeau, J.; Aaron, S.; Maltais, F.; International Nocturnal Oxygen (INOX) Research Group. Multi-center, randomized, placebo-controlled trial of nocturnal oxygen therapy in chronic obstructive pulmonary disease: A study protocol for the INOX trial. BMC Pulm. Med. 2017, 17, 8. [Google Scholar] [CrossRef] [Green Version]
- Van Cauwenberge, H.; Thonnard, A.S.; Nguyen Dang, D.; Corhay, J.L.; Louis, R. Long-term oxygen therapy: Mortality rate, short-term predictive mortality factors. Rev. Mal. Respir. 2018, 35, 939–947. [Google Scholar] [CrossRef]
- Carone, M.; Antoniu, S.; Baiardi, P.; Digilio, V.S.; Jones, P.W.; Bertolotti, G.; QuESS Group. Predictors of Mortality in Patients with COPD and Chronic Respiratory Failure: The Quality-of-Life Evaluation and Survival Study (QuESS): A Three-Year Study. COPD 2016, 13, 130–138. [Google Scholar] [CrossRef]
- Turner, A.M.; Sen, S.; Steeley, C.; Khan, Y.; Sweeney, P.; Richards, Y.; Mukherjee, R. Evaluation of oxygen prescription in relation to hospital admission rate in patients with chronic obstructive pulmonary disease. BMC Pulm. Med. 2014, 14, 127. [Google Scholar] [CrossRef] [Green Version]
- Crisafulli, E.; Ielpo, A.; Barbeta, E.; Ceccato, A.; Huerta, A.; Gabarrús, A.; Soler, N.; Chetta, A.; Torres, A. Clinical variables predicting the risk of a hospital stay for longer than 7 days in patients with severe acute exacerbations of chronic obstructive pulmonary disease: A prospective study. Respir. Res. 2018, 19, 261. [Google Scholar] [CrossRef] [Green Version]
- Gungor, S.; Kargin, F.; Irmak, I.; Ciyiltepe, F.; Acartürk Tunçay, E.; Atagun Guney, P.; Aksoy, E.; Ocakli, B.; Adiguzel, N.; Karakurt, Z. Severity of acidosis affects long-term survival in COPD patients with hypoxemia after intensive care unit discharge. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1495–1506. [Google Scholar] [CrossRef] [Green Version]
- Ringbaek, T.J.; Viskum, K.; Lange, P. Does long-term oxygen therapy reduce hospitalisation in hypoxaemic chronic obstructive pulmonary disease? Eur. Respir. J. 2002, 20, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourido-Cebreiro, T.; González-Barcala, F.J.; Álvarez-Dobaño, J.M.; Pereiro-Brea, T.; Abelleira-Paris, R.; Valdés, L. Need for Portable Oxygen Titration During 6-Minute Walk Tests. Arch. Bronconeumol. 2019, 55, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Díaz López, J.M.; Giran González, B.; Alcázar-Navarrete, B. Personalized Medicine in Chronic Obstructive Pulmonary Disease: How Close Are We? Arch. Bronconeumol. 2019. [Google Scholar] [CrossRef]
- Barrueco-Otero, E.; Bartol Sánchez, M.; Pérez Rodríguez, J.; González Ruiz, J.M.; Barrueco Ferrero, M. Adherence to Long-Term Oxygen Therapy. Influence of Tobacco Use. Arch. Bronconeumol. 2019, 55, 368–372. [Google Scholar] [CrossRef]
- Lourido-Cebreiro, T.; González-Barcala, F.J.; Rábade, C.; Abelleira-Paris, R.; Pereiro-Brea, T.; Valdés, L. Progress After the Withdrawal of Home Oxygen Therapy. The Profile of Patients Requiring Reintroduction. Arch. Bronconeumol. 2019, 55, 663–665. [Google Scholar] [CrossRef]
- Alcázar Navarrete, B.; Ancochea Bermúdez, J.; García-Río, F.; Izquierdo Alonso, J.L.; Miravitlles, M.; Rodríguez González-Moro, J.M.; Soler-Cataluña, J.J. Patients with Chronic Obstructive Pulmonary Disease Exacerbations: Recommendations for Diagnosis, Treatment and Care. Arch. Bronconeumol. 2019, 55, 478–487. [Google Scholar]
- García Sanz, M.T.; González Barcala, F.J. Establishing the Prognosis of COPD Exacerbations Using Risk Scales from the Point of View of the Emergency Department. Arch. Bronconeumol. 2019. [Google Scholar] [CrossRef]
- Seo, M.; Qiu, W.; Bailey, W.; Criner, G.J.; Dransfield, M.T.; Fuhlbrigge, A.L.; Reilly, J.J.; Scholand, M.B.; Castaldi, P.; Chase, R.; et al. Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. J. Mol. Med. Berl 2018, 96, 1375–1385. [Google Scholar] [CrossRef]
Characteristics | Good Progress | Poor Progress | p |
---|---|---|---|
240 (40%) | 362 (60%) | ||
Age | 73.7 (SD 10.2) | 73.9 (SD 10.9) | NS |
Male | 201 (83.8%) | 317 (87.6%) | NS |
Institutionalized | 7 (3%) | 11 (3%) | NS |
FEV1% | 52.9 (SD 18.1) | 52.8 (SD 19.5) | NS |
GOLD | <0.0001 | ||
1 | 33 (15.1%) | 21 (6.5%) | |
2 | 100 (45.7%) | 114 (35.3%) | |
3 | 51 (23.3%) | 81 (24.9%) | |
4 | 35 (16%) | 109 (33.5%) | |
Phenotype | NS | ||
Emphysema exacerbator | 37 (15.7%) | 59 (17.2%) | |
CB exacerbator | 63 (26.8%) | 119 (34.7%) | |
Non-exacerbator | 102 (43.4%) | 125 (36.4%) | |
Mixed | 33 (14%) | 40 (11.7%) | |
BMI | NS | ||
Underweight | 37 (15.4%) | 67 (18.2%) | |
Normal weight | 48 (20%) | 81 (22.4%) | |
Overweight | 83 (34.6%) | 123 (34.1%) | |
Obesity | 72 (30%) | 90 (24.9%) | |
Tobacco use | NS | ||
Active smoker | 74 (31.2%) | 88 (25.7%) | |
Former smoker | 148 (62.4%) | 226 (65.9%) | |
Never smoker | 15 (6.3%) | 29 (8.5%) | |
Baseline dyspnea | <0.0001 | ||
1 | 7 (3%) | 12 (3.4%) | |
2 | 68 (29%) | 44 (12.6%) | |
3 | 94 (40%) | 94 (26.9%) | |
4 | 46 (19.6%) | 113 (32.4%) | |
5a | 18 (7.7%) | 68 (19.5%) | |
5b | 2 (0.9%) | 18 (5.2%) | |
Flu-vaccinated | 142 (59.2%) | 255 (70.8%) | 0.003 |
Charlson | 6.1 (SD 26.1) | 5.4 (SD 2.6) | NS |
Stroke | 21 (8.8%) | 38 (10.5%) | NS |
AF | 48 (20%) | 113 (31.2%) | 0.002 |
CHF | 53 (22.1%) | 128 (35.4%) | 0.001 |
AHT | 134 (55.8%) | 223 (61.6%) | NS |
IHD | 39 (16.3%) | 70 (19.3%) | NS |
DM | 58 (24.2%) | 88 (24.3%) | NS |
Cancer | 45 (18.8%) | 93 (25.6%) | NS |
Cognitive impairment | 9 (3.8%) | 26 (7.2%) | NS |
CKD | 19 (7.9%) | 61 (16.9%) | 0.002 |
Anemia | 25 (10.4%) | 57 (15.7%) | NS |
Admissions previous year | 0.7 (SD 1.2) | 0.9 (SD 1.4) | NS |
ED previous year | 1.1 (SD 1.7) | 1.2 (SD 2.0) | NS |
Drug | Good Progress | Poor Progress | p |
---|---|---|---|
240 (40%) | 362 (60%) | ||
SABA | 80 (33.3%) | 164 (45.3%) | 0.003 |
LABA | 187 (77.9%) | 281 (77.6%) | NS |
IC | 143 (59.6%) | 239 (66%) | NS |
Oral C. | 6 (2.5%) | 29 (8%) | 0.005 |
SAMA | 40 (16.7%) | 85 (23.5%) | 0.04 |
LAMA | 158 (65.8) | 240 (66.3%) | NS |
Theophylline | 17 (7.1%) | 45 (12.4%) | 0.03 |
Beta blocker | 47 (19.6%) | 60 (16.6%) | NS |
Diuretic | 94 (39.2%) | 154 (42.5%) | NS |
Azithromycin | 3 (1.3%) | 16 (4.4%) | 0.02 |
Acetylcysteine | 12 (5%) | 37 (10.2%) | 0.02 |
Antileukotrienes | 5 (2.1%) | 9 (2.5%) | NS |
Phosphodiesterase inhibitors | 5 (2.1%) | 22 (6.1%) | 0.01 |
Home O2 | 43 (17.9%) | 99 (27.3%) | 0.008 |
Hyponatremia-inducing drugs | 119 (49.6%) | 168 (46.4%) | NS |
Clinical Data | Good Progress | Poor Progress | p |
---|---|---|---|
240 (40%) | 362 (60%) | ||
Cause of Exacerbation | <0.0001 | ||
Viral | 44 (18.3%) | 26 (7.2%) | |
Bacterial | 168 (70%) | 292 (80.7%) | |
Non-infectious | 28 (11.7%) | 44 (12.2%) | |
HR | 93 (SD 19.7) | 98 (SD 22.5) | 0.02 |
SBP | 138 (SD 25.8) | 139 (SD 27.1) | NS |
DBP | 74 (SD 14.1) | 76 (SD 16.0) | NS |
T | 36.7 (SD 0.9) | 36.6 (SD 0.9) | NS |
ICU | 1 (SD 0.4) | 13 (SD 3.6) | 0.01 |
MV | 2 (0.8%) | 14 (3.9%) | 0.02 |
NIMV | 23 (9.6%) | 67 (18.5%) | 0.003 |
Leukocytes | 10,831 (SD 4780) | 11,675 (SD 5174) | 0.04 |
Neutrophils (%) | 75.2 (SD 13.8) | 77.7 (SD 12.2) | 0.02 |
Eosinophils (%) | 2.2 (SD 13.5) | 1.3 (SD 3.1) | NS |
Glucose | 135 (SD 53.3) | 143 (SD 60.3) | NS |
Urea | 47 (SD 21.9) | 55 (SD 33.9) | 0.001 |
Creatinine | 2.2 (SD 13.5) | 1.3 (SD 3.1) | NS |
Hyponatremia | 15 (6.4%) | 49 (13.6%) | 0.005 |
K+ | 4.4 (SD 0.4) | 4.5 (SD 0.8) | 0.01 |
Albumin | 3.8 (SD 0.4) | 3.7 (SD 1.8) | NS |
Fibrinogen | 553 (105.8) | 537 (123.4) | NS |
CRP | 54 (79.8) | 68 (113.1) | NS |
Troponin (+) | 18 (8.7%) | 51 (14.6%) | 0.01 |
PO2 | 57 (SD 14.8) | 62 (SD 29.0) | 0.009 |
PCO2 | 44 (SD 10.6) | 47 (SD 14) | 0.001 |
CO3H− | 28.2 (SD 6.1) | 28.6 (SD 5.5) | NS |
PH | 7.4 (SD 0.0) | 7.3 (SD 16.2) | NS |
Pneumonia XR | 37 (15.5%) | 96 (26.8%) | 0.001 |
Pleural effusion XR | 23 (9.7%) | 50 (14%) | NS |
Variables | WITHOUT Hyponatremia | WITH Hyponatremia | p |
---|---|---|---|
535 (89%) | 65 (11%) | ||
Age n (SD) | 73.9 (10.6) | 73.4 (10.6) | NS |
Male | 460 (86%) | 56 (86.2%) | NS |
BMI n (SD) | 28.5 (5.8) | 27.4 (4.7) | NS |
FEV1% n (SD) | 52.5 (18.9) | 55.6 (19.7) | NS |
Comorbidities | |||
AF | 134 (25%) | 27 (41.5%) | 0.005 |
Cognitive impairment | 33 (6.2%) | 0 (0.0%) | 0.04 |
Anemia | 68 (12.7%) | 14 (21.5%) | 0.05 |
Hyponatremia-inducing drugs | 249 (46.5) | 37 (56.9%) | NS |
Admissions previous year n (SD) | 0.8 (1.3) | 0.9 (1.6) | NS |
Exacerbations previous year | 1.2 (1.8) | 1.4 (2.5) | NS |
Pleural effusion XR | 59 (11.1%) | 14 (21.9%) | 0.01 |
Leukocytes n (SD) | 11,160 (4897) | 12,623 (5878) | 0.02 |
CRP n (SD) | 56 (82.7) | 109 (185.4) | 0.05 |
Hospital mortality | 14 (2.6%) | 3 (4.6%) | NS |
Prolonged stay | 282 (52.7%) | 45 (69.2%) | 0.01 |
Readmission within 30 days | 84 (15.7%) | 7 (10.8%) | NS |
Poor progress | 313 (58.5%) | 48 (73.8%) | 0.01 |
Multivariate Analysis | |||
---|---|---|---|
Variables | Hazard Ratio | 95% CI | p |
AF | 1.95 | (1.12; 3.41) | 0.01 |
Pleural effusion | 2.01 | (1.03; 3.94) | 0.04 |
Prolonged stay | 1.79 | (1.01; 3.15) | <0.0001 |
Multivariate Analysis | |||
---|---|---|---|
Variables | Hazard Ratio | 95% CI | p |
Home O2 | 0.35 | (0.16; 0.74) | 0.006 |
Pneumonia | 1.84 | (1.05; 3.24) | 0.03 |
Hyponatremia | 3.68 | (1.57; 8.58) | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sanz, M.-T.; Martínez-Gestoso, S.; Calvo-Álvarez, U.; Doval-Oubiña, L.; Camba-Matos, S.; Rábade-Castedo, C.; Rodríguez-García, C.; González-Barcala, F.-J. Impact of Hyponatremia on COPD Exacerbation Prognosis. J. Clin. Med. 2020, 9, 503. https://doi.org/10.3390/jcm9020503
García-Sanz M-T, Martínez-Gestoso S, Calvo-Álvarez U, Doval-Oubiña L, Camba-Matos S, Rábade-Castedo C, Rodríguez-García C, González-Barcala F-J. Impact of Hyponatremia on COPD Exacerbation Prognosis. Journal of Clinical Medicine. 2020; 9(2):503. https://doi.org/10.3390/jcm9020503
Chicago/Turabian StyleGarcía-Sanz, María-Teresa, Sandra Martínez-Gestoso, Uxío Calvo-Álvarez, Liliana Doval-Oubiña, Sandra Camba-Matos, Carlos Rábade-Castedo, Carlota Rodríguez-García, and Francisco-Javier González-Barcala. 2020. "Impact of Hyponatremia on COPD Exacerbation Prognosis" Journal of Clinical Medicine 9, no. 2: 503. https://doi.org/10.3390/jcm9020503
APA StyleGarcía-Sanz, M.-T., Martínez-Gestoso, S., Calvo-Álvarez, U., Doval-Oubiña, L., Camba-Matos, S., Rábade-Castedo, C., Rodríguez-García, C., & González-Barcala, F.-J. (2020). Impact of Hyponatremia on COPD Exacerbation Prognosis. Journal of Clinical Medicine, 9(2), 503. https://doi.org/10.3390/jcm9020503