Gait Indices for Characterization of Patients with Unilateral Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.1.1. Correlation Analysis
2.1.2. Comparative Statistics of GMFCS Levels
2.1.3. Comparative Statistics of WGH Types
2.1.4. Comparative Statistics of GMFCS Levels within the Different WGH Types
3. Results
3.1. Correlation Analysis
3.2. Comparative Statistics of GMFCS Levels
3.3. Comparative Statistics of WGH Types
3.4. Comparative Statistics of GMFCS Levels within the Different WGH Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colver, A.; Fairhurst, C.; Pharoah, P.O. Cerebral palsy. Lancet 2014, 383, 1240–1249. [Google Scholar] [CrossRef]
- Dobson, F.; Morris, M.E.; Baker, R.; Graham, H.K. Unilateral cerebral palsy: A population-based study of gait and motor function. Dev. Med. Child Neurol. 2011, 53, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Dobson, F.; Morris, M.E.; Baker, R.; Graham, H.K. Gait classification in children with cerebral palsy: A systematic review. Gait Posture 2007, 25, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.; Rethlefsen, S.; Kay, R.M. Prevalence of specific gait abnormalities in children with cerebral palsy: Influence of cerebral palsy subtype, age, and previous surgery. J. Pediatr. Orthop. 2005, 25, 79–83. [Google Scholar]
- Lundh, D.; Coleman, S.; Riad, J. Movement deviation and asymmetry assessment with three dimensional gait analysis of both upper- and lower extremity results in four different clinical relevant subgroups in unilateral cerebral palsy. Clin. Biomech. 2014, 29, 381–386. [Google Scholar] [CrossRef]
- Kratschmer, R.; Bohm, H.; Doderlein, L. Kinematic adaptation and changes in gait classification in running compared to walking in children with unilateral spastic cerebral palsy. Gait Posture 2019, 67, 104–111. [Google Scholar] [CrossRef]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Nieuwenhuys, A.; Vandekerckhove, I.; Van Campenhout, A.; Ortibus, E.; Desloovere, K. Systematic review on gait classifications in children with cerebral palsy: An update. Gait Posture 2019, 69, 209–223. [Google Scholar] [CrossRef]
- Sutherland, D.H.; Davids, J.R. Common gait abnormalities of the knee in cerebral palsy. Clin. Orthop. Relat. Res. 1993, 288, 139–147. [Google Scholar]
- Winters, T.F., Jr.; Gage, J.R.; Hicks, R. Gait patterns in spastic hemiplegia in children and young adults. J. Bone Jt. Surg. Am. 1987, 69, 437–441. [Google Scholar]
- Tsitlakidis, S.; Horsch, A.; Schaefer, F.; Westhauser, F.; Goetze, M.; Hagmann, S.; Klotz, M.C.M. Gait Classification in Unilateral Cerebral Palsy. J. Clin. Med. 2019, 8, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, V.; Nascimbeni, A.; Gaffuri, A.; Knaflitz, M. Multiple gait patterns within the same Winters class in children with hemiplegic cerebral palsy. Clin. Biomech. 2015, 30, 908–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, C.M.; de Morais Filho, M.C.; Barreto, M.M.; de Paula Asa, S.K.; Juliano, Y.; Novo, N.F. Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy. Gait Posture 2007, 25, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.; Gorton, G.E., 3rd; Ounpuu, S.; Tucker, C.A. Efficacy of clinical gait analysis: A systematic review. Gait Posture 2011, 34, 149–153. [Google Scholar] [CrossRef]
- McDowell, B.C.; Kerr, C.; Kelly, C.; Salazar, J.; Cosgrove, A. The validity of an existing gait classification system when applied to a representative population of children with hemiplegia. Gait Posture 2008, 28, 442–447. [Google Scholar] [CrossRef]
- Riad, J.; Haglund-Akerlind, Y.; Miller, F. Classification of spastic hemiplegic cerebral palsy in children. J. Pediatr. Orthop. 2007, 27, 758–764. [Google Scholar] [CrossRef] [PubMed]
- De Laet, T.; Papageorgiou, E.; Nieuwenhuys, A.; Desloovere, K. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy? PLoS ONE 2017, 12, e0178378. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuys, A.; Ounpuu, S.; Van Campenhout, A.; Theologis, T.; De Cat, J.; Stout, J.; Molenaers, G.; De Laet, T.; Desloovere, K. Identification of joint patterns during gait in children with cerebral palsy: A Delphi consensus study. Dev. Med. Child Neurol. 2016, 58, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The gait profile score and movement analysis profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef]
- Schutte, L.M.; Narayanan, U.; Stout, J.L.; Selber, P.; Gage, J.R.; Schwartz, M.H. An index for quantifying deviations from normal gait. Gait Posture 2000, 11, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.H.; Rozumalski, A. The Gait Deviation Index: A new comprehensive index of gait pathology. Gait Posture 2008, 28, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Danino, B.; Erel, S.; Kfir, M.; Khamis, S.; Batt, R.; Hemo, Y.; Wientroub, S.; Hayek, S. Are Gait Indices Sensitive Enough to Reflect the Effect of Ankle Foot Orthosis on Gait Impairment in Cerebral Palsy Diplegic Patients? J. Pediatr. Orthop. 2016, 36, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, M.; Horoba, L.; Block, J.D.I.; Putz, C.; Alimusaj, M.D.I.; Salami, F.; Wolf, S.I.; Dreher, T. Additional Effects of Shank Adaptations in Children with Bilateral Spastic Cerebral Palsy. J. Pediatr. Orthop. 2020. [CrossRef]
- Cretual, A.; Bervet, K.; Ballaz, L. Gillette Gait Index in adults. Gait Posture 2010, 32, 307–310. [Google Scholar] [CrossRef]
- Romei, M.; Galli, M.; Fazzi, E.; Maraucci, I.; Schwartz, M.; Uggetti, C.; Crivellini, M. Analysis of the correlation between three methods used in the assessment of children with cerebral palsy. Funct. Neurol. 2007, 22, 17–21. [Google Scholar]
- Malt, M.A.; Aarli, A.; Bogen, B.; Fevang, J.M. Correlation between the Gait Deviation Index and gross motor function (GMFCS level) in children with cerebral palsy. J. Child Orthop. 2016, 10, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Cimolin, V.; Galli, M.; Vimercati, S.L.; Albertini, G. Use of the Gait Deviation Index for the assessment of gastrocnemius fascia lengthening in children with Cerebral Palsy. Res. Dev. Disabil. 2011, 32, 377–381. [Google Scholar] [CrossRef]
- Molloy, M.; McDowell, B.C.; Kerr, C.; Cosgrove, A.P. Further evidence of validity of the Gait Deviation Index. Gait Posture 2010, 31, 479–482. [Google Scholar] [CrossRef]
- Wilson, N.C.; Signal, N.; Naude, Y.; Taylor, D.; Stott, N.S. Gait Deviation Index Correlates With Daily Step Activity in Children With Cerebral Palsy. Arch. Phys. Med. Rehabil. 2015, 96, 1924–1927. [Google Scholar] [CrossRef]
- Nicholson, K.; Lennon, N.; Church, C.; Miller, F. Gait Analysis Parameters and Walking Activity Pre- and Postoperatively in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2018, 30, 203–207. [Google Scholar] [CrossRef]
- Speciali, D.S.; Correa, J.C.; Luna, N.M.; Brant, R.; Greve, J.M.; de Godoy, W.; Baker, R.; Lucareli, P.R. Validation of GDI, GPS and GVS for use in Parkinson’s disease through evaluation of effects of subthalamic deep brain stimulation and levodopa. Gait Posture 2014, 39, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Guzik, A.; Druzbicki, M. Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait. J. Biomech. 2020, 99, 109575. [Google Scholar] [CrossRef] [PubMed]
- Armand, S.; Decoulon, G.; Bonnefoy-Mazure, A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016, 1, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Bickley, C.; Linton, J.; Scarborough, N.; Sullivan, E.; Mitchell, K.; Barnes, D. Correlation of technical surgical goals to the GDI and investigation of post-operative GDI change in children with cerebral palsy. Gait Posture 2017, 55, 121–125. [Google Scholar] [CrossRef]
- Bonnefoy-Mazure, A.; De Coulon, G.; Lascombes, P.; Armand, S. Follow-up of walking quality after end of growth in 28 children with bilateral cerebral palsy. J. Child Orthop. 2020, 14, 41–49. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Hof, A.L. Scaling and Normalization. In Handbook of Human Motion; Springer International Publishing: Cham, Switzerland, 2018; pp. 295–305. [Google Scholar] [CrossRef]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [CrossRef]
- McMulkin, M.L.; MacWilliams, B.A. Intersite variations of the Gillette Gait Index. Gait Posture 2008, 28, 483–487. [Google Scholar] [CrossRef]
- Maanum, G.; Jahnsen, R.; Stanghelle, J.K.; Sandvik, L.; Larsen, K.L.; Keller, A. Face and construct validity of the Gait Deviation Index in adults with spastic cerebral palsy. J. Rehabil. Med. 2012, 44, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Noritake, K.; Sugiura, H.; Kamiya, Y.; Tomita, H.; Ito, Y.; Sugiura, H.; Ochi, N.; Yoshihashi, Y. Association between Gait Deviation Index and Physical Function in Children with Bilateral Spastic Cerebral Palsy: A Cross-Sectional Study. J. Clin. Med. 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Ounpuu, S.; Gorton, G.; Bagley, A.; Sison-Williamson, M.; Hassani, S.; Johnson, B.; Oeffinger, D. Variation in kinematic and spatiotemporal gait parameters by Gross Motor Function Classification System level in children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 2015, 57, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.Y.; Zhang, K.; Cahill-Rowley, K.; Lowe, E.; Rose, J. The Pediatric Temporal-spatial Deviation Index: Quantifying gait impairment for children with cerebral palsy. Dev. Med. Child Neurol. 2019, 61, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, L.; De Laet, T.; Di Lello, E.; Bruyninckx, H.; Molenaers, G.; Van Campenhout, A.; Aertbelien, E.; Schwartz, M.; Wambacq, H.; De Cock, P.; et al. Probabilistic gait classification in children with cerebral palsy: A Bayesian approach. Res. Dev. Disabil. 2011, 32, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, Y., Jr.; Watelain, E.; De Coulon, G.; Kaelin, A.; Gorce, P.; Armand, S. Are clinical measurements linked to the gait deviation index in cerebral palsy patients? Gait Posture 2013, 38, 276–280. [Google Scholar] [CrossRef]
Classification System | n | GGI (No Units) | GDI (No Units) | GPS (°) | Stance Phase Duration (%GC) | Norm. Velocity (m/s) | Norm. Cadence (steps/min) |
---|---|---|---|---|---|---|---|
GMFCS | |||||||
I | 63 | 130.2 ± 116.0 | 80.2 ± 10.6 | 8.9 ± 3.0 | 58.7 ± 2.5 | 1.0 ± 0.2 | 108.5 ± 12.1 |
II | 26 | 325.6 ± 438.5 | 70.2 ± 14.7 | 12.5 ± 4.2 | 59.4 ± 3.1 | 0.8 ± 0.2 | 104.2 ± 8.2 |
WGH | |||||||
type I | 32 | 100.3 ± 67.8 | 81.6 ± 9.3 | 8.3 ± 2.3 | 59.4 ± 2.2 | 1.0 ± 0.2 | 107.2 ± 8.8 |
GMFCS I | 26 | 91.2 ± 55.6 | 80.8 ± 8.2 | 8.2 ± 2.1 | 59.4 ± 2.1 | 1.0 ± 0.2 | 107.8 ± 9.2 |
GMFCS II | 6 | 139.9 ± 103.6 | 84.8 ± 13.5 | 8.4 ± 3.2 | 59.4 ± 3.0 | 0.9 ± 0.2 | 104.6 ± 7.0 |
type II | 19 | 157.0 ± 94.5 | 77.4 ± 11.7 | 10.2 ± 3.4 | 57.8 ± 2.3 | 0.9 ± 0.2 | 104.9 ± 10.0 |
GMFCS I | 14 | 143.4 ± 87.1 | 80.4 ± 10.4 | 9.1 ± 2.6 | 58.0 ± 2.6 | 0.9 ± 0.2 | 105.6 ± 9.6 |
GMFCS II | 5 | 195.0 ± 114.3 | 69.2 ± 12.4 | 13.4 ± 3.5 | 57.3 ± 1.4 | 0.8 ± 0.2 | 103.0 ± 12.1 |
type III | 2 | 159.2 ± 149.7 | 80.0 ± 11.3 | 8.6 ± 2.7 | 59.3 ± 1.0 | 0.8 ± 0.1 | 103.6 ± 3.5 |
GMFCS I | 1 | 53.4 | 88.0 | 6.7 | 60.1 | 0.89 | 101.2 |
GMFCS II | 1 | 265.0 | 72.0 | 10.5 | 58.6 | 0.74 | 106.1 |
type IV | 21 | 409.3 ± 474.2 | 68.1 ± 12.3 | 13.2 ± 4.2 | 59.3 ± 3.5 | 0.9 ± 0.2 | 107.3 ± 17.0 |
GMFCS I | 10 | 297.7 ± 172.5 | 70.3 ± 12.3 | 12.2 ± 4.2 | 58.9 ± 4.1 | 0.9 ± 0.1 | 111.6 ± 22.8 |
GMFCS II | 11 | 510.7 ± 631.8 | 66.1 ± 12.5 | 14.1 ± 4.0 | 59.7 ± 3.0 | 0.8 ± 0.2 | 103.3 ± 8.8 |
unclassified | 15 | 104.2 ± 93.2 | 80.4 ± 15.6 | 8.8 ± 3.5 | 58.9 ± 3.0 | 1.0 ± 0.3 | 110.9 ± 12.8 |
GMFCS I | 12 | 66.3 ± 34.3 | 86.2 ± 9.9 | 7.5 ± 1.7 | 57.9 ± 1.6 | 1.1± 0.2 | 111.5 ± 14.3 |
GMFCS II | 3 | 255.9 ± 105.9 | 57.3 ± 12.9 | 14.1 ± 4.3 | 62.6 ± 4.6 | 0.8 ± 0.2 | 108.2 ± 3.1 |
total | 89 | 187.3 ± 268.5 | 77.3 ± 12.7 | 9.9 ± 3.9 | 58.9 ± 2.7 | 0.9 ± 0.2 | 107.3 ± 12.0 |
Classification System | p-Values GDI | p-Values GGI | p-Values GPS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GMFCS (t-test) | I | II | I | II | I | II | ||||||
I | - | 0.003 | - | 0.034 | - | <0.001 | ||||||
WGH (ANOVA/Bonferroni) | type I | type II | type IV | unclass. | type I | type II | type IV | unclass. | type I | type II | type IV | unclass. |
type I | - | 1.000 | 0.001 | 1.000 | - | 1.000 | <0.001 | 1.000 | - | 0.498 | <0.001 | 1.000 |
type II | / | - | 0.145 | 1.000 | / | - | 0.015 | 1.000 | / | - | 0.063 | 1.000 |
type IV | / | / | - | 0.028 | / | / | - | 0.004 | / | / | - | 0.001 |
Classification System | p-Values Stance Phase Duration | p-Values norm. Velocity | p-Values norm. Cadence | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GMFCS (t-test) | I | II | I | II | I | II | ||||||
I | - | 0.259 | - | <0.006 | - | 0.124 | ||||||
WGH (ANOVA/Bonferroni) | type I | type II | type IV | unclass. | type I | type II | type IV | unclass. | type I | type II | type IV | unclass. |
type I | - | 0.510 | 1.000 | 1.000 | - | 1.000 | 0.346 | 1.000 | - | 1.000 | 1.000 | 1.000 |
type II | / | - | 0.875 | 1.000 | / | - | 1.000 | 0.659 | / | - | 1.000 | 1.000 |
type IV | / | / | - | 1.000 | / | / | - | 0.090 | / | / | - | 1.000 |
Classification System | p-Values GDI | p-Values GGI | p-Values GPS | p-Values Stance Phase Duration | p-Values Velocity | p-Values Cadence |
---|---|---|---|---|---|---|
WGH Subtype_ GMFCS II | WGH Subtype_ GMFCS II | WGH Subtype_ GMFCS II | WGH Subtype_ GMFCS II | WGH Subtype_ GMFCS II | WGH Subtype_ GMFCS II | |
WGH I_GMFCS I | 0.349 | 0.310 | 0.842 | 0.983 | 0.469 | 0.422 |
WGH II_GMFCS I | 0.07 | 0.308 | 0.009 | 0.550 | 0.401 | 0.631 |
WGH IV_GMFCS I | 0.446 | 0.316 | 0.304 | 0.608 | 0.431 | 0.279 |
unclass._GMFCS I | 0.001 | 0.086 | 0.001 | 0.009 | 0.093 | 0.704 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsitlakidis, S.; Schwarze, M.; Westhauser, F.; Heubisch, K.; Horsch, A.; Hagmann, S.; Wolf, S.I.; Götze, M. Gait Indices for Characterization of Patients with Unilateral Cerebral Palsy. J. Clin. Med. 2020, 9, 3888. https://doi.org/10.3390/jcm9123888
Tsitlakidis S, Schwarze M, Westhauser F, Heubisch K, Horsch A, Hagmann S, Wolf SI, Götze M. Gait Indices for Characterization of Patients with Unilateral Cerebral Palsy. Journal of Clinical Medicine. 2020; 9(12):3888. https://doi.org/10.3390/jcm9123888
Chicago/Turabian StyleTsitlakidis, Stefanos, Martin Schwarze, Fabian Westhauser, Korbinian Heubisch, Axel Horsch, Sébastien Hagmann, Sebastian I. Wolf, and Marco Götze. 2020. "Gait Indices for Characterization of Patients with Unilateral Cerebral Palsy" Journal of Clinical Medicine 9, no. 12: 3888. https://doi.org/10.3390/jcm9123888