Tomotherapy as an Alternative Irradiative Treatment for Complicated Keloids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. CT Simulation for HT
2.3. Target Contouring, Treatment Planning, and Treatment by HT
2.4. Plan Evaluation for HT
2.4.1. Paddick Conformity Index (PCI) and Uniformity Index (UI)
2.4.2. Dose Sparing for Organs at Risk (OARs) for HT
2.4.3. Dose Prescription Policy
2.5. Treatment with Electron Beam Irradiation
2.6. Surface Dose Measurement
2.7. Outcome Assessment
2.8. Surgical Process
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Furtado, F.; Hochman, B.; Ferrara, S.F.; Dini, G.M.; Nunes, J.M.; Juliano, Y.; Ferreira, L.M. What factors affect the quality of life of patients with keloids? Rev. Assoc. Med. Bras. 2009, 55, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Chike-Obi, C.J.; Cole, P.D.; Brissett, A.E. Keloids: Pathogenesis, clinical features, and management. Semin. Plast. Surg. 2009, 23, 178–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arno, A.I.; Gauglitz, G.G.; Barret, J.P.; Jeschke, M.G. Up-to-date approach to manage keloids and hypertrophic scars: A useful guide. Burns 2014, 40, 1255–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guix, B.; Henriquez, I.; Andres, A.; Finestres, F.; Tello, J.I.; Martinez, A. Treatment of keloids by high-dose-rate brachytherapy: A seven-year study. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 167–172. [Google Scholar] [CrossRef]
- Borok, T.L.; Bray, M.; Sinclair, I.; Plafker, J.; LaBirth, L.; Rollins, C. Role of ionizing irradiation for 393 keloids. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 865–870. [Google Scholar] [CrossRef]
- Kovalic, J.J.; Perez, C.A. Radiation therapy following keloidectomy: A 20-year experience. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 77–80. [Google Scholar] [CrossRef]
- Escarmant, P.; Zimmermann, S.; Amar, A.; Ratoanina, J.L.; Moris, A.; Azaloux, H.; Francois, H.; Gosserez, O.; Michel, M.; G’Baguidi, R. The treatment of 783 keloid scars by iridium 192 Interstitial irradiation after surgical excision. Int. J. Radiat. Oncol. Biol. Phys. 1993, 26, 245–251. [Google Scholar] [CrossRef]
- Ogawa, R.; Miyashita, T.; Hyakusoku, H.; Akaishi, S.; Kuribayashi, S.; Tateno, A. Postoperative radiation protocol for keloids and hypertrophic scars: Statistical analysis of 370 sites followed for over 18 months. Ann. Plast. Surg. 2007, 59, 688–691. [Google Scholar] [CrossRef]
- Mustoe, T.A.; Cooter, R.D.; Gold, M.H.; Hobbs, F.D.; Ramelet, A.A.; Shakespeare, P.G.; Stella, M.; Teot, L.; Wood, F.M.; Ziegler, U.E.; et al. International clinical recommendations on scar management. Plast. Reconstr. Surg. 2002, 110, 560–571. [Google Scholar] [CrossRef]
- Mankowski, P.; Kanevsky, J.; Tomlinson, J.; Dyachenko, A.; Luc, M. Optimizing Radiotherapy for Keloids: A Meta-Analysis Systematic Review Comparing Recurrence Rates Between Different Radiation Modalities. Ann. Plast. Surg. 2017, 78, 403–411. [Google Scholar] [CrossRef]
- Able, C.M.; Mills, M.D.; McNeese, M.D.; Hogstrom, K.R. Evaluation of a total scalp electron irradiation technique. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 1063–1072. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khan, F.M. Dosimetric effects of abutting extended source to surface distance electron fields with photon fields in the treatment of head and neck cancers. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28, 741–747. [Google Scholar] [CrossRef]
- Yoon, J.; Xie, Y.; Zhang, R. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy. J. Appl. Clin. Med. Phys. 2018, 19, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, C.H.; Tien, H.J.; Yu, Y.B.; Wu, Y.H.; Shueng, P.W.; Lu, Y.F.; Wang, S.Y.; Wang, L.Y. Simultaneous integrated boost with helical arc radiotherapy of total skin (HEARTS) to treat cutaneous manifestations of advanced, therapy-refractory cutaneous lymphoma and leukemia-dosimetry comparison of different regimens and clinical application. Radiat. Oncol. 2019, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.P.; Huang, Y.C.; Wang, L.Y.; Shueng, P.W.; Tien, H.J.; Chang, C.H.; Chou, S.F.; Hsieh, C.H. Helical tomotherapy with a complete-directional-complete block technique effectively reduces cardiac and lung dose for left-sided breast cancer. Br. J. Radiol. 2020, 93, 20190792. [Google Scholar] [CrossRef] [PubMed]
- Paddick, I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J. Neurosurg. 2000, 93 (Suppl. 3), 219–222. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Dong, L.; Liu, H.; Gillin, M.; Ahamad, A.; Ang, K.; Mohan, R. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 594–601. [Google Scholar] [CrossRef]
- Waselenko, J.K.; MacVittie, T.J.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; et al. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004, 140, 1037–1051. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.; Micke, A.; Yu, X.; Chan, M.F. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med. Phys. 2012, 39, 6339–6350. [Google Scholar] [CrossRef]
- Ogawa, R.; Okai, K.; Tokumura, F.; Mori, K.; Ohmori, Y.; Huang, C.; Hyakusoku, H.; Akaishi, S. The relationship between skin stretching/contraction and pathologic scarring: The important role of mechanical forces in keloid generation. Wound Repair Regen. 2012, 20, 149–157. [Google Scholar] [CrossRef]
- Huang, C.; Liu, L.; You, Z.; Wang, B.; Du, Y.; Ogawa, R. Keloid progression: A stiffness gap hypothesis. Int. Wound J. 2017, 14, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Bischof, M.; Krempien, R.; Debus, J.; Treiber, M. Postoperative electron beam radiotherapy for keloids: Objective findings and patient satisfaction in self-assessment. Int. J. Dermatol. 2007, 46, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, R.; Akaishi, S.; Kuribayashi, S.; Miyashita, T. Keloids and Hypertrophic Scars Can Now Be Cured Completely: Recent Progress in Our Understanding of the Pathogenesis of Keloids and Hypertrophic Scars and the Most Promising Current Therapeutic Strategy. J. Nippon. Med. Sch. 2016, 83, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, R. Recent Advances in Scar Biology. Int. J. Mol. Sci. 2018, 19, 1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Jang, Y.J. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int. J. Mol. Sci. 2018, 19, 711. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Tian, Y.; Zhu, Y.Q.; Zhang, L.Y.; Ji, S.J.; Huan, J.; Zhou, X.Z.; Cao, J.P. Ionizing irradiation inhibits keloid fibroblast cell proliferation and induces premature cellular senescence. J. Dermatol. 2015, 42, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Keeling, B.H.; Whitsitt, J.; Liu, A.; Dunnick, C.A. Keloid removal by shave excision with adjuvant external beam radiation therapy. Dermatol. Surg. 2015, 41, 989–992. [Google Scholar] [CrossRef]
- Yan, L.; Wang, L.Z.; Xiao, R.; Cao, R.; Pan, B.; Lv, X.Y.; Jiao, H.; Zhuang, Q.; Sun, X.J.; Liu, Y.B. Inhibition of microRNA-21-5p reduces keloid fibroblast autophagy and migration by targeting PTEN after electron beam irradiation. Lab. Investig. 2020, 100, 387–399. [Google Scholar] [CrossRef]
- Tosa, M.; Ghazizadeh, M.; Shimizu, H.; Hirai, T.; Hyakusoku, H.; Kawanami, O. Global gene expression analysis of keloid fibroblasts in response to electron beam irradiation reveals the involvement of interleukin-6 pathway. J. Investig. Dermatol. 2005, 124, 704–713. [Google Scholar] [CrossRef] [Green Version]
- Weaver, R.D.; Gerbi, B.J.; Dusenbery, K.E. Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 475–478. [Google Scholar] [CrossRef]
- Sun, C.; Cheng, C.W.; Shimm, D.S.; Cassady, J.R. Dose profiles in the region of abutting photon and electron fields in the irradiation of head and neck tumors. Med. Dosim. 1998, 23, 5–10. [Google Scholar] [CrossRef]
- Anacak, Y.; Arican, Z.; Drumea, K.; Rosenblatt, E.; Tamir, A.; Chetver, L.; Stein, M.; Bar Deroma, R.; Kuten, A. Total skin electron irradiation in mycosis fungoides: Comparison between a modified Christie Hospital translational technique and the Stanford technique. Leuk. Lymphoma 2002, 43, 2093–2097. [Google Scholar] [CrossRef] [PubMed]
- Van Battum, L.J.; Van Der Zee, W.; Huizenga, H. Scattered radiation from applicators in clinical electron beams. Phys. Med. Biol. 2003, 48, 2493–2507. [Google Scholar] [CrossRef] [PubMed]
- Buglione, M.; Spiazzi, L.; Urpis, M.; Baushi, L.; Avitabile, R.; Pasinetti, N.; Borghetti, P.; Triggiani, L.; Pedretti, S.; Saiani, F.; et al. Light and shadows of a new technique: Is photon total-skin irradiation using helical IMRT feasible, less complex and as toxic as the electrons one? Radiat. Oncol. 2018, 13, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, C.H.; Shueng, P.W.; Lin, S.C.; Tien, H.J.; Shiau, A.C.; Chou, Y.H.; Wu, M.H.; Wang, J.Y.; Chen, C.K.; Chen, Y.J. Helical irradiation of the total skin with dose painting to replace total skin electron beam therapy for therapy-refractory cutaneous CD4+ T-cell lymphoma. Biomed. Res. Int. 2013, 2013, 717589. [Google Scholar] [CrossRef] [Green Version]
- Kal, H.B.; Veen, R.E.; Jurgenliemk-Schulz, I.M. Dose-effect relationships for recurrence of keloid and pterygium after surgery and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 245–251. [Google Scholar] [CrossRef]
- Barendsen, G.W. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 1981–1997. [Google Scholar] [CrossRef]
- Thames, H.D., Jr.; Withers, H.R.; Peters, L.J.; Fletcher, G.H. Changes in early and late radiation responses with altered dose fractionation: Implications for dose-survival relationships. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 219–226. [Google Scholar] [CrossRef]
- Kal, H.B.; Veen, R.E. Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship. Strahlenther. Onkol. 2005, 181, 717–723. [Google Scholar] [CrossRef]
- De Lorenzi, F.; Tielemans, H.J.; Van Der Hulst, R.R.; Rhemrev, R.; Nieman, F.H.; Lutgens, L.C.; Boeckx, W.D. Is the treatment of keloid scars still a challenge in 2006? Ann. Plast. Surg. 2007, 58, 186–192. [Google Scholar] [CrossRef]
- Ragoowansi, R.; Cornes, P.G.; Moss, A.L.; Glees, J.P. Treatment of keloids by surgical excision and immediate postoperative single-fraction radiotherapy. Plast. Reconstr. Surg. 2003, 111, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, K.; Mori, S.; Ohno, M.; Yanagawa, N.; Yoshida, T.; Akahane, K.; Iwai, K.; Wada, S. Patient dose estimation for multi-detector-row CT examinations. Radiat. Prot. Dosim. 2008, 128, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Bock, O.; Schmid-Ott, G.; Malewski, P.; Mrowietz, U. Quality of life of patients with keloid and hypertrophic scarring. Arch. Dermatol. Res. 2006, 297, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Maemoto, H.; Iraha, S.; Arashiro, K.; Ishigami, K.; Ganaha, F.; Murayama, S. Risk factors of recurrence after postoperative electron beam radiation therapy for keloid: Comparison of long-term local control rate. Rep. Pract. Oncol. Radiother. 2020, 25, 606–611. [Google Scholar] [CrossRef] [PubMed]
HT Group (Lesion Number, n = 23) | Electron Beam Group (Lesion Number, n = 20) | |
---|---|---|
Age (years) | ||
Mean | 43 | 38 |
Range | 20–75 | 22–66 |
Sex | ||
Male | 5 | 4 |
Female | 6 | 7 |
Location | Lesion number (n)/ Irradiation mean size (c.c. for HT, cm for Electron) | |
Scalp | 1/220.5 c.c | |
Ear | 5/31.1 c.c. | 5/5.2 cm |
Lip | 1/53.2 c.c | |
Neck | 1/102.1 c.c | 1/4.8 cm |
Shoulder | 4/152.1 c.c | 1/6.2 cm |
Arm | 4/214.5 c.c | 2/6.5 cm |
Anterior chest wall | 2/8.6 cm | |
Breast | 5/9.8 cm | |
Abdomen | 2/700.1 c.c. | 1/5.0 cm |
Pelvis | 4/311.8 c.c. | 2/6.0 cm |
Back | 1/200.2 c.c | |
Scapula | 1/5.5 cm |
Critical Organ | Mean ± SD (Gy) | Maximum ± SD (Gy) |
---|---|---|
Right lens | - | 0.05 ± 0.04 |
Left lens | - | 0.08 ± 0.05 |
Right eyeball | 0.05 ± 0.04 | - |
Left eyeball | 0.07 ± 0.05 | - |
Right optic nerve | - | 0.04 ± 0.03 |
Left optic nerve | - | 0.08 ± 0.06 |
Optic chiasm | - | 0.06 ± 0.01 |
Right inner ear | 0.07 ± 0.06 | - |
Left inner ear | 0.20 ± 0.11 | - |
Right parotid | 0.10± 0.05 | - |
Left parotid | 0.80 ± 0.72 | - |
Brain | 0.26 ± 0.22 | - |
Heart | 1.50 ± 0.32 | - |
Whole lungs | 1.09 ± 0.20 | - |
Bilateral kidneys | 0.55 ± 0.45 | - |
Liver | 1.28 ± 0.23 | - |
Esophagus | 0.80 ± 0.51 | - |
Trachea | 0.78 ± 0.39 | - |
Intestine | 1.75 ± 0.02 | - |
Stomach | 0.85 ± 0.26 | - |
Bladder | 0.35 ± 0.05 | - |
Rectum | 0.19 ± 0.09 | - |
Uterus | 0.28 ± 0.11 | - |
Bilateral femur bones | 0.64 ± 0.43 | - |
PCI | 0.70 ± 0.05 | - |
UI | 1.09 ± 0.3 | - |
Treatment Site | HT Group | Electron Beam Group | p Value | ||
---|---|---|---|---|---|
Mean Dose (cGy) | Compared to Prescription Dose (%) | Mean Dose (cGy) | Compared to Prescription Dose (%) | ||
Ear | 466.5 | +3.7% | 417.6 | −7.2% | |
Lip | 502.8 | +11.7% | - | - | |
Shoulder | 483.7 | +7.5% | 422.6 | −6.1% | |
Arm | 489.3 | +8.7% | 427.1 | −5.1% | |
Chest | - | - | 429.8 | −4.5% | |
Abdomen | 467.5 | +3.9% | 430.7 | −4.3% | |
Pelvis | 506.1 | +12.5% | 438.3 | −2.6% | |
Mean | 486.0 | +8.0% | 427.5 | −5.0% | p = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-F.; Shueng, P.-W.; Roan, T.-L.; Chang, D.-H.; Yu, Y.-C.; Chang, C.-W.; Kuo, A.-T.; Chen, Y.-S.; Hsiao, H.-W.; Tien, H.-J.; et al. Tomotherapy as an Alternative Irradiative Treatment for Complicated Keloids. J. Clin. Med. 2020, 9, 3732. https://doi.org/10.3390/jcm9113732
Lin Y-F, Shueng P-W, Roan T-L, Chang D-H, Yu Y-C, Chang C-W, Kuo A-T, Chen Y-S, Hsiao H-W, Tien H-J, et al. Tomotherapy as an Alternative Irradiative Treatment for Complicated Keloids. Journal of Clinical Medicine. 2020; 9(11):3732. https://doi.org/10.3390/jcm9113732
Chicago/Turabian StyleLin, Yu-Fang, Pei-Wei Shueng, Tyng-Luen Roan, Dun-Hao Chang, Yen-Chen Yu, Che-Wei Chang, An-Ta Kuo, Yo-Shen Chen, Hsiu-Wen Hsiao, Hui-Ju Tien, and et al. 2020. "Tomotherapy as an Alternative Irradiative Treatment for Complicated Keloids" Journal of Clinical Medicine 9, no. 11: 3732. https://doi.org/10.3390/jcm9113732
APA StyleLin, Y.-F., Shueng, P.-W., Roan, T.-L., Chang, D.-H., Yu, Y.-C., Chang, C.-W., Kuo, A.-T., Chen, Y.-S., Hsiao, H.-W., Tien, H.-J., & Hsieh, C.-H. (2020). Tomotherapy as an Alternative Irradiative Treatment for Complicated Keloids. Journal of Clinical Medicine, 9(11), 3732. https://doi.org/10.3390/jcm9113732