Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data from Online Databases
2.2. Patients and Tissues
2.3. Statistical Analysis
2.4. Immunohistochemical Staining (IHC)
2.5. Statistics
3. Results
3.1. Association between Clinical Variables and Protein Expression
3.2. Correlations between CAR/DSG2 Protein Expression, Proliferation, Apoptosis, Angiogenesis, and EMT
3.3. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, X.; Lin, D. Changes of 2015 WHO Histological Classification of Lung Cancer and the Clinical Significance. Zhongguo Fei Ai Za Zhi 2016, 19, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Q.; Shih, W.; Ling, C.H.; Tsao, M.S. Immunohistochemical markers of prognosis in non-small cell lung cancer: A review and proposal for a multiphase approach to marker evaluation. J. Clin. Pathol. 2006, 59, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Patzke, C.; Max, K.E.; Behlke, J.; Schreiber, J.; Schmidt, H.; Dorner, A.A.; Kroger, S.; Henning, M.; Otto, A.; Heinemann, U.; et al. The coxsackievirus-adenovirus receptor reveals complex homophilic and heterophilic interactions on neural cells. J. Neurosci. 2010, 30, 2897–2910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, M.; Chen, S.; Yu, T.; Escuadro, B.; Sharma, S.; Batra, R.K. Coxsackievirus adenovirus receptor expression predicts the efficiency of adenoviral gene transfer into non-small cell lung cancer xenografts. Clin. Cancer Res. 2003, 9, 4992–4999. [Google Scholar]
- Sakhawat, A.; Liu, Y.; Ma, L.; Muhammad, T.; Wang, S.; Zhang, L.; Cong, X.; Huang, Y. Upregulation of Coxsackie Adenovirus Receptor Sensitizes Cisplatin-Resistant Lung Cancer Cells to CRAd-Induced Inhibition. J. Cancer 2017, 8, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
- Wunder, T.; Schmid, K.; Wicklein, D.; Groitl, P.; Dobner, T.; Lange, T.; Anders, M.; Schumacher, U. Expression of the coxsackie adenovirus receptor in neuroendocrine lung cancers and its implications for oncolytic adenoviral infection. Cancer Gene Ther. 2013, 20, 25–32. [Google Scholar] [CrossRef]
- Wang, B.; Chen, G.; Li, F.; Zhou, J.; Lu, Y.; Ma, D. Inhibitory effect of coxsackie adenovirus receptor on invasion and metastasis phenotype of ovarian cancer cell line SKOV3. J. Huazhong Univ. Sci. Technol. Med. Sci. 2005, 25, 85–87. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Bao, Y.; Ni, C.; Guan, N.; Zhao, J.; Salford, L.G.; Widegren, B.; Fan, X. Coxsackievirus and adenovirus receptor expression in non-malignant lung tissues and clinical lung cancers. J. Mol. Histol. 2006, 37, 153–160. [Google Scholar] [CrossRef]
- Anders, M.; Hansen, R.; Ding, R.X.; Rauen, K.A.; Bissell, M.J.; Korn, W.M. Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 1943–1948. [Google Scholar] [CrossRef] [Green Version]
- Anders, M.; Vieth, M.; Rocken, C.; Ebert, M.; Pross, M.; Gretschel, S.; Schlag, P.M.; Wiedenmann, B.; Kemmner, W.; Hocker, M. Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression. Br. J. Cancer 2009, 100, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Reeh, M.; Bockhorn, M.; Gorgens, D.; Vieth, M.; Hoffmann, T.; Simon, R.; Izbicki, J.R.; Sauter, G.; Schumacher, U.; Anders, M. Presence of the coxsackievirus and adenovirus receptor (CAR) in human neoplasms: A multitumour array analysis. Br. J. Cancer 2013, 109, 1848–1858. [Google Scholar] [CrossRef] [PubMed]
- Stecker, K.; Vieth, M.; Koschel, A.; Wiedenmann, B.; Rocken, C.; Anders, M. Impact of the coxsackievirus and adenovirus receptor on the adenoma-carcinoma sequence of colon cancer. Br. J. Cancer 2011, 104, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Rauen, K.A.; Sudilovsky, D.; Le, J.L.; Chew, K.L.; Hann, B.; Weinberg, V.; Schmitt, L.D.; McCormick, F. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: Potential relevance to gene therapy. Cancer Res. 2002, 62, 3812–3818. [Google Scholar] [PubMed]
- Okegawa, T.; Pong, R.C.; Li, Y.; Bergelson, J.M.; Sagalowsky, A.I.; Hsieh, J.T. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: A functional analysis of car protein structure. Cancer Res. 2001, 61, 6592–6600. [Google Scholar]
- Bruning, A.; Stickeler, E.; Diederich, D.; Walz, L.; Rohleder, H.; Friese, K.; Runnebaum, I.B. Coxsackie and adenovirus receptor promotes adenocarcinoma cell survival and is expressionally activated after transition from preneoplastic precursor lesions to invasive adenocarcinomas. Clin. Cancer Res. 2005, 11, 4316–4320. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.Y.; Ho, C.C.; Huang, Y.K.; Chen, H.W.; Wang, Y.C.; Kuo, C.Y.; Teng, S.C.; Fu, W.M.; Yang, P.C.; Wu, C.W.; et al. Acquisition of tumorigenic potential and enhancement of angiogenesis in pulmonary stem/progenitor cells through Oct-4 hyperexpression. Oncotarget 2016, 7, 13917–13931. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fang, B.; Mohan, R.; Chang, J.Y. Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiother. Oncol. 2012, 105, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Cooper, F.; Overmiller, A.M.; Loder, A.; Brennan-Crispi, D.M.; McGuinn, K.P.; Marous, M.R.; Freeman, T.A.; Riobo-Del Galdo, N.A.; Siracusa, L.D.; Wahl, J.K., 3rd; et al. Enhancement of Cutaneous Wound Healing by Dsg2 Augmentation of uPAR Secretion. J Investig. Dermatol. 2018, 138, 2470–2479. [Google Scholar] [CrossRef] [Green Version]
- Nava, P.; Laukoetter, M.G.; Hopkins, A.M.; Laur, O.; Gerner-Smidt, K.; Green, K.J.; Parkos, C.A.; Nusrat, A. Desmoglein-2: A novel regulator of apoptosis in the intestinal epithelium. Mol. Biol. Cell 2007, 18, 4565–4578. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Beyer, I.; Persson, J.; Song, H.; Li, Z.; Richter, M.; Cao, H.; van Rensburg, R.; Yao, X.; Hudkins, K. A new human DSG2-transgenic mouse model for studying the tropism and pathology of human adenoviruses. J. Virol. 2012, 86, 6286–6302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.Y.; Mintoff, C.; Johan, M.Z.; Ebert, B.W.; Fedele, C.; Zhang, Y.F.; Szeto, P.; Sheppard, K.E.; McArthur, G.A.; Foster-Smith, E.; et al. Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget 2016, 7, 46492–46508. [Google Scholar] [CrossRef] [PubMed]
- Trojan, L.; Schaaf, A.; Steidler, A.; Haak, M.; Thalmann, G.; Knoll, T.; Gretz, N.; Alken, P.; Michel, M.S. Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines. Anticancer Res. 2005, 25, 183–191. [Google Scholar] [CrossRef]
- Kurzen, H.; Munzing, I.; Hartschuh, W. Expression of desmosomal proteins in squamous cell carcinomas of the skin. J. Cutan. Pathol. 2003, 30, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Zhu, Q.; Miao, Y.; Shen, S.; Su, X.; Shi, Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J. Cancer Res. Clin. Oncol. 2017, 143, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Saaber, F.; Chen, Y.; Cui, T.; Yang, L.; Mireskandari, M.; Petersen, I. Expression of desmogleins 1-3 and their clinical impacts on human lung cancer. Pathol. Res. Pract. 2015, 211, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Ruiying, C.; Zeyun, L.; Yongliang, Y.; Zijia, Z.; Ji, Z.; Xin, T.; Xiaojian, Z. A comprehensive analysis of metabolomics and transcriptomics in non-small cell lung cancer. PLoS ONE 2020, 15, e0232272. [Google Scholar] [CrossRef] [PubMed]
- Arnberg, N. Adenovirus receptors: Implications for targeting of viral vectors. Trends Pharmacol. Sci. 2012, 33, 442–448. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Qin, M.; Escuadro, B.; Dohadwala, M.; Sharma, S.; Batra, R.K. A novel role for the coxsackie adenovirus receptor in mediating tumor formation by lung cancer cells. Cancer Res. 2004, 64, 6377–6380. [Google Scholar] [CrossRef] [Green Version]
- Veena, M.S.; Qin, M.; Andersson, A.; Sharma, S.; Batra, R.K. CAR mediates efficient tumor engraftment of mesenchymal type lung cancer cells. Lab. Investig. 2009, 89, 875–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedermann, K.; Vogelsang, H.; Becker, I.; Plaschke, S.; Siewert, J.R.; Hofler, H.; Keller, G. Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J. Pathol. 2005, 207, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, W.; Hou, Y.; Niu, Z.; Zhong, Y.; Zhang, Y.; Yang, S. Comparative membrane proteomic analysis between lung adenocarcinoma and normal tissue by iTRAQ labeling mass spectrometry. Am. J. Transl. Res. 2014, 6, 267–280. [Google Scholar] [PubMed]
- Li, W.; Zhang, X.; Wang, W.; Sun, R.; Liu, B.; Ma, Y.; Zhang, W.; Ma, L.; Jin, Y.; Yang, S. Quantitative proteomics analysis of mitochondrial proteins in lung adenocarcinomas and normal lung tissue using iTRAQ and tandem mass spectrometry. Am. J. Transl. Res. 2017, 9, 3918–3934. [Google Scholar]
- Sun, R.; Ma, C.; Wang, W.; Yang, S. Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: A comprehensive analysis by multiple bioinformatics methods. PeerJ 2020, 8, e8420. [Google Scholar] [CrossRef]
- Li, S.; Qi, Z.; Li, H.; Hu, J.; Wang, D.; Wang, X.; Feng, Z. Conditionally replicating oncolytic adenoviral vector expressing arresten and tumor necrosis factor-related apoptosis-inducing ligand experimentally suppresses lung carcinoma progression. Mol. Med. Rep. 2015, 12, 2068–2074. [Google Scholar] [CrossRef]
- Tomono, T.; Kajita, M.; Yano, K.; Ogihara, T. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein. Biochem. Biophys. Res. Commun. 2016, 476, 183–187. [Google Scholar] [CrossRef]
Factors | Number or Average |
---|---|
N | 108 |
Age | 67.1 ± 11.2 |
Gender | |
Male | 63 |
Female | 45 |
Histological type | |
Adenocarcinoma | 87 |
Squamous cell carcinoma | 15 |
Other types * | 6 |
Stage | |
I | 66 |
II | 22 |
III | 13 |
IV | 7 |
CAR Expression | p Value | DSG2 Expression | p Value | |||
---|---|---|---|---|---|---|
Low | High | Low | High | |||
Gender | ||||||
Male | 21 | 43 | 0.051 | 54 | 10 | 0.024 |
Female | 24 | 22 | 45 | 1 | ||
Histological Type | ||||||
Adenocarcinoma | 36 | 51 | 0.788 | 81 | 6 | 0.005 |
Squamous cell carcinoma | 4 | 11 | 10 | 5 | ||
Others | 3 | 3 | 6 | 0 | ||
Stage | ||||||
Early | 32 | 48 | 0.565 | 74 | 6 | 0.148 |
Late | 11 | 17 | 23 | 5 |
Univariant Analysis | Multivariant Analysis | ||||||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 * | ||||||
Risk Factors | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
CAR | Low | Reference | --- | Reference | --- | Reference | --- |
High | 1.297 (0.441–3.818) | 0.637 | 1.017 (0.327–3.162) | 0.976 | 1.065 (0.322–3.521) | 0.092 | |
DSG2 | Low | Reference | --- | Reference | --- | Reference | --- |
High | 6.703 (1.746–25.738) | 0.006 | 6.663 (1.640–27.075) | 0.008 | 5.700 (1.161–27.981) | 0.032 | |
Age | <70 years | Reference | --- | Reference | --- | ||
>70 years | 0.772 (0.261–2.283) | 0.640 | 1.302 (0.390–4.345) | 0.667 | |||
Gender | Male | Reference | --- | Reference | --- | ||
Female | 0.844 (0.303–2.349) | 0.075 | 1.252 (0.361–4.340) | 0.723 | |||
Stage | Early | Reference | --- | Reference | --- | ||
Late | 5.316 (1.885–14.992) | 0.002 | 4.824 (1.666–13.968) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, C.-F.; Huang, C.-J.; Wu, M.-H.; Lee, H.H.-C.; Ling, T.-Y. Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays. J. Clin. Med. 2020, 9, 3693. https://doi.org/10.3390/jcm9113693
Weng C-F, Huang C-J, Wu M-H, Lee HH-C, Ling T-Y. Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays. Journal of Clinical Medicine. 2020; 9(11):3693. https://doi.org/10.3390/jcm9113693
Chicago/Turabian StyleWeng, Ching-Fu, Chi-Jung Huang, Mei-Hsuan Wu, Henry Hsin-Chung Lee, and Thai-Yen Ling. 2020. "Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays" Journal of Clinical Medicine 9, no. 11: 3693. https://doi.org/10.3390/jcm9113693
APA StyleWeng, C.-F., Huang, C.-J., Wu, M.-H., Lee, H. H.-C., & Ling, T.-Y. (2020). Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays. Journal of Clinical Medicine, 9(11), 3693. https://doi.org/10.3390/jcm9113693