SARS-CoV-2 Viral Load, IFNλ Polymorphisms and the Course of COVID-19: An Observational Study
Abstract
:1. Introduction
2. Experimental Section
2.1. SNP Genotyping
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease Situation Dashboard. Available online: https://covid19.who.int (accessed on 25 July 2020).
- World Health Organization. COVID-19 situation in the WHO European Region. Available online: https://who.maps.arcgis.com/apps/opsdashboard/index.html#/ead3c6475654481ca51c248d52ab9c61 (accessed on 25 July 2020).
- The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)—China. China CDC Wkly. 2020, 145–151. [Google Scholar] [CrossRef]
- Biswas, A.; Bhattacharjee, U.; Chakrabarti, A.K.; Tewari, D.N.; Banu, H.; Dutta, S. Emergence of Novel Coronavirus and COVID-19: Whether to stay or die out? Crit. Rev. Microbiol. 2020, 46, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2020, 34, 101623. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Casanova, J.-L.; Su, H.C.; Abel, L.; Aiuti, A.; Almuhsen, S.; Arias, A.A.; Bastard, P.; Biggs, C.; Bogunovic, D.; Boisson, B.; et al. A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell 2020, 181, 1194–1199. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Van Der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; Heuvel, G.V.D.; Mantere, T.; Kersten, S.; Van Deuren, R.C.; Steehouwer, M.; Van Reijmersdal, S.V.; Jaeger, M.; et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 2020, 24. [Google Scholar] [CrossRef]
- Yousefzadegan, S.; Rezaei, N. Case Report: Death due to COVID-19 in Three Brothers. Am. J. Trop. Med. Hyg. 2020, 102, 1203–1204. [Google Scholar] [CrossRef] [Green Version]
- Hemann, E.A.; Gale, M.J.; Savan, R. Interferon Lambda Genetics and Biology in Regulation of Viral Control. Front. Immunol. 2017, 8, 1707. [Google Scholar] [CrossRef]
- Rugwizangoga, B.; Andersson, M.E.; Kabayiza, J.-C.; Nilsson, M.S.; Ármannsdóttir, B.; Aurelius, J.; Nilsson, S.; Hellstrand, K.; Lindh, M.; Martner, A. IFNL4 Genotypes Predict Clearance of RNA Viruses in Rwandan Children With Upper Respiratory Tract Infections. Front. Cell. Infect. Microbiol. 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.-Y.; Jian, S.-W.; Liu, D.-P.; Ng, T.-C.; Huang, W.-T.; Lin, H.-H.; Taiwan COVID-19 Outbreak Investigation Team. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern. Med. 2020, 180, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Nolan, T. RT-qPCR Testing of SARS-CoV-2: A Primer. Int. J. Mol. Sci. 2020, 21, 3004. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J. Infect. 2020, 81, 357–371. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html. (accessed on 11 June 2020).
- R Software version 3.6.1. Available online: https://www.r-project.org/ (accessed on 5 July 2019).
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Li, X.; Xu, S.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Shi, J.; Zhou, M.; Wu, B.; Yang, Z.; et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J. Allergy Clin. Immunol. 2020, 146, 110–118. [Google Scholar] [CrossRef]
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.-S.; Yang, J.-Y.; Lin, J.-H.; Fann, C.S.-J.; Osyetrov, V.; King, C.-C.; Chen, Y.-M.A.; Chang, H.-L.; Kuo, H.-W.; Liao, F.; et al. Nasopharyngeal Shedding of Severe Acute Respiratory Syndrome--Associated Coronavirus Is Associated with Genetic Polymorphisms. Clin. Infect. Dis. 2006, 42, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.-M.; Poon, L.L.; Cheng, V.C.; Chan, K.-S.; Hung, I.F.; Wong, M.M.; Chan, K.-H.; Leung, W.-S.; Tang, B.S.; Chan, V.L.; et al. Initial viral load and the outcomes of SARS. Can. Med Assoc. J. 2004, 171, 1349–1352. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sun, S.; Shi, Y.; Wang, H.; Zhao, R.; Sheng, J.-F. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit. Care 2020, 24, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, C.I.; Barbagelata, E.; Ortona, E.; Ruggieri, A.; Massiah, G.; Giannico, O.V.; Politi, C.; Moretti, A.M. Gender differences in patients with COVID-19: A narrative review. Monaldi Arch. Chest Dis. 2020, 90. [Google Scholar] [CrossRef] [PubMed]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020, 20, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.-H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020, eabd4585. [Google Scholar] [CrossRef]
- Zhang, Q.; Bastard, P.; Liu, Z.; Le Pen, J.; Moncada-Velez, M.; Chen, J.; Ogishi, M.; Sabli, I.K.D.; Hodeib, S.; Korol, C.; et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020, eabd4570. [Google Scholar] [CrossRef]
- Prokunina-Olsson, L.; Alphonse, N.; Dickenson, R.E.; Durbin, J.E.; Glenn, J.S.; Hartmann, R.; Kotenko, S.V.; LaZear, H.M.; O’Brien, T.R.; Odendall, C.; et al. COVID-19 and emerging viral infections: The case for interferon lambda. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef] [Green Version]
All Patients (n = 381) | |||
---|---|---|---|
Male sex, n (%) | Male | 205 | (53.8%) |
Age in years, median (IQR) | 58 | (44–74) | |
RtReal-Time PCR cycle threshold, median (IQR) | 31 | (26–35) | |
Main clinical outcome, n (%) | |||
Death | 32 | (8.4%) | |
Intensive care hospitalization | 21 | (5.5%) | |
Hospitalization | 93 | (24.4%) | |
Home isolation | 235 | (61.7%) | |
IFNL3 rs12979860 C > T n (%) | |||
CC | 158 | (41.5%) | |
TC | 182 | (47.8%) | |
TT | 41 | (10.8%) | |
INFL4 rs368234815 TT/DG *, n (%) | |||
DG/DG | 34 | (11.3%) | |
TT/DG | 144 | (48.0%) | |
TT/TT | 122 | (40.7%) |
RtReal-Time PCR Cycle Threshold Values, Median (IQR) | p-Value | |||
---|---|---|---|---|
Sex | ||||
Male | 31 | (26–36) | 0.39 | |
Female | 31 | (25–35) | ||
Age in years | ||||
0 to 29 | 32 | (29–37) | <0.001 | |
30 to 44 | 31 | (26–35) | ||
45 to 64 | 32 | (29–36) | ||
65 to 74 | 30 | (26–35) | ||
>74 | 28 | (23–31) | ||
IFNL3 rs12979860 C > T | ||||
CC | 31 | (25–36) | 0.08 | |
TC | 31 | (27–35) | ||
TT | 29 | (22–34) | ||
INFL4 rs368234815 TT/DG * | ||||
DG/DG | 29 | (24–32) | 0.03 | |
TT/DG | 31 | (27–35) | ||
TT/TT | 30 | (25–35) |
Death/Critical Care | Hospitalization | Home Isolation | p-Value | ||
---|---|---|---|---|---|
Sex, n (%) | <0.001 | ||||
Male | 37 (18.0%) | 57 (27.8%) | 111 (54.1%) | ||
Female | 16 (9.9%) | 39 (22.2%) | 121 (68.8%) | ||
Age in years, median (IQR) | 75 (67–79) | 63 (53–76) | 51 (39–66) | <0.001 | |
RtReal-Time PCR cycle threshold, median (IQR) | 29 (25–32) | 29 (25–34) | 32 (27–36) | <0.001 | |
IFNL3 rs12979860 C > T, n (%) | |||||
CC | 24 (15.2) | 33 (20.9) | 101 (64.0) | 0.46 | |
TC | 24 (13.2) | 49 (27.0) | 109 (59.9) | ||
TT | 5 (12.2) | 14 (34.2) | 22 (53.7) | ||
INFL4 rs368234815 TT/DG *, n (%) | |||||
DG/DG | 4 (11.8) | 13 (38.2) | 17 (50.0) | 0.30 | |
TT/DG | 21 (14.6) | 37 (25.7) | 86 (59.7) | ||
TT/TT | 22 (18.0) | 25 (20.5) | 75 (61.5) |
Death/Critical Care OR (95% CI) | Hospitalization OR (95% CI) | |
---|---|---|
Sex (ref. Female) | 4.11 (1.98,8.53) *** | 1.99 (1.18,3.35) ** |
Age in years | 1.07 (1.05,1.1) *** | 1.03 (1.01,1.04) *** |
RtReal-Time PCR cycle threshold value | 0.66 (0.33,1.32) | 0.95 (0.91,0.99) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amodio, E.; Pipitone, R.M.; Grimaudo, S.; Immordino, P.; Maida, C.M.; Prestileo, T.; Restivo, V.; Tramuto, F.; Vitale, F.; Craxì, A.; et al. SARS-CoV-2 Viral Load, IFNλ Polymorphisms and the Course of COVID-19: An Observational Study. J. Clin. Med. 2020, 9, 3315. https://doi.org/10.3390/jcm9103315
Amodio E, Pipitone RM, Grimaudo S, Immordino P, Maida CM, Prestileo T, Restivo V, Tramuto F, Vitale F, Craxì A, et al. SARS-CoV-2 Viral Load, IFNλ Polymorphisms and the Course of COVID-19: An Observational Study. Journal of Clinical Medicine. 2020; 9(10):3315. https://doi.org/10.3390/jcm9103315
Chicago/Turabian StyleAmodio, Emanuele, Rosaria Maria Pipitone, Stefania Grimaudo, Palmira Immordino, Carmelo Massimo Maida, Tullio Prestileo, Vincenzo Restivo, Fabio Tramuto, Francesco Vitale, Antonio Craxì, and et al. 2020. "SARS-CoV-2 Viral Load, IFNλ Polymorphisms and the Course of COVID-19: An Observational Study" Journal of Clinical Medicine 9, no. 10: 3315. https://doi.org/10.3390/jcm9103315
APA StyleAmodio, E., Pipitone, R. M., Grimaudo, S., Immordino, P., Maida, C. M., Prestileo, T., Restivo, V., Tramuto, F., Vitale, F., Craxì, A., & Casuccio, A. (2020). SARS-CoV-2 Viral Load, IFNλ Polymorphisms and the Course of COVID-19: An Observational Study. Journal of Clinical Medicine, 9(10), 3315. https://doi.org/10.3390/jcm9103315