Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures
Abstract
:1. Introduction
2. Experimental Section
2.1. Primary Human Erythroid Cultures from Donors
2.2. Induction of Human Primary Erythroid Progenitor Cells
2.3. Cation Exchange High Performance Liquid Chromatography (HPLC)
2.4. Proteomics and Data Analysis
2.4.1. Protein Digestion and iTRAQ Labeling
2.4.2. High-pH Reverse Phase (RP) Peptide Fractionation
2.4.3. LC-MS Analysis
2.5. Database Search and Data Analysis:
3. Results
3.1. Decitabine Increases HbF in Primary Erythroid Cultures from Healthy Donors and Thalassemic Patients
3.2. Proteomic Analysis of Primary Human Erythroid Cultures Revealed 192 Proteins that Are Significantly Differentially Expressed Following Treatment with Decitabine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Ethics Approval and Consent to Participate
References
- Mabaera, R.; West, R.J.; Conine, S.J.; Macari, E.R.; Boyd, C.D.; Engman, C.A.; Lowrey, C.H. A cell stress signaling model of fetal hemoglobin induction: What doesn’t kill red blood cells may make them stronger. Exp. Hematol. 2008, 36, 1057–1072. [Google Scholar] [CrossRef] [PubMed]
- Menzel, S.; Garner, C.; Gut, I.; Matsuda, F.; Yamaguchi, M.; Heath, S.; Foglio, M.; Zelenika, D.; Boland, A.; Rooks, H.; et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 2007, 39, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, V.G.; Xu, J.; Ragoczy, T.; Ippolito, G.C.; Walkley, C.R.; Maika, S.D.; Fujiwara, Y.; Ito, M.; Groudine, M.; Bender, M.A.; et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009, 460, 1093–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, T.; Wang, X.; Maeda, M.; Canver, M.C.; Sher, F.; Funnell, A.P.; Fisher, C.; Suciu, M.; Martyn, G.E.; Norton, L.J.; et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 2016, 351, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, J.; Papadopoulos, P.; Georgitsi, M.; Gutierrez, L.; Grech, G.; Fanis, P.; Phylactides, M.; Verkerk, A.J.; van der Spek, P.J.; Scerri, C.A.; et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat. Genet. 2010, 42, 801–805. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, K.; Sun, C.W.; Pawlik, K.M.; Townes, T.M. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat. Genet. 2010, 42, 742–744. [Google Scholar] [CrossRef]
- Witt, O.; Sand, K.; Pekrun, A. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood 2000, 95, 2391–2396. [Google Scholar] [CrossRef]
- Koshy, M.; Dorn, L.; Bressler, L.; Molokie, R.; Lavelle, D.; Talischy, N.; Hoffman, R.; van Overveld, W.; DeSimone, J. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 2000, 96, 2379–2384. [Google Scholar] [CrossRef]
- Saunthararajah, Y.; Hillery, C.A.; Lavelle, D.; Molokie, R.; Dorn, L.; Bressler, L.; Gavazova, S.; Chen, Y.H.; Hoffman, R.; DeSimone, J. Effects of 5-aza-2’-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 2003, 102, 3865–3870. [Google Scholar] [CrossRef]
- Saunthararajah, Y.; Molokie, R.; Saraf, S.; Sidhwani, S.; Gowhari, M.; Vara, S.; Lavelle, D.; DeSimone, J. Clinical effectiveness of decitabine in severe sickle cell disease. Br. J. Haematol. 2008, 141, 126–129. [Google Scholar] [CrossRef]
- Olivieri, N.F.; Saunthararajah, Y.; Thayalasuthan, V.; Kwiatkowski, J.; Ware, R.E.; Kuypers, F.A.; Kim, H.Y.; Trachtenberg, F.L.; Vichinsky, E.P.; Thalassemia Clinical Research, N. A pilot study of subcutaneous decitabine in beta-thalassemia intermedia. Blood 2011, 118, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Ley, T.J.; Desimone, J.; Noguchi, C.T.; Turner, P.H.; Schechter, A.N.; Heller, P.; Nienhuis, A.W. 5-Azacytidine Increases Gamma-Globin Synthesis and Reduces the Proportion of Dense Cells in Patients with Sickle-Cell-Anemia. Blood 1983, 62, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Karpf, A.R.; Lasek, A.W.; Ririe, T.O.; Hanks, A.N.; Grossman, D.; Jones, D.A. Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine. Mol. Pharmacol. 2004, 65, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.; Schafer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A.K.; Hamon, C. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003, 75, 1895–1904. [Google Scholar] [CrossRef]
- Fibach, E. Techniques for studying stimulation of fetal hemoglobin production in human erythroid cultures. Hemoglobin 1998, 22, 445–458. [Google Scholar] [CrossRef]
- Ou, C.N.; Rognerud, C.L. Rapid analysis of hemoglobin variants by cation-exchange HPLC. Clin. Chem. 1993, 39, 820–824. [Google Scholar]
- Papachristou, E.K.; Roumeliotis, T.I.; Chrysagi, A.; Trigoni, C.; Charvalos, E.; Townsend, P.A.; Pavlakis, K.; Garbis, S.D. The shotgun proteomic study of the human ThinPrep cervical smear using iTRAQ mass-tagging and 2D LC-FT-Orbitrap-MS: The detection of the human papillomavirus at the protein level. J. Proteome Res. 2013, 12, 2078–2089. [Google Scholar] [CrossRef]
- Vizcaino, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Rios, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M. Oxidative stress in beta-thalassaemia and sickle cell disease. Redox Biol. 2015, 6, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Hahn, C.K.; Lowrey, C.H. Induction of fetal hemoglobin through enhanced translation efficiency of gamma-globin mRNA. Blood 2014, 124, 2730–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourfarzad, F.; von Lindern, M.; Azarkeivan, A.; Hou, J.; Kia, S.K.; Esteghamat, F.; van Ijcken, W.; Philipsen, S.; Najmabadi, H.; Grosveld, F. Hydroxyurea responsiveness in beta-thalassemic patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica 2013, 98, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabaera, R.; Greene, M.R.; Richardson, C.A.; Conine, S.J.; Kozul, C.D.; Lowrey, C.H. Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine′s ability to induce human fetal hemoglobin. Blood 2008, 111, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Boosalis, M.S.; Bandyopadhyay, R.; Bresnick, E.H.; Pace, B.S.; Van DeMark, K.; Zhang, B.; Faller, D.V.; Perrine, S.P. Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood 2001, 97, 3259–3267. [Google Scholar] [CrossRef] [Green Version]
- Keefer, J.R.; Schneidereith, T.A.; Mays, A.; Purvis, S.H.; Dover, G.J.; Smith, K.D. Role of cyclic nucleotides in fetal hemoglobin induction in cultured CD34+ cells. Exp. Hematol. 2006, 34, 1151–1161. [Google Scholar] [CrossRef]
- Bailey, L.; Kuroyanagi, Y.; Franco-Penteado, C.F.; Conran, N.; Costa, F.F.; Ausenda, S.; Cappellini, M.D.; Ikuta, T. Expression of the gamma-globin gene is sustained by the cAMP-dependent pathway in beta-thalassaemia. Br. J. Haematol. 2007, 138, 382–395. [Google Scholar] [CrossRef]
- Cokic, V.P.; Andric, S.A.; Stojilkovic, S.S.; Noguchi, C.T.; Schechter, A.N. Hydroxyurea nitrosylates and activates soluble guanylyl cyclase in human erythroid cells. Blood 2008, 111, 1117–1123. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Li, W.; Lou, T.F.; Baliga, B.S.; Pace, B.S. Fetal hemoglobin induction by histone deacetylase inhibitors involves generation of reactive oxygen species. Exp. Hematol. 2006, 34, 264–273. [Google Scholar] [CrossRef]
- Ronchi, A.; Ottolenghi, S. To respond or not to respond to hydroxyurea in thalassemia: A matter of stress adaptation? Haematologica 2013, 98, 657–659. [Google Scholar] [CrossRef]
- Stamatoyannopoulos, G. Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 2005, 33, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kawase, K.; Inohara, N.; Imamura, R.; Yeh, W.C.; Kinoshita, T.; Suda, T. Mechanism of ASC-mediated apoptosis: Bid-dependent apoptosis in type II cells. Oncogene 2007, 26, 1748–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bech-Otschir, D.; Kraft, R.; Huang, X.; Henklein, P.; Kapelari, B.; Pollmann, C.; Dubiel, W. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 2001, 20, 1630–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syken, J.; De-Medina, T.; Munger, K. TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc. Natl. Acad. Sci. USA 1999, 96, 8499–8504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Ju, S.K.; Lee, T.Y.; Huh, S.H.; Han, K.H. TIP30 directly binds p53 tumor suppressor protein in vitro. Mol. Cells 2012, 34, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Chen, J.; Lu, B.; Dong, L.; Wang, H.; Bi, C.; Wu, G.; Guo, H.; Wu, M.; Guo, Y. TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer Res. 2008, 68, 4133–4141. [Google Scholar] [CrossRef] [Green Version]
- Inostroza, J.A.; Mermelstein, F.H.; Ha, I.; Lane, W.S.; Reinberg, D. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 1992, 70, 477–489. [Google Scholar] [CrossRef]
- Aslam, A.; Mittal, S.; Koch, F.; Andrau, J.C.; Winkler, G.S. The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol. Biol. Cell 2009, 20, 3840–3850. [Google Scholar] [CrossRef] [Green Version]
- Kruk, J.A.; Dutta, A.; Fu, J.; Gilmour, D.S.; Reese, J.C. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 2011, 25, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Lew, Q.J.; Chu, K.L.; Chia, Y.L.; Cheong, N.; Chao, S.H. HEXIM1, a New Player in the p53 Pathway. Cancers 2013, 5, 838–856. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.P.; Calabretta, B. DNA binding and transactivation activity of A-myb, a c-myb-related gene. Cancer Res. 1994, 54, 6512–6516. [Google Scholar]
- Suzuki, M.; Tanaka, H.; Tanimura, A.; Tanabe, K.; Oe, N.; Rai, S.; Kon, S.; Fukumoto, M.; Takei, K.; Abe, T.; et al. The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice. PLoS ONE 2012, 7, e31854. [Google Scholar] [CrossRef] [PubMed]
- Desimone, J.; Biel, S.I.; Heller, P. Stimulation of Fetal Hemoglobin Synthesis in Baboons by Hemolysis and Hypoxia. Proc. Natl. Acad. Sci. USA 1978, 75, 2937–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desimone, J.; Biel, M.; Heller, P. Maintenance of Fetal Hemoglobin (Hbf) Elevations in the Baboon by Prolonged Erythropoietic Stress. Blood 1982, 60, 519–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, J.; Singh, M.; Banzon, V.; Vaitkus, K.; Ibanez, V.; Kouznetsova, T.; Mahmud, N.; DeSimone, J.; Lavelle, D. Transcriptional activation of the gamma-globin gene in baboons treated with decitabine and in cultured erythroid progenitor cells involves different mechanisms. Exp. Hematol. 2009, 37, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Fandy, T.E.; Jiemjit, A.; Thakar, M.; Rhoden, P.; Suarez, L.; Gore, S.D. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Torrealbaderon, A.T.; Papayannopoulou, T.; Knapp, M.S.; Fu, M.F.R.; Knitter, G.; Stamatoyannopoulos, G. Perturbations in the Erythroid Marrow Progenitor-Cell Pools May Play a Role in the Augmentation of Hbf by 5-Azacytidine. Blood 1984, 63, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Kiss, K.; Brozik, A.; Kucsma, N.; Toth, A.; Gera, M.; Berry, L.; Vallentin, A.; Vial, H.; Vidal, M.; Szakacs, G. Shifting the paradigm: The putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes. PLoS ONE 2012, 7, e37378. [Google Scholar] [CrossRef] [Green Version]
- Garriga-Canut, M.; Orkin, S.H. Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J. Biol. Chem. 2004, 279, 23597–23605. [Google Scholar] [CrossRef] [Green Version]
- Fer, N.D.; Shoemaker, R.H.; Monks, A. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1. J. Exp. Clin. Cancer Res. CR 2010, 29, 91. [Google Scholar] [CrossRef] [Green Version]
- Griaud, F.; Pierce, A.; Gonzalez Sanchez, M.B.; Scott, M.; Abraham, S.A.; Holyoake, T.L.; Tran, D.D.; Tamura, T.; Whetton, A.D. A pathway from leukemogenic oncogenes and stem cell chemokines to RNA processing via THOC5. Leukemia 2013, 27, 932–940. [Google Scholar] [CrossRef] [Green Version]
- Morita, K.; Saitoh, M.; Tobiume, K.; Matsuura, H.; Enomoto, S.; Nishitoh, H.; Ichijo, H. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J. 2001, 20, 6028–6036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gogol-Doring, A.; Hu, H.; Frohler, S.; Ma, Y.; Jens, M.; Maaskola, J.; Murakawa, Y.; Quedenau, C.; Landthaler, M.; et al. Integrative analysis revealed the molecular mechanism underlying RBM10-mediated splicing regulation. EMBO Mol. Med. 2013, 5, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Rozenblatt-Rosen, O.; Meyerson, M.; Manley, J.L. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3’ processing and transcription termination. Genes Dev. 2007, 21, 1779–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, S.; Gromak, N.; Proudfoot, N.J. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004, 432, 522–525. [Google Scholar] [CrossRef]
- Forcales, S.V.; Albini, S.; Giordani, L.; Malecova, B.; Cignolo, L.; Chernov, A.; Coutinho, P.; Saccone, V.; Consalvi, S.; Williams, R.; et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 2012, 31, 301–316. [Google Scholar] [CrossRef]
- Zhao, R.; Meng, F.; Wang, N.; Ma, W.; Yan, Q. Silencing of CHD5 gene by promoter methylation in leukemia. PLoS ONE 2014, 9, e85172. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Sun, S.C.; Bell, L.; Miller, B.A. NF-kappaB transcription factors are involved in normal erythropoiesis. Blood 1998, 91, 4136–4144. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Silver, M.; Parnes, A.; Nikiforow, S.; Berliner, N.; Vanasse, G.J. Resveratrol ameliorates TNFalpha-mediated suppression of erythropoiesis in human CD34(+) cells via modulation of NF-kappaB signalling. Br. J. Haematol. 2011, 155, 93–101. [Google Scholar] [CrossRef]
- Liu, J.J.; Hou, S.C.; Shen, C.K. Erythroid gene suppression by NF-kappa B. J. Biol. Chem. 2003, 278, 19534–19540. [Google Scholar] [CrossRef] [Green Version]
Samples | HbF Levels (% Relative to Un-Treated Control) | p-Value (Paired t-Test ± Dec) |
---|---|---|
Healthy | 62.68 ± 28.66 | 0.00003 |
Thalassemic | 43.89 ± 38.72 | 0.0027 |
(A) | |||
Healthy Samples | |||
Culture ID | HbF (%) | Increase in HbF (% Relative to Un-Treated) | |
Un-treated | 300 nM Dec | ||
H1 | 3.74 | 8.01 | 114.2 |
H2 | 10.3 | 19.65 | 90.89 |
H3 | 5.65 | 8.86 | 56.83 |
H4 | 12.83 | 19.73 | 53.78 |
H5 | 5.07 | 9.1 | 79.51 |
H6 | 2.53 | 4.22 | 66.78 |
Average | 6.69 | 11.6 | 77 |
(B) | |||
Thalassemic Samples | |||
Culture ID | HbF (%) | Increase in HbF (% Relative to Un-Treated) | |
Un-Treated | 300 nM Dec | ||
Th1 | 21.79 | 31.35 | 43.88 |
Th2 | 15.8 | 22.65 | 43.35 |
Th3 | 18.11 | 45.21 | 149.68 |
Th4 | 23.48 | 36.67 | 56.13 |
Th5 | 9.87 | 15.46 | 56.64 |
Th6 | 17.61 | 27 | 53.29 |
Average | 17.78 | 29.72 | 67.16 |
Number of Proteins with p-Value < 0.05 | Up-Regulated Proteins | Down-Regulated Proteins | ||||||
---|---|---|---|---|---|---|---|---|
Number of Proteins | % Proteins with Expression Ratio < 1.2 | 1.2 < % Proteins with Expression Ratio > 2 | % Proteins with Expression Ratio > 2 | Number of Proteins | % Proteins with Expression Ratio < 0.8 | % Proteins with Expression Ratio < 0.5 | ||
Ratio1 | 105 | 47 | 0 | 95.7 | 4.3 | 58 | 100 | 0 |
Ratio2 | 110 | 55 | 65.5 | 25.5 | 9.1 | 55 | 92.7 | 7.2 |
Functional Clustering | Enrichment Score | Count | p-Value | Benjamini | |
---|---|---|---|---|---|
Ratio 1 | |||||
Transcription factor binding | MF | 1.56 | 11 | 0.0045 | 0.75 |
Regulation of cell growth | BP | 1.4 | 5 | 0.0081 | 0.94 |
Regulation of cellular component size | BP | 1.4 | 7 | 0.015 | 0.89 |
Regulation of protein localization | BP | 1.32 | 5 | 0.012 | 0.88 |
Lipid transport | BP | 1.32 | 6 | 0.0027 | 0.94 |
Focal adhesion | CC | 1.13 | 5 | 0.02 | 0.74 |
Kinase inhibitor activity | MF | 0.89 | 3 | 0.068 | 0.91 |
Protein stabilization | BP | 0.92 | 4 | 0.0092 | 0.91 |
Protein kinase cascade | BP | 0.79 | 6 | 0.035 | 0.98 |
Chromatin organization | BP | 0.74 | 8 | 0.047 | 0.96 |
Transcription cofactor activation | MF | 0.72 | 8 | 0.012 | 0.83 |
Macromolecular complex assembly | BP | 0.7 | 15 | 0.038 | 0.97 |
Regulation of I-kappaB kinase/NF-kappaB cascade | BP | 0.66 | 4 | 0.055 | 0.97 |
Regulation of transferase activity | BP | 0.61 | 6 | 0.039 | 0.96 |
Ratio 2 | |||||
Transition metal ion binding | MF | 1.52 | 19 | 1.70 × 102 | 9.90 × 101 |
Zing finger | MF | 1.52 | 10 | 2.00 × 102 | 9.80 × 101 |
Cerebral cortex development | BP | 1.35 | 3 | 2.50 × 102 | 9.80 × 101 |
Chromatin organization | BP | 1.35 | 12 | 2.00 × 104 | 1.70 × 101 |
Transcription | BP | 1.29 | 14 | 2.10 × 102 | 9.90 × 101 |
Gamete generation | BP | 1.13 | 6 | 4.10 × 102 | 9.50 × 101 |
Chromatin modification | BP | 0.98 | 6 | 2.30 × 102 | 9.90 × 101 |
Positive regulation of I-kappaB kinase/NF-kappaB cascade | BP | 0.95 | 4 | 3.60 × 102 | 9.50 × 101 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorou, A.; Phylactides, M.; Katsantoni, E.; Vougas, K.; Garbis, S.D.; Fanis, P.; Sitarou, M.; Thein, S.L.; Kleanthous, M. Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures. J. Clin. Med. 2020, 9, 134. https://doi.org/10.3390/jcm9010134
Theodorou A, Phylactides M, Katsantoni E, Vougas K, Garbis SD, Fanis P, Sitarou M, Thein SL, Kleanthous M. Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures. Journal of Clinical Medicine. 2020; 9(1):134. https://doi.org/10.3390/jcm9010134
Chicago/Turabian StyleTheodorou, Andria, Marios Phylactides, Eleni Katsantoni, Kostas Vougas, Spyros D. Garbis, Pavlos Fanis, Maria Sitarou, Swee Lay Thein, and Marina Kleanthous. 2020. "Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures" Journal of Clinical Medicine 9, no. 1: 134. https://doi.org/10.3390/jcm9010134
APA StyleTheodorou, A., Phylactides, M., Katsantoni, E., Vougas, K., Garbis, S. D., Fanis, P., Sitarou, M., Thein, S. L., & Kleanthous, M. (2020). Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures. Journal of Clinical Medicine, 9(1), 134. https://doi.org/10.3390/jcm9010134