High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2)
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Subjects
2.3. Measurements of Clinical Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Schneider, G.; Käck, H.; Lindqvist, Y. The manifold of vitamin B6 dependent enzymes. Structure 2000, 8, R1–R6. [Google Scholar] [CrossRef]
- Toney, M.D. Aspartate aminotransferase: An old dog teaches new tricks. Arch. Biochem. Biophys. 2014, 544, 119–127. [Google Scholar] [CrossRef]
- Lala, V.; Minter, D.A. Liver Function Tests; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Panteghini, M. Aspartate aminotransferase isoenzymes. Clin Biochem. 1990, 23, 311–319. [Google Scholar] [CrossRef]
- Nathwani, R.A.; Pais, S.; Reynolds, T.B.; Kaplowitz, N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology 2005, 41, 380–382. [Google Scholar] [CrossRef]
- Malakouti, M.; Kataria, A.; Ali, S.K.; Schenker, S. Elevated Liver Enzymes in Asymptomatic Patients—What Should I Do? J. Clin. Transl. Hepatol. 2017, 5, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Sacheck, J.M.; Roubenoff, R. Nutrition in the exercising elderly. Clin. Sports Med. 1999, 18, 565–584. [Google Scholar] [CrossRef]
- Porter, K.; Hoey, L.; Hughes, C.F.; Ward, M.; McNulty, H. Causes, consequences and public health implications of low B-Vitamin status in ageing. Nutrients 2016, 8, 725. [Google Scholar] [CrossRef] [PubMed]
- Hickson, M. Malnutrition and ageing. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging. 2018, 13, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Nakajima, K. Elevated serum aspartate aminotransferase levels concomitant with normal alanine aminotransferase levels in older low body weight people: Preliminary findings from a community-based epidemiological study. BioRxiv Preprint 2019. [Google Scholar] [CrossRef]
- BMI Classification. World Health Organization. Available online: http://apps.who.int/bmi/index.jsp (accessed on 19 June 2019).
- Nakajima, K.; Iwane, T.; Higuchi, R.; Shibata, M.; Takada, K.; Uda, J.; Anan, M.; Sugiyama, M.; Nakamura, T. Kanagawa Investigation of the Total Check-up Data from the National database (KITCHEN): Protocol for data-driven population-based repeated cross-sectional and 6-year cohort studies. BMJ Open 2019, 9, e023323. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour, and Welfare. Health Examination and Guidance Program for Japanese Adults. Available online: http://www.mhlw.go.jp/bunya/shakaihosho/iryouseido01/info02a.html (accessed on 19 June 2019).
- Ozawa, Y.; Shimizu, T.; Shishiba, Y. Elevation of serum aminotransferase as a sign of multiorgan-disorders in severely emaciated anorexia nervosa. Intern. Med. 1998, 37, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Imaeda, M.; Tanaka, S.; Fujishiro, H.; Kato, S.; Ishigami, M.; Kawano, N.; Katayama, H.; Kohmura, K.; Ando, M.; Nishioka, K.; et al. Risk factors for elevated liver enzymes during refeeding of severely malnourished patients with eating disorders: a retrospective cohort study. J. Eat. Disord. 2016, 4, 37. [Google Scholar] [CrossRef]
- Yoshiike, N.; Matsumura, Y.; Zaman, M.M.; Yamaguchi, M. Descriptive epidemiology of body mass index in Japanese adults in a representative sample from the National Nutrition Survey 1990-1994. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 684–687. [Google Scholar] [CrossRef]
- Klein, S.; Allison, D.B.; Heymsfield, S.B.; Kelley, D.E.; Leibel, R.L.; Nonas, C.; Kahn, R. Waist Circumference and Cardiometabolic Risk: A Consensus Statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity 2007, 15, 1061–1067. [Google Scholar] [PubMed]
- Marchesini, G.; Avagnina, S.; Barantani, E.G.; Ciccarone, A.M.; Corica, F.; Dall’Aglio, E.; Dalle Grave, R.; Morpurgo, P.S.; Tomasi, F.; Vitacolonna, E. Aminotransferase and gamma-glutamyltranspeptidase levels in obesity are associated with insulin resistance and the metabolic syndrome. J. Endocrinol. Invest. 2005, 28, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Sull, J.W.; Yun, J.E.; Lee, S.Y.; Ohrr, H.; Jee, S.H.; Guallar, E.; Samet, J.M. Body mass index and serum aminotransferase levels in Korean men and women. J. Clin. Gastroenterol. 2009, 43, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Lott, J.A.; Landesman, P.W. The enzymology of skeletal muscle disorders. Crit. Rev. Clin. Lab. Sci. 1984, 20, 153–190. [Google Scholar] [CrossRef]
- Lowe, D.; John, S. Alkaline Phosphatase. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Doherty, J.F.; Adam, E.J.; Griffin, G.E.; Golden, M.H. Ultrasonographic assessment of the extent of hepatic steatosis in severe malnutrition. Arch. Dis. Child. 1992, 67, 1348–1352. [Google Scholar] [CrossRef]
- Tsai, J.H.; Ferrell, L.D.; Tan, V.; Yeh, M.M.; Sarkar, M.; Gill, R.M. Aggressive non-alcoholic steatohepatitis following rapid weight loss and/or malnutrition. Mod. Pathol. 2017, 30, 834–842. [Google Scholar] [CrossRef]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Kashani, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J. Thorac. Dis. 2016, 8, E305–E311. [Google Scholar] [CrossRef] [PubMed]
- Attaix, D.; Mosoni, L.; Dardevet, D.; Combaret, L.; Mirand, P.P.; Grizard, J. Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int. J. Biochem. Cell. Biol. 2005, 37, 1962–1973. [Google Scholar] [CrossRef]
- Finn, P.F.; Dice, J.F. Proteolytic and lipolytic responses to starvation. Nutrition 2006, 22, 830–844. [Google Scholar] [CrossRef]
- Ribeiro, S.M.; Kehayias, J.J. Sarcopenia and the analysis of body composition. Adv. Nutr. 2014, 14, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.Y.; Mougios, V.; Kabasakalis, A.; Fatouros, I.; Siopi, A.; Douroudos, I.I.; Filippaios, A.; Panagiotou, G.; Park, K.H.; Mantzoros, C.S. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab. 2014, 99, E2154–E2161. [Google Scholar] [CrossRef]
- Kim, H.J.; So, B.; Choi, M.; Kang, D.; Song, W. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp. Gerontol. 2015, 70, 11–17. [Google Scholar] [CrossRef]
- Colaianni, G.; Cinti, S.; Colucci, S.; Grano, M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017, 1402, 5–9. [Google Scholar] [CrossRef]
- Hozawa, A.; Okamura, T.; Oki, I.; Murakami, Y.; Kadowaki, T.; Nakamura, K.; Miyamatsu, N.; Hayakawa, T.; Kita, Y.; Nakamura, Y.; et al. Relationship between BMI and all-cause mortality in Japan: NIPPON DATA80. Obesity 2008, 16, 1714–1717. [Google Scholar] [CrossRef]
- Hozawa, A.; Hirata, T.; Yatsuya, H.; Murakami, Y.; Kuriyama, S.; Tsuji, I.; Sugiyama, D.; Satoh, A.; Tanaka-Mizuno, S.; Miura, K.; et al. Association between body mass index and all-cause death in Japanese population: pooled individual participant data analysis of 13 cohort studies. J. Epidemiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.; Miyazaki, S. Criteria of obesity and obesity disease in Japan. Nihon Rinsho. 2009, 67, 297–300. [Google Scholar]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. The association of low serum alanine aminotransferase activity with mortality in the US population. Am. J. Epidemiol. 2013, 178, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Kogan, M.; Klempfner, R.; Lotan, D.; Wasserstrum, Y.; Goldenberg, I.; Segal, G. Low ALT blood levels are associated with lower baseline fitness amongst subjects of a cardiac rehabilitation program. J. Exerc. Sci. Fit. 2018, 16, 1–4. [Google Scholar] [CrossRef]
- Irina, G.; Refaela, C.; Adi, B.; Avia, D.; Liron, H.; Chen, A.; Gad, S. Low Blood ALT Activity and High FRAIL Questionnaire Scores Correlate with Increased Mortality and with Each Other. A Prospective Study in the Internal Medicine Department. J. Clin. Med. 2018, 7, 386. [Google Scholar] [CrossRef] [PubMed]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. J. Gerontol. A. Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef]
- Schwenk, A. What should be done in weight loss of unknown origin? Med. Klin. 1998, 93, 719–725. [Google Scholar] [CrossRef]
- Gaddey, H.L.; Holder, K. Unintentional weight loss in older adults. Am. Fam. Physician 2014, 89, 718–722. [Google Scholar]
Age group (years old) | 40–49 | 50–59 | 60–74 |
---|---|---|---|
n (%) | 288,134 (32.3) | 246,700 (27.6) | 357,858 (40.1) |
Male, n (%) | 173,096 (60.1) | 140,837 (57.1) | 161,567 (45.1) |
Age (years) | 44.3 ± 2.5 | 54.7 ± 2.5 | 66.8 ± 4 |
BMI (kg/m2) | 22.9 ± 3.5 | 23.0 ± 3.3 | 22.8 ± 3.1 |
Waist circumference (cm) * | 81.2 ± 9.6 | 82.5 ± 9.2 | 82.7 ± 8.9 |
Underweight BMI <18.5 (kg/m2), n (%) | 21,526 (7.5) | 15,654 (6.3) | 23,914 (6.7) |
Very severe underweight BMI <15 (kg/m2), n (%) | 185 (0.06) | 198 (0.08) | 527 (0.15) |
AST (U/L) | 21.9 ± 8.9 | 23.2 ± 9 | 24.2 ± 9.1 |
ALT (U/L) | 23.8 ± 17.2 | 23.4 ± 14.5 | 21.5 ± 12 |
AST/ALT ratio | 1.06 (0.82–1.33) | 1.08 (0.88–1.33) | 1.19 (1.00–1.43) |
AST ≥30 U/L, n (%) | 33,573 (11.7) | 33,153 (13.4) | 53,993 (15.1) |
ALT ≥30 U/L, n (%) | 63,900 (22.2) | 48,620 (19.7) | 51,526 (14.4) |
γ-Glutamyl transferase (U/L) | 38.1 ± 37 | 41.5 ± 38.7 | 34.5 ± 31.5 |
Triglyceride (mg/dL) | 88 (60–137) | 97 (68–144) | 99 (73–139) |
High-density lipoprotein cholesterol (mg/dL) | 63.5 ± 16.7 | 64.9 ± 17.5 | 64.3 ± 16.8 |
Pharmacotherapy for | |||
Hypertension, n (%) | 13,203 (4.6) | 37,634 (15.3) | 112,871 (31.5) |
Diabetes, n (%) | 3479 (1.2) | 8354 (3.4) | 19,588 (5.5) |
Dyslipidemia, n (%) | 7376 (2.6) | 19,279 (7.8) | 66,228 (18.5) |
Medical history Cardiovascular disease, n (%) | 3520 (1.2) | 7049 (2.9) | 25,162 (7) |
Medical history Cerebrovascular disease, n (%) ** | 1351 (0.5) | 3087 (1.3) | 13,456 (3.8) |
Current smokers, n (%) | 91,056 (31.6) | 70,808 (28.7) | 51,051 (14.3) |
Alcohol drinking | |||
Every day, n (%) | 82,992 (28.8) | 79,796 (32.3) | 92,531 (25.9) |
Exercise (≥30 min per session) at least twice/week, n (%) | 59,939 (20.8) | 63,928 (25.9) | 157,507 (44) |
Physical activity (≥1 hour/day), n (%) | 106,312 (36.9) | 95,933 (38.9) | 193,975 (54.2) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibata, M.; Nakajima, K.; Higuchi, R.; Iwane, T.; Sugiyama, M.; Nakamura, T. High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2). J. Clin. Med. 2019, 8, 1282. https://doi.org/10.3390/jcm8091282
Shibata M, Nakajima K, Higuchi R, Iwane T, Sugiyama M, Nakamura T. High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2). Journal of Clinical Medicine. 2019; 8(9):1282. https://doi.org/10.3390/jcm8091282
Chicago/Turabian StyleShibata, Michi, Kei Nakajima, Ryoko Higuchi, Taizo Iwane, Michiko Sugiyama, and Teiji Nakamura. 2019. "High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2)" Journal of Clinical Medicine 8, no. 9: 1282. https://doi.org/10.3390/jcm8091282
APA StyleShibata, M., Nakajima, K., Higuchi, R., Iwane, T., Sugiyama, M., & Nakamura, T. (2019). High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2). Journal of Clinical Medicine, 8(9), 1282. https://doi.org/10.3390/jcm8091282