Body Weight Effects on Extra-Osseous Subtalar Arthroereisis
Abstract
1. Introduction
2. Experimental Section
2.1. Patient Criteria
2.2. Preoperative Preparation and Postoperative Assessment
2.3. Study Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Bernasconi, A.; Lintz, F.; Sadile, F. The role of arthroereisis of the subtalar joint for flatfoot in children and adults. EFORT Open Rev. 2017, 2, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Ozan, F.; Dogar, F.; Gencer, K.; Koyuncu, S.; Vatansever, F.; Duygulu, F.; Altay, T. Symptomatic flexible flatfoot in adults: Subtalar arthroereisis. Ther. Clin. Risk Manag. 2015, 11, 1597–1602. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.W.; Kong, P.W. Medial Longitudinal Arch Development of Children Aged 7 to 9 Years: Longitudinal Investigation. Phys. Ther. 2016, 96, 1216–1224. [Google Scholar] [CrossRef]
- Kubo, H.; Lipp, C.; Hufeland, M.; Ruppert, M.; Westhoff, B.; Krauspe, R.; Pilge, H. Outcome after subtalar screw arthroereisis in children with flexible flatfoot depends on time of treatment: Midterm results of 95 cases. J. Orthop. Sci. 2019. [Google Scholar] [CrossRef]
- Vulcano, E.; Maccario, C.; Myerson, M.S. How to approach the pediatric flatfoot. World J. Orthop. 2016, 7, 1–7. [Google Scholar] [CrossRef][Green Version]
- Faldini, C.; Mazzotti, A.; Panciera, A.; Perna, F.; Stefanini, N.; Giannini, S. Bioabsorbable implants for subtalar arthroereisis in pediatric flatfoot. Musculoskelet. Surg. 2018, 102, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Miao, X.D.; Wu, Y.P.; Zhang, X.F.; Zhang, Q. Therapeutic Outcomes of Kalix II in Treating Juvenile Flexible Flatfoot. Orthop. Surg. 2017, 9, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Faldini, C.; Mazzotti, A.; Panciera, A.; Persiani, V.; Pardo, F.; Pardo, F.; Perna, F.; Giannini, S. Patient-perceived outcomes after subtalar arthroereisis with bioabsorbable implants for flexible flatfoot in growing age: A 4-year follow-up study. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, S.A.; Bowling, F.L.; Reeves, N.D. Subtalar joint arthroereisis in the management of pediatric flexible flatfoot: A critical review of the literature. Foot Ankle Int. 2011, 32, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Wozniacka, R.; Bac, A.; Matusik, S.; Szczygiel, E.; Ciszek, E. Body weight and the medial longitudinal foot arch: High-arched foot, a hidden problem? Eur. J. Pediatr. 2013, 172, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Pavone, V.; Costarella, L.; Testa, G.; Conte, G.; Riccioli, M.; Sessa, G. Calcaneo-stop procedure in the treatment of the juvenile symptomatic flatfoot. J. Foot Ankle Surg. 2013, 52, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Giannini, B.S.; Ceccarelli, F.; Benedetti, M.G.; Catani, F.; Faldini, C. Surgical treatment of flexible flatfoot in children a four-year follow-up study. J. Bone Joint Surg. Am. 2001, 83, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Viladot Voegeli, A.; Fontecilla Cornejo, N.; Serra Sandoval, J.A.; Alvarez Goenaga, F.; Viladot Perice, R. Results of subtalar arthroereisis for posterior tibial tendon dysfunction stage IIA1. Based on 35 patients. Foot Ankle Surg. 2018, 24, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Bock, P.; Pittermann, M.; Chraim, M.; Rois, S. The inter- and intraobserver reliability for the radiological parameters of flatfoot, before and after surgery. Bone Joint J. 2018, 100, 596–602. [Google Scholar] [CrossRef] [PubMed]
- De Pellegrin, M.; Moharamzadeh, D.; Strobl, W.M.; Biedermann, R.; Tschauner, C.; Wirth, T. Subtalar extra-articular screw arthroereisis (SESA) for the treatment of flexible flatfoot in children. J. Child. Orthop. 2014, 8, 479–487. [Google Scholar] [CrossRef] [PubMed]
Demographic Data | In Situ | Extrusion | p Value |
---|---|---|---|
(n = 118 Feet of 59 Patients) | (n = 86 Feet of 43 Patients) | ||
Age | 8.6 ± 0.2 | 9.7 ± 0.3 | 0.021 * |
Sex | |||
Male | 42 (71%) | 30 (70%) | |
Female | 17 (29%) | 13 (30%) | |
Calcaneal pitch | 15.3 | 13.9 | 0.023 * |
Meary (AP) | 11.1 | 9.8 | 0.174 |
Talonavicular angle (AP) | 30.3 | 27.9 | 0.096 |
Meary (lateral) | 12.4 | 11.5 | 0.152 |
Talocalcaneal angle (lateral) | 51.1 | 49.2 | 0.039 * |
Talus inclination (lateral) | 32.0 | 30.7 | 0.046 * |
Demographic Data | Overweight (BMI ≥ 24) | Low Body Weight (BMI ≤ 18.5) | p Value |
---|---|---|---|
(n = 56 Feet of 28 Patients) | (n = 112 Feet of 56 Patients) | ||
Age | 10.1 ± 0.4 | 8.3 ± 0.2 | 0.0005 * |
Sex | |||
Male | 24 (86%) | 35 (62.5%) | |
Female | 4 (14%) | 21 (37.5%) | |
Calcaneal pitch | 13.7 | 15.2 | 0.018 * |
Meary (AP) | 9.1 | 11.4 | 0.019 * |
Talonavicular angle (AP) | 28.6 | 29.9 | 0.405 |
Meary (lateral) | 9.5 | 12.4 | 0.002 * |
Talocalcaneal angle (lateral) | 53.1 | 51.7 | 0.004 * |
Talus inclination (lateral) | 29.7 | 32.6 | 0.005 * |
Demographic Data | Overweight (BMI ≥ 24) | Low Body Weight (BMI ≤ 18.5) |
---|---|---|
Age | 10.1 ± 0.4 | 8.3 ± 0.2 |
Sex | ||
Male | 24 (86%) | 36 (63%) |
Female | 4 (14%) | 21 (37%) |
Both feet in situ | 8 (29%) | 32 (56%) |
Both feet extrusion | 11 (39%) | 13 (23%) |
One foot extrusion | 9 (32%) | 12 (21%) |
Radiographic Data | In Situ | Extrusion | p Value |
---|---|---|---|
(n = 118 Feet of 59 Patients) | (n = 86 Feet of 43 Patients) | ||
Calcaneal pitch | 16.8 | 15.1 | 0.006 * |
Meary angle (AP) | 5.2 | 5.8 | 0.031 * |
Talonavicular angle (AP) | 12.4 | 14.9 | 0.022 * |
Meary angle (lateral) | 4.8 | 5.9 | 0.038 * |
Talocalcaneal angle (lateral) | 47.2 | 45.0 | 0.019 * |
Talus inclination (lateral) | 25.9 | 25.4 | 0.632 |
Radiographic Data | In Situ | p Value | Extrusion | p Value | ||
---|---|---|---|---|---|---|
(n = 118 Feet of 59 Patients) | (n = 86 Feet of 43 Patients) | |||||
Pre-op | Post-op | Pre-op | Post-op | |||
Calcaneal pitch | 15.3 | 16.8 | <0.0001 * | 13.9 | 15.1 | <0.0006 * |
Meary angle (AP) | 11.1 | 5.2 | <0.0001 * | 9.8 | 5.8 | <0.0001 * |
Talonavicular angle (AP) | 30.3 | 12.4 | <0.0001 * | 27.9 | 14.9 | <0.0001 * |
Meary angle (lateral) | 12.4 | 4.8 | <0.0001 * | 11.5 | 5.9 | <0.0001 * |
Talocalcaneal angle (lateral) | 51.1 | 47.2 | <0.0001 * | 49.2 | 45.0 | <0.0001 * |
Talus inclination (lateral) | 32.0 | 25.9 | <0.0001 * | 30.7 | 25.4 | <0.0001 * |
Radiographic Data | In Situ | Extrusion | p Value |
---|---|---|---|
(n = 118 Feet of 59 Patients) | (n = 86 Feet of 43 Patients) | ||
Improved Angle (Degree) | Improved Angle (Degree) | ||
Calcaneal pitch | 2.7 | 2.6 | 0.732 |
Meary angle (AP) | 7.8 | 5.9 | 0.008 * |
Talonavicular angle (AP) | 18.0 | 14.4 | 0.016 * |
Meary angle (lateral) | 7.9 | 7.0 | 0.096 |
Talocalcaneal angle (lateral) | 5.1 | 5.5 | 0.355 |
Talus inclination (lateral) | 7.3 | 5.5 | 0.005 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, C.-H.; Lee, C.-C.; Tseng, T.-H.; Wu, K.-W.; Chang, J.-F.; Wang, T.-M. Body Weight Effects on Extra-Osseous Subtalar Arthroereisis. J. Clin. Med. 2019, 8, 1273. https://doi.org/10.3390/jcm8091273
Hsieh C-H, Lee C-C, Tseng T-H, Wu K-W, Chang J-F, Wang T-M. Body Weight Effects on Extra-Osseous Subtalar Arthroereisis. Journal of Clinical Medicine. 2019; 8(9):1273. https://doi.org/10.3390/jcm8091273
Chicago/Turabian StyleHsieh, Chiun-Hua, Chia-Che Lee, Tzu-Hao Tseng, Kuan-Wen Wu, Jia-Feng Chang, and Ting-Ming Wang. 2019. "Body Weight Effects on Extra-Osseous Subtalar Arthroereisis" Journal of Clinical Medicine 8, no. 9: 1273. https://doi.org/10.3390/jcm8091273
APA StyleHsieh, C.-H., Lee, C.-C., Tseng, T.-H., Wu, K.-W., Chang, J.-F., & Wang, T.-M. (2019). Body Weight Effects on Extra-Osseous Subtalar Arthroereisis. Journal of Clinical Medicine, 8(9), 1273. https://doi.org/10.3390/jcm8091273