Addiction as Learned Behavior Patterns
Abstract
:1. Introduction
2. Pavlovian Mechanisms in Addictive Behavior
3. From Goal-Directed to Habitual Drug Seeking—The Importance of Contextual Cues
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Chiara, G.; Bassareo, V. Reward system and addiction: What dopamine does and doesn’t do. Curr. Opin. Pharmacol. 2007, 7, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A. Neuroleptics and operant behavior: The anhedonia hypothesis. Behav. Brain Sci. 1982, 5, 39–53. [Google Scholar] [CrossRef]
- Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Rev. 1993, 18, 247–291. [Google Scholar] [CrossRef]
- Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science 1997, 275, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A.; Knable, M.B.; Coppola, R.; Gorey, J.G.; Jones, D.W.; Lee, K.-S.; Weinberger, D.R. Psychomotor slowing, negative symptoms and dopamine receptor availability—An IBZM SPECT study in neuroleptic-treated and drug-free schizophrenic patients. Schizophr. Res. 1998, 31, 19–26. [Google Scholar] [CrossRef]
- Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 2005, 8, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.J.; Robbins, T.W. Drug addiction: Updating actions to habits to compulsions ten years on. Annu Rev. Psychol. 2016, 67, 23–50. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C. Drug-evoked synaptic plasticity causing addictive behavior. J. Neurosci. 2013, 33, 17641–17646. [Google Scholar] [CrossRef] [PubMed]
- Schoofs, N.; Heinz, A. Pathological gambling: Impulse control disorder, addiction or compulsion? Der Nervenarzt 2013, 84, 629–634. [Google Scholar] [CrossRef]
- Ersche, K.D.; Gillan, C.M.; Jones, P.S.; Williams, G.B.; Ward, L.H.; Luijten, M.; de Wit, S.; Sahakian, B.J.; Bullmore, E.T.; Robbins, T.W. Carrots and sticks fail to change behavior in cocaine addiction. Science 2016, 352, 1468–1471. [Google Scholar] [CrossRef] [Green Version]
- Voon, V.; Derbyshire, K.; Ruck, C.; Irvine, M.A.; Worbe, Y.; Enander, J.; Schreiber, L.R.; Gillan, C.; Fineberg, N.A.; Sahakian, B.J.; et al. Disorders of compulsivity: A common bias towards learning habits. Mol. Psychiatry 2015, 20, 345. [Google Scholar] [CrossRef]
- Friedel, E.; Schlagenhauf, F.; Beck, A.; Dolan, R.J.; Huys, Q.J.; Rapp, M.A.; Heinz, A. The effects of life stress and neural learning signals on fluid intelligence. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 35–43. [Google Scholar] [CrossRef]
- Kühn, S.; Gallinat, J. Common biology of craving across legal and illegal drugs—A quantitative meta-analysis of cue-reactivity brain response. Eur. J. Neurosci. 2011, 33, 1318–1326. [Google Scholar] [CrossRef]
- Heinz, A. A New Understanding of Mental Disorders: Computational Models for Dimensional Psychiatry; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Prevost, C.; Liljeholm, M.; Tyszka, J.M.; O’Doherty, J.P. Neural correlates of specific and general Pavlovian-to-instrumental transfer within human amygdalar subregions: A high-resolution fMRI study. J. Neurosci. 2012, 32, 8383–8390. [Google Scholar] [CrossRef]
- Grüsser, S.M.; Wrase, J.; Klein, S.; Hermann, D.; Smolka, M.N.; Ruf, M.; Weber-Fahr, W.; Flor, H.; Mann, K.; Braus, D.F.; et al. Cue-induced activation of the striatum and medial prefrontal cortex predicts relapse in abstinent alcoholics. Psychopharmacology 2004, 175, 296–302. [Google Scholar] [CrossRef]
- Beck, A.; Wüstenberg, T.; Genauck, A.; Wrase, J.; Schlagenhauf, F.; Smolka, M.N.; Mann, K.; Heinz, A. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch. Gen. Psychiatry 2012, 69, 842–852. [Google Scholar] [CrossRef]
- Heinz, A.; Siessmeier, T.; Wrase, J.; Buchholz, H.G.; Grunder, G.; Kumakura, Y.; Cumming, P.; Schreckenberger, M.; Smolka, M.N.; Rosch, F.; et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: A combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am. J. Psychiatry 2005, 162, 1515–1520. [Google Scholar] [CrossRef]
- Myrick, H.; Anton, R.F.; Li, X.; Henderson, S.; Randall, P.K.; Voronin, K. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch. Gen. Psychiatry 2008, 65, 466–475. [Google Scholar] [CrossRef]
- Heinz, A.; Siessmeier, T.; Wrase, J.; Hermann, D.; Klein, S.; Grüsser-Sinopoli, S.M.; Flor, H.; Braus, D.F.; Buchholz, H.G.; Gründer, G. Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am. J. Psychiatry 2004, 161, 1783–1789. [Google Scholar] [CrossRef]
- Heinz, A.; Dufeu, P.; Kuhn, S.; Dettling, M.; Gräf, K.; Kürten, I.; Rommelspacher, H.; Schmidt, L.G. Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Arch. Gen. Psychiatry 1996, 53, 1123–1128. [Google Scholar] [CrossRef]
- Tiffany, S.T.; Carter, B.L. Is craving the source of compulsive drug use? J. Psychopharmacol. 1998, 12, 23–30. [Google Scholar] [CrossRef]
- Carey, R.J.; Carrera, M.P.; Damianopoulos, E.N. A new proposal for drug conditioning with implications for drug addiction: The Pavlovian two-step from delay to trace conditioning. Behav. Brain Res. 2014, 275, 150–156. [Google Scholar] [CrossRef]
- Cartoni, E.; Balleine, B.; Baldassarre, G. Appetitive pavlovian-instrumental transfer: A review. Neurosci. Biobehav. Rev. 2016, 71, 829–848. [Google Scholar] [CrossRef]
- Huys, Q.J.M.; Cools, R.; Golzer, M.; Friedel, E.; Heinz, A.; Dolan, R.J.; Dayan, P. Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. PLoS Comput. Biol. 2011, 7, e1002028. [Google Scholar] [CrossRef]
- Corbit, L.H.; Janak, P.H. Ethanol-associated cues produce general pavlovian-instrumental transfer. Alcohol. Clin. Exp. Res. 2007, 31, 766–774. [Google Scholar] [CrossRef]
- LeBlanc, K.H.; Ostlund, S.B.; Maidment, N.T. Pavlovian-to-instrumental transfer in cocaine seeking rats. Behav. Neurosci. 2012, 126, 681–689. [Google Scholar] [CrossRef]
- Ostlund, S.B.; LeBlanc, K.H.; Kosheleff, A.R.; Wassum, K.M.; Maidment, N.T. Phasic mesolimbic dopamine signaling encodes the facilitation of incentive motivation produced by repeated cocaine exposure. Neuropsychopharmacology 2014, 39, 2441–2449. [Google Scholar] [CrossRef]
- Huys, Q.J.M.; Eshel, N.; O’Nions, E.; Sheridan, L.; Dayan, P.; Roiser, J.P. Bonsai trees in your head: How the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. Biol. 2012, 8, e1002410. [Google Scholar] [CrossRef]
- Sebold, M.; Schad, D.J.; Nebe, S.; Garbusow, M.; Jünger, E.; Kroemer, N.B.; Kathmann, N.; Zimmermann, U.S.; Smolka, M.N.; Rapp, M.A.; et al. Don’t think, just feel the music: Individuals with strong Pavlovian-to-instrumental transfer effects rely less on model-based reinforcement learning. J. Cognit. Neurosci. 2016, 28, 985–995. [Google Scholar] [CrossRef]
- Sommer, C.; Garbusow, M.; Jünger, E.; Pooseh, S.; Bernhardt, N.; Birkenstock, J.; Schad, D.J.; Jabs, B.; Glockler, T.; Huys, Q.M.; et al. Strong seduction: Impulsivity and the impact of contextual cues on instrumental behavior in alcohol dependence. Transl. Psychiatry 2017, 7, e1183. [Google Scholar] [CrossRef]
- Heinz, A.; Deserno, L.; Zimmermann, U.S.; Smolka, M.N.; Beck, A.; Schlagenhauf, F. Targeted intervention: Computational approaches to elucidate and predict relapse in alcoholism. Neuroimage 2017, 151, 33–44. [Google Scholar] [CrossRef]
- Heinz, A.J.; Beck, A.; Meyer-Lindenberg, A.; Sterzer, P.; Heinz, A. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat. Rev. Neurosci. 2011, 12, 400–403. [Google Scholar] [CrossRef]
- Sinha, R. How does stress lead to risk of alcohol relapse? Alcohol. Res. 2012, 34, 432–440. [Google Scholar]
- Quail, S.L.; Morris, R.W.; Balleine, B.W. Stress associated changes in Pavlovian-instrumental transfer in humans. Q. J. Exp. Psychol. 2017, 70, 675–685. [Google Scholar] [CrossRef]
- Pool, E.; Brosch, T.; Delplanque, S.; Sander, D. Stress increases cue-triggered “wanting” for sweet reward in humans. J. Exp. Psychol. Anim. Learn. Cognit. 2015, 41, 128–136. [Google Scholar] [CrossRef]
- Garbusow, M.; Schad, D.J.; Sebold, M.; Friedel, E.; Bernhardt, N.; Koch, S.P.; Steinacher, B.; Kathmann, N.; Geurts, D.E.; Sommer, C.; et al. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict. Biol. 2016, 21, 719–731. [Google Scholar] [CrossRef]
- Schad, D.J.; Garbusow, M.; Friedel, E.; Sommer, C.; Sebold, M.; Hagele, C.; Bernhardt, N.; Nebe, S.; Kuitunen-Paul, S.; Liu, S.; et al. Neural correlates of instrumental responding in the context of alcohol-related cues index disorder severity and relapse risk. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 263, 295–308. [Google Scholar] [CrossRef]
- Corbit, L.H.; Balleine, B.W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J. Neurosci. 2005, 25, 962–970. [Google Scholar] [CrossRef]
- Corbit, L.H.; Balleine, B.W. The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J. Neurosci. 2011, 31, 11786–11794. [Google Scholar] [CrossRef]
- Garbusow, M.; Schad, D.J.; Sommer, C.; Jünger, E.; Sebold, M.; Friedel, E.; Wendt, J.; Kathmann, N.; Schlagenhauf, F.; Zimmermann, U.S. Pavlovian-to-instrumental transfer in alcohol dependence: A pilot study. Neuropsychobiology 2014, 70, 111–121. [Google Scholar] [CrossRef]
- Hogarth, L.; Chase, H.W. Evaluating psychological markers for human nicotine dependence: Tobacco choice, extinction, and Pavlovian-to-instrumental transfer. Exp. Clin. Psychopharmacol. 2012, 20, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Manglani, H.R.; Lewis, A.H.; Wilson, S.J.; Delgado, M.R. Pavlovian-to-instrumental transfer of nicotine and food cues in deprived cigarette smokers. Nicotine Tob. Res. 2017, 19, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Wiers, R.W.; Eberl, C.; Rinck, M.; Becker, E.S.; Lindenmeyer, J. Retraining automatic action tendencies changes alcoholic patients’ approach bias for alcohol and improves treatment outcome. Psychol. Sci. 2011, 22, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Wiers, C.E.; Stelzel, C.; Park, S.Q.; Gawron, C.K.; Ludwig, V.U.; Gutwinski, S.; Heinz, A.; Lindenmeyer, J.; Wiers, R.W.; Walter, H.; et al. Neural correlates of alcohol-approach bias in alcohol addiction: The spirit is willing but the flesh is weak for spirits. Neuropsychopharmacology 2014, 39, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Wiers, C.E.; Stelzel, C.; Gladwin, T.E.; Park, S.Q.; Pawelczack, S.; Gawron, C.K.; Stuke, H.; Heinz, A.; Wiers, R.W.; Rinck, M.; et al. Effects of cognitive bias modification training on neural alcohol cue reactivity in alcohol dependence. Am. J. Psychiatry 2015, 172, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Sebold, M.; Deserno, L.; Nebe, S.; Schad, D.J.; Garbusow, M.; Hägele, C.; Keller, J.; Jünger, E.; Kathmann, N.; Smolka, M. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 2014, 70, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Sebold, M.; Nebe, S.; Garbusow, M.; Guggenmos, M.; Schad, D.J.; Beck, A.; Kuitunen-Paul, S.; Sommer, C.; Frank, R.; Neu, P.; et al. When habits are dangerous: Alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biol. Psychiatry 2017, 82, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Friedel, E.; Koch, S.P.; Wendt, J.; Heinz, A.; Deserno, L.; Schlagenhauf, F. Devaluation and sequential decisions: Linking goal-directed and model-based behavior. Front. Hum. Neurosci. 2014, 8, 587. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.J.; Dayan, P. Goals and habits in the brain. Neuron 2013, 80, 312–325. [Google Scholar] [CrossRef]
- Schad, D.J.; Jünger, E.; Sebold, M.; Garbusow, M.; Bernhardt, N.; Javadi, A.-H.; Zimmermann, U.S.; Smolka, M.N.; Heinz, A.; Rapp, M.A.; et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front. Psychol. 2014, 5, 1450. [Google Scholar] [CrossRef]
- Otto, A.R.; Raio, C.M.; Chiang, A.; Phelps, E.A.; Daw, N.D. Working-memory capacity protects model-based learning from stress. Proc. Natl. Acad. Sci. USA 2013, 110, 20941–20946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radenbach, C.; Reiter, A.M.; Engert, V.; Sjoerds, Z.; Villringer, A.; Heinze, H.-J.; Deserno, L.; Schlagenhauf, F. The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology 2015, 53, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.T.; Back, S.E.; Waldrop, A.E.; McRae, A.L.; Anton, R.F.; Upadhyaya, H.P.; Saladin, M.E.; Randall, P.K. Cold pressor task reactivity: Predictors of alcohol use among alcohol-dependent individuals with and without comorbid posttraumatic stress disorder. Alcohol. Clin. Exp. Res. 2006, 30, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.E.; Bacon, A.K.; Randall, P.K.; Brady, K.T.; See, R.E. An acute psychosocial stressor increases drinking in non-treatment-seeking alcoholics. Psychopharmacology 2011, 218, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, E.; Jones, A.; Field, M. Acute stress increases ad-libitum alcohol consumption in heavy drinkers, but not through impaired inhibitory control. Psychopharmacology 2016, 233, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S.; Klumpers, F.; Schroder, T.N.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joels, M.; Doeller, C.F.; Fernandez, G. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor. Neuropsychopharmacology 2017, 42, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.U.; Makwana, A.B.; Hare, T.A. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron 2015, 87, 621–631. [Google Scholar] [CrossRef]
- Friedel, E.; Sebold, M.; Kuitunen-Paul, S.; Nebe, S.; Veer, I.M.; Zimmermann, U.S.; Schlagenhauf, F.; Smolka, M.N.; Rapp, M.; Walter, H.; et al. How accumulated real life stress experience and cognitive speed interact on decision-making processes. Front. Hum. Neurosci. 2017, 11, 302. [Google Scholar] [CrossRef]
- Wray, T.B.; Merrill, J.E.; Monti, P.M. Using ecological momentary assessment (EMA) to assess situation-level predictors of alcohol use and alcohol-related consequences. Alcohol. Res. Curr. Rev. 2014, 36, 19–27. [Google Scholar]
- Mellentin, A.I.; Skøt, L.; Nielsen, B.; Schippers, G.M.; Nielsen, A.S.; Stenager, E.; Juhl, C. Cue exposure therapy for the treatment of alcohol use disorders: A meta-analytic review. Clin. Psychol. Rev. 2017, 57, 195–207. [Google Scholar] [CrossRef]
- Loeber, S.; Croissant, B.; Heinz, A.; Mann, K.; Flor, H. Cue exposure in the treatment of alcohol dependence: Effects on drinking outcome, craving and self-efficacy. Br. J. Clin. Psychol. 2006, 45, 515–529. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinz, A.; Beck, A.; Halil, M.G.; Pilhatsch, M.; Smolka, M.N.; Liu, S. Addiction as Learned Behavior Patterns. J. Clin. Med. 2019, 8, 1086. https://doi.org/10.3390/jcm8081086
Heinz A, Beck A, Halil MG, Pilhatsch M, Smolka MN, Liu S. Addiction as Learned Behavior Patterns. Journal of Clinical Medicine. 2019; 8(8):1086. https://doi.org/10.3390/jcm8081086
Chicago/Turabian StyleHeinz, Andreas, Anne Beck, Melissa Gül Halil, Maximilian Pilhatsch, Michael N. Smolka, and Shuyan Liu. 2019. "Addiction as Learned Behavior Patterns" Journal of Clinical Medicine 8, no. 8: 1086. https://doi.org/10.3390/jcm8081086
APA StyleHeinz, A., Beck, A., Halil, M. G., Pilhatsch, M., Smolka, M. N., & Liu, S. (2019). Addiction as Learned Behavior Patterns. Journal of Clinical Medicine, 8(8), 1086. https://doi.org/10.3390/jcm8081086