Autoantibodies to Apolipoprotein A-1 as Independent Predictors of Cardiovascular Mortality in Renal Transplant Recipients
Abstract
1. Introduction
2. Experimental Section
2.1. Study Design and Study Population
2.2. Outcome Measures
2.3. Sensitivity Analyses
2.4. Determination of Anti-apoA-1 IgG
2.5. Determination of HDL Function
2.6. Statistical Analysis
3. Results
3.1. Baseline Demographic Characteristics
3.2. Association with Incidence of CVD Mortality, All-Cause Mortality, and Graft Failure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Budoff, M.J.; Reilly, M.P.; Yang, W.; Rosas, S.E.; Rahman, M.; Zhang, X.; Roy, J.A.; Lustigova, E.; Nessel, L.; et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017, 2, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Oterdoom, L.H.; de Vries, A.P.J.; van Ree, R.M.; Gansevoort, R.T.; van Son, W.J.; van der Heide, J.J.H.; Navis, G.; de Jong, P.E.; Gans, R.O.B.; Bakker, S.J.L. N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 2009, 87, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Israni, A.K.; Snyder, J.J.; Skeans, M.A.; Peng, Y.; Maclean, J.R.; Weinhandl, E.D.; Kasiske, B.L. PORT investigators predicting coronary heart disease after kidney transplantation: Patient outcomes in renal transplantation (PORT) Study. Am. J. Transplant. 2010, 10, 338–353. [Google Scholar] [CrossRef]
- Foster, M.C.; Weiner, D.E.; Bostom, A.G.; Carpenter, M.A.; Inker, L.A.; Jarolim, P.; Joseph, A.A.; Kusek, J.W.; Pesavento, T.; Pfeffer, M.A.; et al. Filtration markers, cardiovascular disease, mortality, and kidney outcomes in stable kidney transplant recipients: The FAVORIT trial. Am. J. Transplant. 2017, 17, 2390–2399. [Google Scholar] [CrossRef] [PubMed]
- Pagano, S.; Satta, N.; Werling, D.; Offord, V.; de Moerloose, P.; Charbonney, E.; Hochstrasser, D.; Roux-Lombard, P.; Vuilleumier, N. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J. Intern. Med. 2012, 272, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Vuilleumier, N.; Bas, S.; Pagano, S.; Montecucco, F.; Guerne, P.-A.; Finckh, A.; Lovis, C.; Mach, F.; Hochstrasser, D.; Roux-Lombard, P.; et al. Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 2010, 62, 2640–2650. [Google Scholar] [CrossRef] [PubMed]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Bastardot, F.; Hartley, O.; Montecucco, F.; Mach, F.; Waeber, G.; et al. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Results from the CoLaus study. Thromb. Haemost. 2016, 116, 764–771. [Google Scholar]
- Batuca, J.R.; Amaral, M.C.; Favas, C.; Paula, F.S.; Ames, P.R.J.; Papoila, A.L.; Delgado Alves, J. Extended-release niacin increases anti-apolipoprotein A-I antibodies that block the antioxidant effect of high-density lipoprotein-cholesterol: The EXPLORE clinical trial. Br. J. Clin. Pharmacol. 2017, 83, 1002–1010. [Google Scholar] [CrossRef]
- Batuca, J.R.; Ames, P.R.J.; Amaral, M.; Favas, C.; Isenberg, D.A.; Delgado Alves, J. Anti-atherogenic and anti-inflammatory properties of high-density lipoprotein are affected by specific antibodies in systemic lupus erythematosus. Rheumatology 2009, 48, 26–31. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Rossier, M.F.; Pagano, S.; Python, M.; Charbonney, E.; Nkoulou, R.; James, R.; Reber, G.; Mach, F.; Roux-Lombard, P. Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. Eur. Heart J. 2010, 31, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Impact of CD14 polymorphisms on anti-apolipoprotein A-1 IGG-related coronary heart disease prediction in the general population. Atherosclerosis 2017, 263, e45. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Montecucco, F.; Spinella, G.; Pagano, S.; Bertolotto, M.; Pane, B.; Pende, A.; Galan, K.; Roux-Lombard, P.; Combescure, C.; et al. Serum levels of anti-apolipoprotein A-1 auto-antibodies and myeloperoxidase as predictors of major adverse cardiovascular events after carotid endarterectomy. Thromb. Haemost. 2013, 109, 706–715. [Google Scholar] [PubMed]
- El-Lebedy, D.; Rasheed, E.; Kafoury, M.; Abd-El Haleem, D.; Awadallah, E.; Ashmawy, I. Anti-apolipoprotein A-1 autoantibodies as risk biomarker for cardiovascular diseases in type 2 diabetes mellitus. J. Diabetes Complications 2016, 30, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, F.; Vuilleumier, N.; Pagano, S.; Lenglet, S.; Bertolotto, M.; Braunersreuther, V.; Pelli, G.; Kovari, E.; Pane, B.; Spinella, G.; et al. Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur. Heart J. 2011, 32, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, F.; Braunersreuther, V.; Burger, F.; Lenglet, S.; Pelli, G.; Carbone, F.; Fraga-Silva, R.; Stergiopulos, N.; Monaco, C.; Mueller, C.; et al. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb. Haemost. 2015, 114, 410–422. [Google Scholar] [PubMed]
- Pagano, S.; Carbone, F.; Burger, F.; Roth, A.; Bertolotto, M.; Pane, B.; Spinella, G.; Palombo, D.; Pende, A.; Dallegri, F.; et al. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb. Haemost. 2016, 116, 554–564. [Google Scholar]
- Pruijm, M.; Schmidtko, J.; Aho, A.; Pagano, S.; Roux-Lombard, P.; Teta, D.; Burnier, M.; Vuilleumier, N. High prevalence of anti-apolipoprotein/A-1 autoantibodies in maintenance hemodialysis and association with dialysis vintage. Ther. Apher. Dial. 2012, 16, 588–594. [Google Scholar] [CrossRef]
- van Ree, R.M.; de Vries, A.P.J.; Oterdoom, L.H.; The, T.H.; Gansevoort, R.T.; Homan van der Heide, J.J.; van Son, W.J.; Ploeg, R.J.; de Jong, P.E.; Gans, R.O.B.; et al. Abdominal obesity and smoking are important determinants of C-reactive protein in renal transplant recipients. Nephrol. Dial. Transplant. 2005, 20, 2524–2531. [Google Scholar] [CrossRef][Green Version]
- de Vries, A.P.J.; Bakker, S.J.L.; van Son, W.J.; van der Heide, J.J.H.; Ploeg, R.J.; The, H.T.; de Jong, P.E.; Gans, R.O.B. Metabolic syndrome is associated with impaired long-term renal allograft function; not all component criteria contribute equally. Am. J. Transplant. 2004, 4, 1675–1683. [Google Scholar] [CrossRef]
- Annema, W.; Dikkers, A.; Freark de Boer, J.; Dullaart, R.P.F.; Sanders, J.-S.F.; Bakker, S.J.L.; Tietge, U.J.F. HDL Cholesterol efflux predicts graft failure in renal transplant recipients. J. Am. Soc. Nephrol. 2016, 27, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Leberkühne, L.J.; Ebtehaj, S.; Dimova, L.G.; Dikkers, A.; Dullaart, R.P.F.; Bakker, S.J.L.; Tietge, U.J.F. The predictive value of the antioxidative function of HDL for cardiovascular disease and graft failure in renal transplant recipients. Atherosclerosis 2016, 249, 181–185. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mitchell, R.N.; Libby, P. Vascular remodeling in transplant vasculopathy. Circ. Res. 2007, 100, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Campise, M.; Bamonti, F.; Novembrino, C.; Ippolito, S.; Tarantino, A.; Cornelli, U.; Lonati, S.; Cesana, B.M.; Ponticelli, C. Oxidative stress in kidney transplant patients. Transplantation 2003, 76, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, C.; Haidinger, M.; Birner-Grünberger, R.; Darnhofer, B.; Kaltenecker, C.C.; Marsche, G.; Holzer, M.; Weichhart, T.; Antlanger, M.; Kovarik, J.J.; et al. Restoration of renal function does not correct impairment of uremic HDL properties. J. Am. Soc. Nephrol. 2015, 26, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Triolo, M.; Annema, W.; Dullaart, R.P.F.; Tietge, U.J.F. Assessing the functional properties of high-density lipoproteins: an emerging concept in cardiovascular research. Biomark. Med. 2013, 7, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Anti-apolipoprotein A-1 IgG predict all-cause mortality and are associated with FC receptor-like 3 polymorphisms. Front. Immunol. 2017, 8, 437. [Google Scholar] [CrossRef] [PubMed]
- Rossier, M.F.; Pagano, S.; Python, M.; Maturana, A.D.; James, R.W.; Mach, F.; Roux-Lombard, P.; Vuilleumier, N. Antiapolipoprotein A-1 IgG chronotropic effects require nongenomic action of aldosterone on L-type calcium channels. Endocrinology 2012, 153, 1269–1278. [Google Scholar] [CrossRef]
- Pagano, S.; Gaertner, H.; Cerini, F.; Mannic, T.; Satta, N.; Teixeira, P.C.; Cutler, P.; Mach, F.; Vuilleumier, N.; Hartley, O. The Human autoantibody response to apolipoprotein A-I is focused on the C-terminal helix: A new rationale for diagnosis and treatment of cardiovascular disease? PLoS ONE 2015, 10, e0132780. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Nafar, M.; Ahmadpoor, P.; Noorbakhsh, F.; Yekaninejad, M.S.; Niknam, M.H.; Amirzargar, A. Increased expression of toll-like receptors 2 and 4 in renal transplant recipients that develop allograft dysfunction: A cohort study. Iran J. Immunol. 2017, 14, 24–34. [Google Scholar]
- Vuilleumier, N. Head-to-head comparison of auto-antibodies for cardiovascular outcome prediction after myocardial infarction: A prospective study. J. Clinic. Experiment. Cardiol. 2011, 2, 169. [Google Scholar] [CrossRef]
Characteristic | Gender Stratified Tertiles of Anti-apoA-1 Levels | p-Value | ||
---|---|---|---|---|
First (n = 154) | Second (n = 154) | Third (n = 154) | ||
Recipient demographics | ||||
Anti-apoA-1 IgG, AU (OD405 nm) | 0.15 (0.11–0.19) | 0.31 (0.26–0.36) | 0.64 (0.52–0.82) | <0.001 |
Recipient demographics | ||||
Age, years | 50.5 (41.6–59.4) | 53.4 (44.7–61.1) | 52.1 (44.0–60.8) | 0.12 |
Male gender, n (%) | 84 (55) | 84 (55) | 84 (55) | 1.00 |
Current smoking, n (%) | 28 (18) | 33 (21) | 22 (14) | 0.26 |
Previous smoking, n (%) | 70 (46) | 67 (44) | 72 (47) | 0.85 |
Metabolic syndrome, n (%) | 83 (57) | 94 (65) | 84 (60) | 0.34 |
Body composition | ||||
BMI, kg/m2 | 26.1 ± 4.3 | 26.1 ± 4.2 | 25.9 ± 4.2 | 0.86 |
Lipid Profile | ||||
Total cholesterol, mmol/L | 5.6 ± 1.0 | 5.7 ± 0.9 | 5.7 ± 1.3 | 0.49 |
LDL cholesterol, mmol/L | 3.5 ± 1.0 | 3.6 ± 0.8 | 3.6 ± 1.2 | 0.82 |
HDL cholesterol, mmol/L | 1.1 ± 0.3 | 1.3 ± 0.3 | 1.1 ± 0.3 | 0.55 |
Apolipoprotein A-I, g/L | 1.6 ± 0.3 | 1.6 ± 0.3 | 1.6 ± 0.3 | 0.75 |
Triglycerides, mmol/L | 2.1 (1.3–2.7) | 2.1 (1.4–2.5) | 2.2 (1.4–2.7) | 0.22 |
Cholesterol efflux percentage | 7.3 (6.2–8.4) | 7.5 (6.3–8.3) | 7.6 (6.5–8.9) | 0.11 |
Use of statins, n (%) | 79 (51) | 88 (57) | 74 (48) | 0.27 |
Cardiovascular disease history | ||||
History of MI, n (%) | 12 (7) | 8 (5) | 20 (13) | 0.047 |
TIA/CVA, n (%) | 5 (3) | 8 (5) | 9 (6) | 0.54 |
Blood pressure | ||||
Systolic blood pressure, mmHg | 152.2 ± 23.9 | 151.0 ± 21.4 | 154.1 ± 22.0 | 0.47 |
Diastolic blood pressure, mmHg | 89.8 (± 9.8) | 89.0 (± 9.5) | 90.1 (± 10.0) | 0.59 |
Use of ACE inhibitors, n (%) | 55 (36) | 49 (32) | 58 (38) | 0.55 |
Use of β–blockers, n (%) | 90 (58) | 93 (60) | 95 (61) | 0.84 |
Use of diuretics, n (%) | 59 (38) | 75 (49) | 63 (41) | 0.16 |
Number of antihypertensive drugs, n (%) | 2 (1–3) | 2 (1–3) | 2 (1–3) | 0.16 |
Glucose homeostasis | ||||
Glucose, mmol/L | 4.9 (4.1–5.0) | 4.8 (4.1–5.0) | 4.8 (4.1–5.1) | 0.69 |
Insulin, μmol/L | 11.3 (8.7–16.5) | 10.6 (7.8–14.8) | 11.4 (7.6–15.4) | 0.16 |
HbA1c, % | 6.3 (5.8–6.9) | 6.3 (5.8–7.0) | 6.4 (5.7–7.1) | 0.47 |
HOMA-IR | 3.1 (1.7–3.6) | 2.7 (1.5–3.4) | 2.8 (1.5–3.4) | 0.21 |
Post-Tx diabetes mellitus, n (%) | 24 (15) | 29 (19) | 29 (19) | 0.69 |
Use of anti-diabetic drugs, n (%) | 17 (11) | 25 (16) | 21 (14) | 0.41 |
Use of insulin, n (%) | 7 (5) | 9 (6) | 13 (8) | 0.36 |
Inflammation | ||||
hsCRP, mg/L | 3.4 (0.7–4.4) | 3.3 (0.9–4.1) | 3.3 (1.0–4.2) | 0.43 |
Framingham risk score | 17.2 (7.6–27.3) | 20.8 (9.6–32.9) | 20.7 (8.6–31.3) | 0.28 |
Donor demographics | ||||
Age, years | 37.6 (23.0–50.0) | 37.2 (23.8–50.0) | 37.1 (23.0–51.3) | 0.76 |
Male gender, n (%) | 76 (49) | 90 (59) | 85 (56) | 0.24 |
Living kidney donor, n (%) | 28 (18) | 17 (11) | 15 (10) | 0.06 |
(Pre)transplant history | ||||
Dialysis time, months | 34.8 (12.0–48.3) | 37.0 (14.8–51.0) | 33.6 (12.8–45.0) | 0.44 |
Primary renal disease | ||||
Primary glomerular disease, n (%) | 35 (23) | 40 (26) | 52 (34) | 0.08 |
Glomerulonephritis, n (%) | 11 (7) | 6 (4) | 12 (8) | 0.32 |
Tubulo-interstitial disease, n (%) | 33 (21) | 24 (16) | 17 (11) | 0.05 |
Polycystic renal disease, n (%) | 26 (17) | 31 (20) | 24 (16) | 0.56 |
Dysplasia and hypoplasia, n (%) | 7 (5) | 8 (5) | 2 (1) | 0.15 |
Renovascular disease, n (%) | 11 (7) | 12 (8) | 6 (4) | 0.32 |
Diabetic nephropathy, n (%) | 3 (2) | 2 (1) | 9 (6) | 0.04 |
Other or unknown cause, n (%) | 28 (18) | 31 (20) | 32 (21) | 0.84 |
Immunosuppressive medication | ||||
Daily prednisolone dose, mg | 9.2 (7.5–10.0) | 9.1 (7.5–10.0) | 9.1 (7.5–10.0) | 0.33 |
Calcineurin inhibitors, n (%) | 120 (78) | 126 (82) | 124 (81) | 0.68 |
Proliferation inhibitors, n (%) | 124 (81) | 109 (71) | 108 (70) | 0.07 |
Renal allograft function | ||||
Creatinine clearance, mL/min | 47.3 ± 14.6 | 48.2 ± 15.9 | 46.5 ± 16.1 | 0.62 |
Urinary protein excretion, g/24 h | 0.3 (0.0–0.3) | 0.2 (0.1–0.2) | 0.4 (0.1–0.4) | 0.07 |
Characteristics | Unstandardized Coefficient | 95% CI | Standardized Coefficient | p-Value |
---|---|---|---|---|
Primary glomerular disease | 0.086 | 0.016–0.156 | 0.116 | 0.016 |
History of MI | 0.121 | 0.015–0.227 | 0.103 | 0.026 |
Tubulo-interstitial disease | −0.0.96 | −0.182–−0.010 | −0.106 | 0.028 |
CVD Mortality | All–Cause Mortality | Graft Failure | Non-CVD Mortality Sensitivity Analysis | |||||
---|---|---|---|---|---|---|---|---|
HR [95%CI] per 1–SD Increase | p | HR [95%CI] per 1–SD Increase | p | HR [95%CI] per 1–SD Increase | p | HR [95%CI] per 1–SD Increase | p | |
Model 1 | 1.56 [1.17–2.07] | 0.002 | 1.36 [1.09–1.70] | 0.007 | 1.17 [0.93–1.48] | 0.18 | 1.41 [0.95–2.09] | 0.09 |
Model 2 | 1.56 [1.17–2.08] | 0.002 | 1.36 [1.09–1.70] | 0.007 | 1.18 [0.94–1.49] | 0.16 | 1.41 [0.94–2.11] | 0.09 |
Model 3 | 1.54 [1.15–2.06] | 0.004 | 1.32 [1.05–1.67] | 0.017 | 1.14 [0.91–1.42] | 0.26 | 1.39 [0.92–2.08] | 0.11 |
Model 4 | 1.54 [1.15–2.07] | 0.004 | 1.32 [1.04–1.66] | 0.020 | 1.15 [0.92–1.44] | 0.22 | 1.39 [0.92–2.10] | 0.12 |
Model 5 | 1.54 [1.16–2.05] | 0.003 | 1.36 [1.09–1.71] | 0.007 | 1.19 [0.94–1–50] | 0.15 | 1.44 [0.98–2.11] | 0.06 |
Model 6 | 1.45 [1.08–1.94] | 0.013 | 1.32 [1.05–1.66] | 0.016 | 1.14 [0.90–1.45] | 0.27 | 1.39 [0.90–2.14] | 0.14 |
Model 7 | 1.53 [1.14–2.05] | 0.005 | 1.33 [1.06–1.67] | 0.016 | 1.17 [0.93–1.48] | 0.18 | 1.45 [0.96–2.20] | 0.08 |
Model 8 | 1.56 [1.18–2.09] | 0.002 | 1.37 [1.09–1.17] | 0.07 | 1.17 [0.93–1.48] | 0.18 | 1.47 [0.98–2.23] | 0.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, J.L.C.; Pagano, S.; Virzi, J.; Dullaart, R.P.F.; Annema, W.; Kuipers, F.; Bakker, S.J.L.; Vuilleumier, N.; Tietge, U.J.F. Autoantibodies to Apolipoprotein A-1 as Independent Predictors of Cardiovascular Mortality in Renal Transplant Recipients. J. Clin. Med. 2019, 8, 948. https://doi.org/10.3390/jcm8070948
Anderson JLC, Pagano S, Virzi J, Dullaart RPF, Annema W, Kuipers F, Bakker SJL, Vuilleumier N, Tietge UJF. Autoantibodies to Apolipoprotein A-1 as Independent Predictors of Cardiovascular Mortality in Renal Transplant Recipients. Journal of Clinical Medicine. 2019; 8(7):948. https://doi.org/10.3390/jcm8070948
Chicago/Turabian StyleAnderson, Josephine L.C., Sabrina Pagano, Julien Virzi, Robin P.F. Dullaart, Wijtske Annema, Folkert Kuipers, Stephan J.L. Bakker, Nicolas Vuilleumier, and Uwe J.F. Tietge. 2019. "Autoantibodies to Apolipoprotein A-1 as Independent Predictors of Cardiovascular Mortality in Renal Transplant Recipients" Journal of Clinical Medicine 8, no. 7: 948. https://doi.org/10.3390/jcm8070948
APA StyleAnderson, J. L. C., Pagano, S., Virzi, J., Dullaart, R. P. F., Annema, W., Kuipers, F., Bakker, S. J. L., Vuilleumier, N., & Tietge, U. J. F. (2019). Autoantibodies to Apolipoprotein A-1 as Independent Predictors of Cardiovascular Mortality in Renal Transplant Recipients. Journal of Clinical Medicine, 8(7), 948. https://doi.org/10.3390/jcm8070948