GADD45a and GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Subjects
2.2. Genomic DNA and Total RNA Extraction
2.3. SNP Genotyping and Data Analysis
2.4. GADD45a and GADD45b RNA Expression
3. Results
3.1. RNA Expression of GADD45b Was Lower in RA Patients
3.2. GADD45a -589CC and GADD45b -712CT Genotypes are Less Susceptible to Rheumatoid Arthritis in DR4-Negative Individuals
3.3. GADD45b -712CT and GADD45a -589GG+CC Genotypes are Associated with Clinical Features of SLE Patients
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Takekawa, M.; Saito, H. A Family of Stress-Inducible Gadd45-Like Proteins Mediate Activation of the Stress-Responsive Mtk1/Mekk4 Mapkkk. Cell 1998, 95, 521–530. [Google Scholar] [CrossRef]
- Amanullah, A.; Azam, N.; Balliet, A.; Hollander, C.; Hoffman, B.; Fornace, A.; Liebermann, D. Cell Signalling: Cell Survival and a Gadd45-Factor Deficiency. Nature 2003, 424, 741. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.; Liebermann, D.A. Gadd45 Modulation of Intrinsic and Extrinsic Stress Responses in Myeloid Cells. J. Cell. Physiol. 2009, 218, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Gupta, M.; Hoffman, B.; Liebermann, D.A. Hematopoietic Cells from Gadd45a-Deficient and Gadd45b-Deficient Mice Exhibit Impaired Stress Responses to Acute Stimulation with Cytokines, Myeloablation and Inflammation. Oncogene 2006, 25, 5537–5546. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Antinore, M.J.; Wangm, X.W.; Carrier, F.; Smith, M.L.; Harris, C.C.; Fornace, A.J., Jr. Association with Cdc2 and Inhibition of Cdc2/Cyclin B1 Kinase Activity by the P53-Regulated Protein Gadd45. Oncogene 1999, 18, 2892–2900. [Google Scholar] [CrossRef]
- Hildesheim, J.; Bulavin, D.V.; Anver, M.R.; Alvord, W.G.; Hollander, M.C.; Vardanian, L.; Fornace, A.J., Jr. Gadd45a Protects against Uv Irradiation-Induced Skin Tumors, and Promotes Apoptosis and Stress Signaling Via Mapk and P53. Cancer Res. 2002, 62, 7305–7315. [Google Scholar] [PubMed]
- Lu, B.; Ferrandino, A.F.; Flavell, R.A. Gadd45beta Is Important for Perpetuating Cognate and Inflammatory Signals in T Cells. Nat. Immunol. 2004, 5, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Jirmanova, L.; Jankovic, D.; Fornace, A.J., Jr.; Ashwell, J.D. Gadd45alpha Regulates P38-Dependent Dendritic Cell Cytokine Production and Th1 Differentiation. J. Immunol. 2007, 178, 4153–4158. [Google Scholar] [CrossRef]
- Lu, B. The Molecular Mechanisms That Control Function and Death of Effector Cd4+ T Cells. Immunol. Res. 2006, 36, 275–282. [Google Scholar] [CrossRef]
- Salvador, J.M.; Mittelstadt, P.R.; Belova, G.I.; Fornace, A.J., Jr.; Ashwell, J.D. The Autoimmune Suppressor Gadd45alpha Inhibits the T Cell Alternative P38 Activation Pathway. Nat. Immunol. 2005, 6, 396–402. [Google Scholar] [CrossRef]
- Salerno, D.M.; Tront, J.S.; Hoffman, B.; Liebermann, D.A. Gadd45a and Gadd45b Modulate Innate Immune Functions of Granulocytes and Macrophages by Differential Regulation of P38 and Jnk Signaling. J. Cell. Physiol. 2012, 227, 3613–3620. [Google Scholar] [CrossRef] [PubMed]
- Salvador, J.M.; Hollander, M.C.; Nguyen, A.T.; Kopp, J.B.; Barisoni, L.; Moore, J.K.; Ashwell, J.D.; Fornace, A.J., Jr. Mice Lacking the P53-Effector Gene Gadd45a Develop a Lupus-Like Syndrome. Immunity 2002, 16, 499–508. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H.; Murphy, T.L.; Ouyang, W.; Murphy, K.M. Il-18-Stimulated Gadd45 Beta Required in Cytokine-Induced, but Not Tcr-Induced, Ifn-Gamma Production. Nat. Immunol. 2001, 2, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zazzeroni, F.; Papa, S.; Algeciras-Schimnich, A.; Alvarez, K.; Melis, T.; Bubici, C.; Majewski, N.; Hay, N.; de Smaele, E.; Peter, M.E.; et al. Gadd45 Beta Mediates the Protective Effects of Cd40 Costimulation against Fas-Induced Apoptosis. Blood 2003, 102, 3270–3279. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. Cytokines in the Pathogenesis of Rheumatoid Arthritis. Nat. Rev. Immunol. 2007, 7, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Bingham, C.O., 3rd. The Pathogenesis of Rheumatoid Arthritis: Pivotal Cytokines Involved in Bone Degradation and Inflammation. J. Rheumatol. Suppl. 2002, 65, 3–9. [Google Scholar] [PubMed]
- Brennan, F.M.; Hayes, A.L.; Ciesielski, C.J.; Green, P.; Foxwell, B.M.; Feldmann, M. Evidence That Rheumatoid Arthritis Synovial T Cells Are Similar to Cytokine-Activated T Cells: Involvement of Phosphatidylinositol 3-Kinase and Nuclear Factor Kappab Pathways in Tumor Necrosis Factor Alpha Production in Rheumatoid Arthritis. Arthritis Rheumatol. 2002, 46, 31–41. [Google Scholar] [CrossRef]
- Firestein, G.S. Evolving Concepts of Rheumatoid Arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid Arthritis Classification Criteria: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Arthritis Rheumatol. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Sultan, F.A.; Wang, J.; Tront, J.; Liebermann, D.A.; Sweatt, J.D. Genetic Deletion of Gadd45b, a Regulator of Active DNA Demethylation, Enhances Long-Term Memory and Synaptic Plasticity. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 17059–17066. [Google Scholar] [CrossRef] [PubMed]
- Radonic, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to Reference Gene Selection for Quantitative Real-Time PCR. Biochem. Biophys. Res. Commun. 2004, 313, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.; Pointon, J.J.; Chapman, K.; Roddam, A.; Wordsworth, B.P. Interleukin-1 Promoter Region Polymorphism Role in Rheumatoid Arthritis: A Meta-Analysis of Il-1b-511a/G Variant Reveals Association with Rheumatoid Arthritis. Rheumatology 2008, 47, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Li, R.N.; Hung, Y.H.; Lin, C.H.; Chen, Y.H.; Yen, J.H. Inhibitor Ikappabalpha Promoter Functional Polymorphisms in Patients with Rheumatoid Arthritis. J. Clin. Immunol. 2010, 30, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Wang, S.C.; Ou, T.T.; Li, R.N.; Tsai, W.C.; Liu, H.W.; Yen, J.H. I Kappa B Alpha Promoter Polymorphisms in Patients with Systemic Lupus Erythematosus. J. Clin. Immunol. 2008, 28, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, S.E.; Firestein, G.S. Signal Transduction in Rheumatoid Arthritis. Curr. Opin. Rheumatol. 2004, 16, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Muller-Newen, G.; Schaper, F. Principles of Interleukin (Il)-6-Type Cytokine Signalling and Its Regulation. Biochem. J. 2003, 374, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hintzen, C.; Quaiser, S.; Pap, T.; Heinrich, P.C.; Hermanns, H.M. Induction of Ccl13 Expression in Synovial Fibroblasts Highlights a Significant Role of Oncostatin M in Rheumatoid Arthritis. Arthritis Rheumatol. 2009, 60, 1932–1943. [Google Scholar] [CrossRef]
- Migita, K.; Komori, A.; Torigoshi, T.; Maeda, Y.; Izumi, Y.; Jiuchi, Y.; Miyashita, T.; Nakamura, M.; Motokawa, S.; Ishibashi, H. Cp690,550 Inhibits Oncostatin M-Induced Jak/Stat Signaling Pathway in Rheumatoid Synoviocytes. Arthritis Res. Ther. 2011, 13, R72. [Google Scholar] [CrossRef]
- Du, F.; Wang, L.; Zhang, Y.; Jiang, W.; Sheng, H.; Cao, Q.; Wu, J.; Shen, B.; Shen, T.; Zhang, J.Z.; et al. Role of Gadd45 Beta in the Regulation of Synovial Fluid T Cell Apoptosis in Rheumatoid Arthritis. Clin. Immunol. 2008, 128, 238–247. [Google Scholar] [CrossRef]
- Luo, Y.; Boyle, D.L.; Hammaker, D.; Edgar, M.; Franzoso, G.; Firestein, G.S. Suppression of Collagen-Induced Arthritis in Growth Arrest and DNA Damage-Inducible Protein 45beta-Deficient Mice. Arthritis Rheumatol. 2011, 63, 2949–2955. [Google Scholar] [CrossRef]
- De Groof, A.; Ducreux, J.; Humby, F.; Toukap, A.N.; Badot, V.; Pitzalis, C.; Houssiau, F.A.; Durez, P.; Lauwerys, B.R. Higher Expression of Tnfalpha-Induced Genes in the Synovium of Patients with Early Rheumatoid Arthritis Correlates with Disease Activity, and Predicts Absence of Response to First Line Therapy. Arthritis Res. Ther. 2016, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.P.; Shao, J.Z.; Xiang, L.X. Gadd45a Protein Plays an Essential Role in Active DNA Demethylation During Terminal Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. J. Biol. Chem. 2011, 286, 41083–41094. [Google Scholar] [CrossRef] [PubMed]
GADD45a Expression | RA (n = 91) | Control (n = 80) | p-Value |
---|---|---|---|
Expression level (2-ΔCT) | 0.075 ± 0.04 | 0.077 ± 0.045 | NS |
Expression level (2-ΔCT) | SLE (n = 75) | Control (n = 80) | p-Value |
0.081 ± 0.04 | 0.077 ± 0.045 | NS | |
GADD45b Expression | RA (n = 91) | Control (n = 80) | p-Value |
Expression level (2-ΔCT) | 0.99 ± 0.56 (n = 91) | 1.21±0.71 (n = 80) | 0.03 |
Expression level (2-ΔCT) | SLE (n = 75) | Control n = 80) | p-Value |
1.32 ± 0.72 (n = 75) | 1.21 ± 0.71 (n = 80) | NS |
GADD45a Genotype | -589 G/C (rs581000) | RA (n = 230) | Control (n = 191) | OR |
n(%) | n (%) | 95% CI | ||
---|---|---|---|---|
GG | 79 (34.35%) | 70 (36.65%) | 1 | |
CG | 119 (51.74%) | 89 (46.60%) | 1.18 (0.78~1.81) | |
CC | 32 (13.91%) | 32 (16.75%) | 0.89 (0.49~1.59) | |
-589 G/C (rs581000) | SLE (n = 140) | Control (n = 191) | OR | |
n (%) | n (%) | 95% CI | ||
GG | 65 (46.43%) | 70 (36.65%) | 1 | |
CG | 56 (40.00%) | 89 (46.60%) | 0.68 (0.42~1.09) | |
CC | 19 (13.57%) | 32 (16.75%) | 0.64 (0.33~1.24) |
GADD45b Genotype | -712 C/T (rs3795024) | RA (n = 230) | Control (n = 191) | OR |
n (%) | n (%) | 95% CI | ||
CC | 206 (89.57%) | 162 (84.82%) | 1 | |
CT | 24 (10.43%) | 29 (15.18%) | 0.65 (0.36~1.16) | |
-712 C/T (rs3795024) | SLE (n = 140) | Control (n = 191) | OR | |
n (%) | n (%) | 95% CI | ||
CC | 126 (90.00%) | 162 (84.82%) | 1 | |
CT | 14 (10.00%) | 29 (15.18%) | 0.62 (0.31~1.22) | |
GADD45b Genotype | -438 C/A (rs3729535) | RA (n = 230) | Control (n = 191) | OR |
n (%) | n (%) | 95% CI | ||
CC | 205 (89.13%) | 164 (85.86%) | 1 | |
CA | 25 (10.87%) | 27 (14.14%) | 0.74 (0.41~1.32) | |
-438 C/A (rs3729535) | SLE (n = 140) | Control (n = 191) | OR | |
n (%) | n (%) | 95% CI | ||
CC | 127 (90.71%) | 164 (85.86%) | 1 | |
CA | 13 (9.29%) | 27 (14.14%) | 0.62 (0.31~1.25) |
DR4 Positive | DR4 Negative | ||||||||
---|---|---|---|---|---|---|---|---|---|
GADD45a Genotype | RA (n = 103) | Control (n = 20) | OR | p-Value | RA (n = 122) | Control (n = 89) | OR | p-Value | |
n (%) | n (%) | 95% CI | n (%) | n (%) | 95% CI | ||||
-589 G/C (rs581000) | GG + GC | 82 (79.61%) | 18 (90.00%) | 1 | NS | 113 (92.62%) | 73 (82.02%) | 1 | 0.029 |
CC | 21 (20.39%) | 2 (10.00%) | 2.3 (0.5~10.72) | 9 (7.38%) | 16 (17.98%) | 0.36 (0.15~0.87) | |||
DR4 Positive | DR4 Negative | ||||||||
GADD45b Genotype | RA (n = 103) | Control (n = 20) | OR | p-Value | RA (n = 122) | Control (n = 89) | OR | p-Value | |
n (%) | n (%) | 95% CI | n(%) | n (%) | 95% CI | ||||
-712 C/T (rs3795024) | CC | 90 (87.37%) | 19 (95%) | 1 | NS | 112 (91.8%) | 73 (82.02%) | 1 | 0.033 |
CT | 13 (12.63%) | 1 (5%) | 2.74 (0.34~1.21) | 10 (8.2%) | 16 (17.98%) | 0.41 (0.18~0.95) |
GADD45b Genotype | Anti-RNP Ab Positive (n = 65) | Anti-RNP Ab Negative (n = 64) | OR | p-Value | |
---|---|---|---|---|---|
n (%) | n (%) | 95% CI | |||
-712C/T (rs3795024) | CC | 54 (83.08%) | 61 (95.31%) | 1 | 0.044 |
CT | 11 (16.92%) | 3 (4.69%) | 4.14 (1.10~15.63) |
GADD45a Genotype | RF Positive (n = 18) | RF Negative (n = 44) | OR | p-Value | |
---|---|---|---|---|---|
n (%) | n (%) | 95% CI | |||
-589 G/C (rs581000) | GG + GC | 18 (100%) | 32 (72.73%) | 1 | 0.01 |
CC | 0 (0%) | 12 (27.27%) | 0.07 (0.004~1.27) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.-N.; Lin, Y.-Z.; Pan, Y.-C.; Lin, C.-H.; Tseng, C.-C.; Sung, W.-Y.; Wu, C.-C.; Ou, T.-T.; Tsai, W.-C.; Yen, J.-H. GADD45a and GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients. J. Clin. Med. 2019, 8, 801. https://doi.org/10.3390/jcm8060801
Li R-N, Lin Y-Z, Pan Y-C, Lin C-H, Tseng C-C, Sung W-Y, Wu C-C, Ou T-T, Tsai W-C, Yen J-H. GADD45a and GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients. Journal of Clinical Medicine. 2019; 8(6):801. https://doi.org/10.3390/jcm8060801
Chicago/Turabian StyleLi, Ruei-Nian, Yuan-Zhao Lin, Ya-Chun Pan, Chia-Hui Lin, Chia-Chun Tseng, Wan-Yu Sung, Cheng-Chin Wu, Tsan-Teng Ou, Wen-Chan Tsai, and Jeng-Hsien Yen. 2019. "GADD45a and GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients" Journal of Clinical Medicine 8, no. 6: 801. https://doi.org/10.3390/jcm8060801
APA StyleLi, R.-N., Lin, Y.-Z., Pan, Y.-C., Lin, C.-H., Tseng, C.-C., Sung, W.-Y., Wu, C.-C., Ou, T.-T., Tsai, W.-C., & Yen, J.-H. (2019). GADD45a and GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients. Journal of Clinical Medicine, 8(6), 801. https://doi.org/10.3390/jcm8060801