New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia
Abstract
:1. Introduction
2. Pathogenesis of Anaemia in Multiple Myeloma
3. Hepcidin 25
4. Growth Differentiation Factor 15 (GDF15)
5. Soluble Transferrin Receptor (sTfR)
6. Zonulin
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Jurczyszyn, A.; Skotnicki, A. Multiple Myeloma. Comprehensive Diagnostics and Therapy, 1st ed.; Wydawnictwo Medyczne: Wrocław, Poland, 2010; ISBN 978-83-61257-29-5. [Google Scholar]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 Patients With Newly Diagnosed Multiple Myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef]
- Lenihan, D.J.; Potluri, R.; Bhandari, H.; Ranjan, S.; Chen, C. Evaluation of Cardiovascular Comorbidities Among Patients with Multiple Myeloma in the United States. Blood 2016, 128, 4794. [Google Scholar] [CrossRef]
- National Registry of Malignancies: Multiple Myeloma and malignancies of plasma cells (C90). Available online: http://onkologia.org.pl/szpiczak-mnogi-nowotwory-komorek-plazmatycznych-c90/ (accessed on 29 September 2019).
- VanderWall, K.; Daniels-Wells, T.R.; Penichet, M.; Lichtenstein, A. Iron in multiple myeloma. Crit. Rev. Oncog. 2013, 18, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.J.; Read, S.; Collins, G.P.; Darby, S.C.; Winearls, C.G. Presentation and survival of patients with severe acute kidney injury and multiple myeloma: A 20-year experience from a single centre. Nephrol. Dial. Transplant. 2010, 25, 419–426. [Google Scholar] [CrossRef] [PubMed]
- IbricevicBalic, L.; IcindicNakas, E.; Hasic, S.; Kiseljakovic, E.; SofoHafizovic, A.; Balic, S. Dilemma: Correlation Between Serum Level of Hepcidin and IL-6 in Anemic Myeloma Patients. Med. Arch. 2016, 70, 429. [Google Scholar] [CrossRef] [PubMed]
- Westhrin, M.; Moen, S.H.; Holien, T.; Mylin, A.K.; Heickendorff, L.; Olsen, O.E.; Sundan, A.; Turesson, I.; Gimsing, P.; Waage, A.; et al. Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica 2015, 100, e511–e514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanno, T.; Lim, Y.; Wang, Q.; Chesi, M.; Bergsagel, P.L.; Matthews, G.; Johnstone, R.W.; Ghosh, N.; Borrello, I.; Huff, C.A.; et al. Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells. Blood 2014, 123, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katodritou, E.; Speletas, M.; Zervas, K.; Kapetanos, D.; Georgiou, E.; Christoforidou, A.; Pavlitou, A.; Sion, M.; Christakis, J. Evaluation of Hypochromic Erythrocytes in Combination with sT fR-F Index for Predicting Response to r-HuEPO in Anemic Patients with Multiple Myeloma. Lab. Hematol. 2006, 12, 47–54. [Google Scholar] [CrossRef]
- Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, H.; Pohl, G.; Osterborg, A. Anemia in multiple myeloma. Clin. Adv. Hematol. Oncol. 2004, 2, 233–241. [Google Scholar] [PubMed]
- Maes, K.; Nemeth, E.; Roodman, G.D.; Huston, A.; Esteve, F.; Freytes, C.; Callander, N.; Katodritou, E.; Tussing-Humphreys, L.; Rivera, S.; et al. In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood 2010, 116, 3635–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestris, F.; Tucci, M.; Quatraro, C.; Dammacco, F. Recent Advances in Understanding the Pathogenesis of Anemia in Multiple Myeloma. Int. J. Hematol. 2003, 78, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Bruns, I.; Cadeddu, R.-P.; Brueckmann, I.; Fröbel, J.; Geyh, S.; Büst, S.; Fischer, J.C.; Roels, F.; Wilk, C.M.; Schildberg, F.A.; et al. Multiple myeloma–related deregulation of bone marrow–derived CD34+ hematopoietic stem and progenitor cells. Blood 2012, 120, 2620. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Skotnicki, A. Multiple Myeloma. Selected Issues, 1st ed.; Wydawnictwo Medyczne: Wrocław, Poland, 2011; ISBN 978-83-932189-0-5. [Google Scholar]
- Birgegård, G.; Gascón, P.; Ludwig, H. Evaluation of anaemia in patients with multiple myeloma and lymphoma: Findings of the European CANCER ANAEMIA SURVEY. Eur. J. Haematol. 2006, 77, 378–386. [Google Scholar] [CrossRef]
- Bladé, J.; Rosiñol, L. Renal, hematologic and infectious complications in multiple myeloma. Best Pract. Res. Clin. Haematol. 2005, 18, 635–652. [Google Scholar] [CrossRef]
- Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.C.J.; Bruno, B.; Sezer, O.; Broijl, A.; et al. European Myeloma Network Guidelines for the Management of Multiple Myeloma-related Complications. Haematologica 2015, 100, 1254–1266. [Google Scholar] [CrossRef] [Green Version]
- Mittelman, M. The implications of anemia in multiple myeloma. Clin. Lymphoma 2003, 4, S23–S29. [Google Scholar] [CrossRef]
- De Luisi, A.; Binetti, L.; Ria, R.; Ruggieri, S.; Berardi, S.; Catacchio, I.; Racanelli, V.; Pavone, V.; Rossini, B.; Vacca, A.; et al. Erythropoietin is involved in the angiogenic potential of bone marrow macrophages in multiple myeloma. Angiogenesis 2013, 16, 963–973. [Google Scholar] [CrossRef]
- Fenaux, P.; Platzbecker, U.; Mufti, G.J.; Garcia-Manero, G.; Buckstein, R.; Santini, V.; Diez-Campelo, M.; Finelli, C.; Cazzola, M.; Ihan, O. The Medalist Trial: Results of a phase 3, randomized, double-blind, placebo-controlled study of luspatercept to treat anemia in patients with very low-, low-, or intermediate-risk myelodysplastic syndromes (MDS) with ring sideroblasts (RS) who require red. Blood 2018, 132, 1. [Google Scholar] [CrossRef]
- Jelkmann, W. Activin receptor ligand traps in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2018, 27, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Soleymanian, T.; Soleimani, A.; Musavi, A.; Mojtahedi, K.; Hamid, G. Outcome of patients with multiple myeloma and renal failure on novel regimens. Saudi J. Kidney Dis. Transplant. 2016, 27, 335. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-M.; Xu, H.-Z.; Feng, X.-M.; Zhang, Y.; Liu, Y.-X. Clinical Research about Risk Factors and Reversible Predictors in Renal Impairment due to Multiple Myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015, 23, 722–727. [Google Scholar] [PubMed]
- Ganz, T. Hepcidin. Rinsho Ketsueki 2016, 57, 1913–1917. [Google Scholar] [PubMed]
- Subha Palaneeswari, M.; Ganesh, M.; Karthikeyan, T.; Devi, A.M.; Mythili, S.V. Hepcidin–Minireview. J. Clin. Diagn. Res. 2013, 7, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nemeth, E.; Chen, Y.-H.; Goodnough, J.; Huston, A.; Roodman, G.D.; Ganz, T.; Lichtenstein, A. Involvement of Hepcidin in the Anemia of Multiple Myeloma. Clin. Cancer Res. 2008, 14, 3262–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victor, M.; Evgeniy, H.; Gergana, T.; Julia, P.; Vasil, V.; Borislav, M.; Ivo, B.; Zlatina, G.; Kamen, T. Serum Hepcidin Levels in Multiple Myeloma. Clin. Lab. 2017, 63, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhou, D.-B.; Duan, M.-H.; Wang, X.; Zhang, J.-P.; Zhao, Y.-Q.; Shen, T.; Wu, Y.-J. Peripheral blood monocyte hepcidin in patients with multiple myeloma is associated with anemia of chronic disease. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013, 21, 403–409. [Google Scholar]
- Han, X.; Zhou, D.-B.; Duan, M.-H.; Hua, B.-L.; Wang, X.; Zhang, J.-P.; Zhao, Y.-Q.; Shen, T.; Wu, Y.-J. C/EBPα in multiple myeloma patients may lead to increased hepcidin. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2014, 22, 1316–1320. [Google Scholar]
- Mei, S.; Wang, H.; Fu, R.; Qu, W.; Xing, L.; Wang, G.; Song, J.; Liu, H.; Li, L.; Wang, X.; et al. Hepcidin and GDF15 in anemia of multiple myeloma. Int. J. Hematol. 2014, 100, 266–273. [Google Scholar] [CrossRef]
- Katodritou, E.; Ganz, T.; Terpos, E.; Verrou, E.; Olbina, G.; Gastari, V.; Hadjiaggelidou, C.; Varthaliti, M.; Georgiadou, S.; Westerman, M.; et al. Sequential evaluation of serum hepcidin in anemic myeloma patients: Study of correlations with myeloma treatment, disease variables, and anemia response. Am. J. Hematol. 2009, 84, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Uto, H.; Ohnou, N.; Tokunaga, M.; Tokunaga, M.; Utsunomiya, A.; Hanada, S.; Tsubouchi, H. Serum prohepcidin levels are potential prognostic markers in patients with multiple myeloma. Exp. Ther. Med. 2012, 4, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łukaszyk, E.; Łukaszyk, M.; Koc-Żórawska, E.; Tobolczyk, J.; Bodzenta-Łukaszyk, A.; Małyszko, J. Iron Status and Inflammation in Early Stages of Chronic Kidney Disease. Kidney Blood Press. Res. 2015, 40, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Olbina, G.; Girelli, D.; Nemeth, E.; Westerman, M. Immunoassay for human serum hepcidin. Blood 2008, 112, 4292–4297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, V.; Robinson-Cohen, C.; Smith, M.R.; Bellovich, K.A.; Bhat, Z.Y.; Bobadilla, M.; Brosius, F.; de Boer, I.H.; Essioux, L.; Formentini, I.; et al. Growth Differentiation Factor–15 and Risk of CKD Progression. J. Am. Soc. Nephrol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef]
- Corre, J.; Hébraud, B.; Bourin, P. Concise review: Growth differentiation factor 15 in pathology: A clinical role? Stem Cells Transl. Med. 2013, 2, 946–952. [Google Scholar] [CrossRef]
- Kastritis, E.; Papassotiriou, I.; Merlini, G.; Milani, P.; Terpos, E.; Basset, M.; Akalestos, A.; Russo, F.; Psimenou, E.; Apostolakou, F.; et al. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood 2018, 131, 1568–1575. [Google Scholar] [CrossRef]
- Corre, J.; Labat, E.; Espagnolle, N.; Hebraud, B.; Avet-Loiseau, H.; Roussel, M.; Huynh, A.; Gadelorge, M.; Cordelier, P.; Klein, B.; et al. Bioactivity and Prognostic Significance of Growth Differentiation Factor GDF15 Secreted by Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma. Cancer Res. 2012, 72, 1395–1406. [Google Scholar] [CrossRef] [Green Version]
- Worwood, M. Serum transferrin receptor assays and their application. Ann. Clin. Biochem. 2002, 39, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Petzer, V.; Theurl, I.; Weiss, G. Established and Emerging Concepts to Treat Imbalances of Iron Homeostasis in Inflammatory Diseases. Pharmaceuticals (Basel) 2018, 11, 135. [Google Scholar] [CrossRef]
- Speeckaert, M.M.; Speeckaert, R.; Delanghe, J.R. Biological and clinical aspects of soluble transferrin receptor. Crit. Rev. Clin. Lab. Sci. 2010, 47, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Tarkun, P.; Birtas Atesoglu, E.; Mehtap, O.; Musul, M.M.; Hacihanefioglu, A. Serum Growth Differentiation Factor 15 Levels in Newly Diagnosed Multiple Myeloma Patients. Acta Haematol. 2014, 131, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Windrichova, J.; Fuchsova, R.; Kucera, R.; Topolcan, O.; Fiala, O.; Finek, J.; Slipkova, D.; Karlikova, M.; Svobodova, J. Testing of a Novel Cancer Metastatic Multiplex Panel for the Detection of Bone-metastatic Disease—A Pilot Study. Anticancer Res. 2016, 36, 1973–1978. [Google Scholar] [PubMed]
- Zhao, N.; Yang, J. Expression of serum GDF15 and its clinical significance in multiple myeloma patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2014, 39, 270–275. [Google Scholar] [PubMed]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Zorawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. GDF-15, iron, and inflammation in early chronic kidney disease among elderly patients. Int. Urol. Nephrol. 2016, 48, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Takubo, T.; Kumura, T.; Nakao, T.; Nakamae, H.; Aoyama, Y.; Nishiki, S.; Kinoshita, Y.; Koh, K.-R.; Ohta, K.; Yamane, T.; et al. Clinical Usefulness of Combined Measurements of Serum Soluble Transferrin Receptor Levels and Serum Interleukin-18 Levels at Determination of Serum KL-6 Levels in Haematologic Malignancies. Acta Haematol. 2000, 104, 141–143. [Google Scholar] [CrossRef]
- Müller, T.; Kalea, A.Z.; Marquez, A.; Hsieh, I.; Haque, S.; Ye, M.; Wysocki, J.; Bader, M.; Batlle, D. Apelinergic system in the kidney: Implications for diabetic kidney disease. Physiol. Rep. 2018, 6, e13939. [Google Scholar] [CrossRef]
- Yin, P.; Song, Y.; Li, J. Soluble transferrin receptor as a marker of erythropoiesis in patients undergoing high-flux hemodialysis. Bosn. J. Basic Med. Sci. 2017, 17, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Kostova, G.; Siljanovski, N. Inadequate erythropoietin production (epo) in patients with multiple myeloma. Prilozi 2004, 25, 53–66. [Google Scholar]
- Alam, F.; Fatima, S.S.; Noor, S.; Bilal, A.; Rehman, R. Stages of chronic kidney disease and soluble Transferrin Receptor (sTfR), Ferritin, ratio. J. Pak. Med. Assoc. 2017, 67, 848–851. [Google Scholar]
- Tripathi, A.; Lammers, K.M.; Goldblum, S.; Shea-Donohue, T.; Netzel-Arnett, S.; Buzza, M.S.; Antalis, T.M.; Vogel, S.N.; Zhao, A.; Yang, S.; et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc. Natl. Acad. Sci. USA 2009, 106, 16799–16804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malyszko, J.; Koc-Zorawska, E.; Levin-Iaina, N.; Malyszko, J. Zonulin, Iron Status, and Anemia in Kidney Transplant Recipients: Are They Related? Transplant. Proc. 2014, 46, 2644–2646. [Google Scholar] [CrossRef] [PubMed]
- Wex, T.; Mönkemüller, K.; Kuester, D.; Fry, L.; Kandulski, A.; Malfertheiner, P. Zonulin is not increased in the cardiac and esophageal mucosa of patients with gastroesophageal reflux disease. Peptides 2009, 30, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Leaky Gut and Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2012, 42, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Küme, T.; Acar, S.; Tuhan, H.; Çatlı, G.; Anık, A.; Gürsoy Çalan, Ö.; Böber, E.; Abacı, A. The Relationship between Serum Zonulin Level and Clinical and Laboratory Parameters of Childhood Obesity. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, B.; Orho-Melander, M.; Nilsson, P. Higher Levels of Serum Zonulin May Rather Be Associated with Increased Risk of Obesity and Hyperlipidemia, Than with Gastrointestinal Symptoms or Disease Manifestations. Int. J. Mol. Sci. 2017, 18, 582. [Google Scholar] [CrossRef]
- Qi, Y.; Goel, R.; Kim, S.; Richards, E.M.; Carter, C.S.; Pepine, C.J.; Raizada, M.K.; Buford, T.W. Intestinal Permeability Biomarker Zonulin is Elevated in Healthy Aging. J. Am. Med. Dir. Assoc. 2017, 18, 810. [Google Scholar] [CrossRef]
- Dschietzig, T.; Boschann, F.; Ruppert, J.; Armbruster, F.; Meinitzer, A.; Bankovic, D.; Mitrovic, V.; Melzer, C. Plasma Zonulin and its Association with Kidney Function, Severity of Heart Failure, and Metabolic Inflammation. Clin. Lab. 2016, 62, 2443–2447. [Google Scholar] [CrossRef]
- Lukaszyk, E.; Lukaszyk, M.; Koc-Zorawska, E.; Bodzenta-Lukaszyk, A.; Malyszko, J. Zonulin, inflammation and iron status in patients with early stages of chronic kidney disease. Int. Urol. Nephrol. 2018, 50, 121–125. [Google Scholar] [CrossRef]
Population all Patients with MM | Population Patients with MM and Renal Insufficiency | |
---|---|---|
Anaemia | 73% | 88% |
Serum EPO levels under lower line | 25% | 60% |
Biomarker | Sample | Characteristics |
---|---|---|
Hepcidin25 [28,37] | serum, urine |
|
GDF15 [38,39,40,41] | serum, urine |
|
sTfR [42,43,44] | serum, urine |
|
MM | Anaemia | CKD | |
---|---|---|---|
hepcidin 25 | H | H | H |
GDF15 | H | H | H |
sTfR | N/H | H | H |
zonulin | unexamined | N | L |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaszkiewicz, M.; Małyszko, J.; Vesole, D.H.; Woziwodzka, K.; Jurczyszyn, A.; Żórawski, M.; Krzanowski, M.; Małyszko, J.; Batko, K.; Kuźniewski, M.; et al. New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. J. Clin. Med. 2019, 8, 1828. https://doi.org/10.3390/jcm8111828
Banaszkiewicz M, Małyszko J, Vesole DH, Woziwodzka K, Jurczyszyn A, Żórawski M, Krzanowski M, Małyszko J, Batko K, Kuźniewski M, et al. New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. Journal of Clinical Medicine. 2019; 8(11):1828. https://doi.org/10.3390/jcm8111828
Chicago/Turabian StyleBanaszkiewicz, Małgorzata, Jolanta Małyszko, David H. Vesole, Karolina Woziwodzka, Artur Jurczyszyn, Marcin Żórawski, Marcin Krzanowski, Jacek Małyszko, Krzysztof Batko, Marek Kuźniewski, and et al. 2019. "New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia" Journal of Clinical Medicine 8, no. 11: 1828. https://doi.org/10.3390/jcm8111828
APA StyleBanaszkiewicz, M., Małyszko, J., Vesole, D. H., Woziwodzka, K., Jurczyszyn, A., Żórawski, M., Krzanowski, M., Małyszko, J., Batko, K., Kuźniewski, M., & Krzanowska, K. (2019). New Biomarkers of Ferric Management in Multiple Myeloma and Kidney Disease-Associated Anemia. Journal of Clinical Medicine, 8(11), 1828. https://doi.org/10.3390/jcm8111828