Buffering Capacity in Sepsis: A Prospective Cohort Study in Critically Ill Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculated Acid-Base Variables
- Anion Gap corrected for albumin concentration AG = [Na+] – ([Cl−] + [HCO3−]) + 2.5 × {4.5 – [albumin (g/dL)]}
- Apparent SID (SIDa) = [Na+] + [K+] − [Cl−] − [Lactate−]
- Effective SID (SIDe) = 2.46 × 10 pH-8 × PCO2 (mmHg) + [albumin (g/L)] × (0.123 × pH−0.631) + [phosphate(mmol/L)] × (0.309 × pH−0.469)
- Strong ion gap (SIG) = SIDa – SIDe
- Inorganic SID = [Na+] + [K+] − [Cl−].
2.2. Buffering Capacity
- [H+] buffering capacity against SID = ΔSID/Δ[H+]
- [H+] buffering capacity against PCO2 = ΔPCO2/Δ[H+]
- pH buffering capacity against SID = ΔSID/Δ[pH]
- pH buffering capacity against PCO2 = ΔPCO2/Δ[pH]
2.3. Statistical Analysis
3. Results
3.1. Infection–Involved Pathogens
3.2. Buffering Indices
3.3. Buffering Indices and ICU Fatal Outcome
3.4. Miscellaneous Findings
4. Discussion
4.1. PCO2 Buffering Indices
4.2. Comments on the Utilization of the PCO2 Buffering Indices Introduced by Stewart
4.3. SID Buffering Indices
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmitt, B.M. The concept of “buffering” in systems and control theory: From metaphor to math. Chem. Biochem. 2004, 5, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.; Boron, W.F. The buffer value of weak acids and bases: Origin of the concept, and first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro (1914). Respir. Physiol. 1980, 40, 1–32. [Google Scholar] [CrossRef]
- Van Slyke, D.D. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J. Biol. Chem. 1922, 52, 525–570. [Google Scholar]
- Stewart, P.A. Independent and dependent variables of acid-base control. Respir. Physiol. 1978, 33, 9–26. [Google Scholar] [CrossRef]
- Stewart, P.A. Strong ions plus carbon dioxide plus weak acid (isolated blood plasma and isolated intracellular fluid). In Stewart’s Textbook of Acid-Base, 2nd ed.; Kellum, J.A., Elbers, P.W.G., Eds.; Lulu Enterprises: Egham, UK, 2009; pp. 157–160. [Google Scholar]
- Lelubre, C.; Vincent, J.L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 2018, 14, 417–427. [Google Scholar] [CrossRef]
- Stewart, P.A. Interactions between body fluids. In Stewart’s Textbook of Acid-Base, 2nd ed.; Kellum, J.A., Elbers, P.W.G., Eds.; Lulu Enterprises: Egham, UK, 2009; pp. 167–179. [Google Scholar]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Vasileiadis, I.; Politou, M.; Dimopoulos, S.; Rovina, N.; Kyriakopoulou, M.; Kyriakoudi, A.; Tripodaki, E.S.; Koutsouri, T.; Terpos, E.; Koulouris, N.; et al. Variation of endothelium-related hemostatic factors during sepsis. Microcirculation 2018, 25, e12500. [Google Scholar] [CrossRef]
- Nigam, P.K. Correct blood sampling for blood gas analysis. J. Clin. Diagn. Res. 2016, 10, BL01–BL02. [Google Scholar] [CrossRef] [PubMed]
- Story, D.A.; Morimatsu, H.; Egi, M.; Bellomo, R. The effect of albumin concentration on plasma sodium and chloride measurements in critically ill patients. Anesth. Analg. 2007, 104, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Lewenstam, A. Electric potential measured, concentration reported: How to get mmols from mV. Scand. J. Clin. Lab. Investig. 1996, 56 (Suppl. 224), 135–139. [Google Scholar] [CrossRef]
- Stewart, P.A. Goals, definitions and basic principles. In Stewart’s Textbook of Acid-Base, 2nd ed.; Kellum, J.A., Elbers, P.W.G., Eds.; Lulu Enterprises: Egham, UK, 2009; p. 43. [Google Scholar]
- Siggaard-Andersen, O. The Van Slyke equation. Scand. J. Clin. Lab. Investig. 1977, 37 (Suppl. 146), 15–20. [Google Scholar] [CrossRef]
- Figge, J.; Jabor, A.; Kazda, A.; Fencl, V. Anion gap and hypoalbuminemia. Crit. Care Med. 1998, 26, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Kramer, D.J.; Pinsky, M.R. Strong ion gap: A methodology for exploring unexplained anions. J. Crit. Care 1995, 10, 51–55. [Google Scholar] [CrossRef]
- Noritomi, D.T.; Soriano, F.G.; Kellum, J.A.; Cappi, S.B.; Biselli, P.J.; Libório, A.B.; Park, M. Metabolic acidosis in patients with severe sepsis and septic shock: A longitudinal quantitative study. Crit. Care Med. 2009, 37, 2733–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreymann, G.; Grosser, S.; Buggisch, P.; Gottschall, C.; Matthaei, S.; Greten, H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit. Care Med. 1993, 21, 1012–1019. [Google Scholar] [CrossRef]
- Tissot, S.; Delafosse, B.; Normand, S.; Bouffard, Y.; Annat, G.; Viale, J.P.; Pachiaudi, C.; Riou, J.P.; Motin, J. Recovery of [13C] bicarbonate as respiratory 13CO2 in mechanically ventilated patients. Am. J. Clin. Nutr. 1993, 57, 202–206. [Google Scholar] [CrossRef]
- Kao, C.C.; Guntupalli, K.K.; Bandi, V.; Jahoor, F. Whole-body CO2 production as an index of the metabolic response to sepsis. Shock 2009, 32, 23–28. [Google Scholar] [CrossRef]
- Vághy, P.L. Role of mitochondrial oxidative phosphorylation in the maintenance of intracellular pH. J. Mol. Cell. Cardiol. 1979, 11, 933–940. [Google Scholar] [CrossRef]
- Carré, J.E.; Singer, M. Cellular energetic metabolism in sepsis: The need for a systems approach. Biochim. Biophys. Acta 2008, 1777, 763–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrogué, H.J.; Rashad, M.N.; Gorin, A.B.; Yacoub, J.; Madias, N.E. Arteriovenous acid-base disparity in circulatory failure: Studies on mechanism. Am. J. Physiol. 1989, 257, F1087–F1093. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Vincent, J.L.; Gris, P.; Leon, M.; Coffernils, M.; Kahn, R.J. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992, 101, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascón, G.A.; Umaña, M.; Bermúdez, W.F.; Bautista-Rincón, D.F.; Valencia, J.D.; Madriñán, H.J.; Hernandez, G.; Bruhn, A.; Arango-Dávila, C.; De Backer, D. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016, 42, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Vallet, B.; Teboul, J.L.; Cain, S.; Curtis, S. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J. Appl. Physiol. 2000, 89, 1317–1321. [Google Scholar] [CrossRef]
- Spronk, P.E.; Kanoore-Edul, V.S.; Ince, C. Microcirculatory and mitochondrial distress syndrome (MMDS): A new look at sepsis. In Functional Hemodynamic Monitoring. Update in Intensive Care Emergency Medicine; Pinsky, M.R., Payen, D., Eds.; Springer: Berlin, Germany, 2005; pp. 47–67. [Google Scholar]
- Adrogué, H.J.; Madias, N.E. Assessing acid-base status: Physiologic versus physicochemical approach. Am. J. Kidney Dis. 2016, 68, 793–802. [Google Scholar] [CrossRef]
- Magder, S. Intracellular [H+]. In Stewart’s Textbook of Acid-Base, 2nd ed.; Kellum, J.A., Elbers, P.W.G., Eds.; Lulu Enterprises: Egham, UK, 2009; pp. 257–262. [Google Scholar]
- Aickin, C.C.; Thomas, R.C. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J. Physiol. 1977, 273, 295–316. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.F. The role of intracellular buffers in acid-base disturbances: Mathematical modelling. Respir. Physiol. 1980, 39, 45–61. [Google Scholar] [CrossRef]
Variable | Group A (n = 52) | Group B (n = 27) | ||||
---|---|---|---|---|---|---|
Admission | Sepsis Remission | p Value | Admission | Sepsis Deterioration | p Value | |
APACHE II score | 21.5 ± 7.8b | NA | NA | 26.7 ± 7.1b | NA | NA |
SOFA score | 8.5 ± 3.1 | 2.2 ± 2.4 | <0.001 | 10.4 ± 3.0 | 13.4 ± 3.0 | <0.001 |
SaO2 (%) | 96.5 ± 2.7 | 96.5 ± 1.8 | 0.42 | 95.8 ± 2.8 | 91.5 ± 7.3 | <0.001 |
SvO2 (%) | 76.0 ± 7.4 | 65.4 ± 10.6 | <0.001 | 74.7 ± 9.8 | 69.3 ± 7.7 | 0.02 |
PO2/FiO2 | 203 ± 94 | 279 ± 99 | <0.001 | 181 ± 92 | 158 ± 108 | 0.2 |
Hemoglobin (g/dL) | 11.4 ± 2.0 | 9.2 ± 1.5 | <0.001 | 11.1 ± 1.8 | 9.6 ± 1.8 | 0.001 |
WBC (×103/μL) | 16.55 ± 9.3 | 10.8 ± 4.1 | <0.001 | 20.1 ± 13.4 | 21.5 ± 12.7 | 0.23 |
PMN (%) | 84 ± 13 | 76 ± 8 | <0.001 | 84 ± 9 | 86 ± 9 | 0.18 |
PLT (×103/μL) | 238.2 ± 92.4 | 316.7 ± 158.5 | 0.009 | 248.7 ± 119.0 | 138.8 ± 100.7 | 0.002 |
Fibrinogen (mg/dL) | 588 ± 189 | 582 ± 159 | 0.34 | 608 ± 220 | 523 ± 226 | 0.29 |
aPTT (sec) | 44.0 ± 14.6 | 44.3 ± 10.5 | 0.43 | 43.9 ± 8.8 | 59.5 ± 28.1 | 0.004 |
INR | 1.35 ± 0.32 | 1.46 ± 1.68 | 0.64 | 1.60 ± 0.80 | 2.12 ± 1.59 | 0.09 |
D-Dimers (μg/mL) | 4.15 ± 3.47 | 3.33 ± 2.37 | 0.08 | 8.73 ± 8.74 | 6.87 ± 3.61 | 0.92 |
Urea (mg/dL) | 68.4 ± 43.7 | 63.4 ± 33.1 | 0.61 | 100.6 ± 67.1 | 86.4 ± 38.3 | 0.43 |
Creatinine (mg/dL) | 1.36 ± 1.19 | 0.89 ± 0.60 | <0.001 | 1.76 ± 1.32 | 1.49 ± 0.81 | 0.43 |
Bilirubin (mg/dL) | 0.86 ± 1.21 | 0.79 ± 1.56 | 0.002 | 1.07 ± 1.14 | 1.36 ± 1.26 | 0.08 |
Albumin (g/dL) | 2.26 ± 0.52 | 2.20 ± 0.49 | 0.6 | 2.16 ± 0.45 | 1.71 ± 0.52 | 0.001 |
CRP (mg/dL) | 29.3 ± 49.1 | 9.9 ± 16.9 | 0.01 | 20.4 ± 16.6 | 17.7 ± 14.5 | 0.75 |
Procalcitonin (ng/mL) | 5.75 ± 6.73 | 0.57 ± 0.64 | <0.001 | 2.88 ± 3.64 | 1.53 ± 1.00 | 0.47 |
Norepinephrine (μg/kg/min) | 0.143 ± 0.106 | 0.004 ± 0.001 | <0.001 | 0.258 ± 0.166 | 0.532 ± 0.315 | <0.001 |
Variable | Group A (n = 52) | Group B (n = 27) | ||||
---|---|---|---|---|---|---|
Admission | Sepsis Remission | p Value | Admission | Sepsis Deterioration | p Value | |
pHa | 7.37 ± 0.073 | 7.47 ± 0.05 | <0.001 | 7.35 ± 0.09 | 7.23 ± 0.16 | 0.001 |
pHv | 7.34 ± 0.07 | 7.42 ± 0.05 | <0.001 | 7.32 ± 0.08 | 7.20 ± 0.15 | <0.001 |
PCO2a (mmHg) | 45.3 ± 10.3 | 39.1 ± 9.7 | 0.001 | 43.4 ± 7.7 | 45.1 ± 12.4 | 0.61 |
PCO2v (mmHg) | 51.8 ± 10.3 | 46.5 ± 10.1 | 0.010 | 51.1 ± 7.6 | 51.4 ± 11.0 | 0.91 |
[HCO3–a] (mEq/L) | 25.4 ± 4.9 | 27.3 ± 5.1 | 0.02 | 23.6 ± 5.4 | 19.5 ± 6.8 | 0.03 |
[HCO3–v] (mEq/L) | 27.0 ± 4.8 | 29.3 ± 4.9 | 0.005 | 25.9 ± 5.8 | 20.7 ± 6.7 | 0.008 |
[Laca] (mEq/L) | 1.3 ± 0.5 | 1.1 ± 0.4 | 0.02 | 2.4 ± 1.3 | 5.2 ± 3.8 | 0.001 |
[Lacv] (mEq/L) | 1.3 ± 0.6 | 1.2 ± 0.4 | 0.1 | 2.5 ± 1.3 | 4.9 ± 3.4 | 0.002 |
AGa (mEq/L) | 13.27 ± 2.94 | 12.58 ± 3.34 | 0.07 | 14.95 ± 3.19 | 15.38 ± 6.36 | 0.61 |
AGv (mEq/L) | 13.39 ± 2.95 | 12.55 ± 3.04 | 0.07 | 14.55 ± 3.22 | 15.62 ± 6.29 | 0.58 |
BEa (mEq/L) | –0.29 ± 4.75 | 3.20 ± 4.48 | 0.001 | –1.79 ± 6.24 | –8.04 ± 8.19 | 0.004 |
BEv (mEq/L) | 0.68 ± 4.62 | 4.11 ± 4.33 | <0.001 | –0.41 ± 6.50 | –6.85 ± 9.14 | 0.006 |
[Cla] (mEq/L) | 106.4 ± 5.7 | 105.7 ± 7.1 | 0.39 | 105. 1 ± 6.5 | 109.0 ± 4.0 | 0.005 |
[Clv] (mEq/L) | 105.0 ± 5.7 | 104.0 ± 6.9 | 0.23 | 103.4 ± 6.9 | 107.8 ± 4.4 | 0.004 |
[Naa] (mEq/L) | 139.5 ± 5.4 | 139.8 ± 5.0 | 0.78 | 137.8 ± 4.8 | 136.9 ± 3.8 | 0.54 |
[Nav] (mEq/L) | 139.9 ± 5.4 | 140.1 ± 4.7 | 0.84 | 138.0 ± 5.1 | 137.1 ± 4.7 | 0.61 |
SIDa (mEq/L) | 35.7 ± 4.6 | 36.8 ± 5.3 | 0.15 | 34.7 ± 5.5 | 27.4 ± 6.4 | <0.001 |
SIDv (mEq/L) | 37.4 ± 4.5 | 38.8 ± 5.2 | 0.06 | 36.6 ± 6.1 | 29.1 ± 6.6 | 0.001 |
SIDea (mEq/L) | 34.0 ± 4.7 | 35.6 ± 5.4 | 0.06 | 32.7 ± 5.6 | 27.5 ± 6.6 | 0.009 |
SIDev (mEq/L) | 35.8 ± 4.5 | 37.6 ± 5.3 | 0.03 | 35.1 ± 6.1 | 28.7 ± 6.5 | 0.002 |
SIGa (mEq/L) | 1.69 ± 3.17 | 1.24 ± 3.17 | 0.3 | 1.98 ± 2.59 | –0.15 ± 3.40 | 0.03 |
SIGv (mEq/L) | 1.62 ± 2.67 | 1.22 ± 3.08 | 0.3 | 1.49 ± 2.73 | 0.34 ± 3.60 | 0.18 |
ΔPCO2v-a (mmHg) | 6.47 ± 3.03 | 7.41 ± 3.24 | 0.05 | 7.71 ± 3.07 | 6.30 ± 3.23 | 0.04 |
Variable | Non Septic (n = 17) | Septic (n = 96) | p Value |
---|---|---|---|
Age (years) | 62.5 ± 13.4 | 65.2 ± 15.2 | 0.37 |
APACHE score | 18.5 ± 5.8 | 23.5 ± 7.7 | 0.01 |
SOFA score | 6.0 ± 2.9 | 9.1 ± 3.2 | <0.001 |
PO2/FiO2 | 317 ± 102 | 190 ± 90 | <0.001 |
Norepinephrine (μg/kg/min) | 0.076 ± 0.162 | 0.198 ± 0.209 | <0.001 |
Hemoglobin (g/dL) | 10.2 ± 1.9 | 11.3 ± 2.0 | 0.04 |
WBC (× 103/μL) | 11.6 ± 4.0 | 17.9 ± 10.5 | 0.008 |
Fibrinogen (mg/dL) | 450 ± 180 | 589 ± 195 | 0.01 |
Albumin (g/dL) | 2.6 ± 0.5 | 2.2 ± 0.5 | 0.01 |
CRP (mg/dL) | 8.1 ± 8.5 | 25.4 ± 39.4 | 0.002 |
Procalcitonin (ng/mL) | 0.93 ± 1.36 | 5.65 ± 7.92 | 0.01 |
pH | 7.44 ± 0.07 | 7.36 ± 0.09 | <0.001 |
BE (mEq/L) | 0.35 ± 5.43 | –0.95 ± 5.31 | 0.41 |
[Lac] (mEq/L) | 1.4 ± 1.4 | 1.7 ± 1.1 | 0.02 |
AG (mEq/L) | 13.18 ± 3.13 | 13.94 ± 3.44 | 0.54 |
SID (mEq/L) | 34.9 ± 5.7 | 35.6 ± 5.0 | 0.50 |
SIG (mEq/L) | 1.10 ± 2.51 | 1.96 ± 3.35 | 0.47 |
ΔPCO2 (mmHg) | 6.9 ± 2.9 | 6.7 ± 3.5 | 0.99 |
Variables | Non Septic (n=17) | Group A (n=52) | Group B (n=27) | ||
---|---|---|---|---|---|
Admission | Sepsis remission | Admission | Sepsis deterioration | ||
ΔSID/ΔpH, (mEq/L/unit pH) | −56.7 ± 30.4 | −63.2 ± 62.9 | −56.0 ± 64.5 | −53.5 ± 65.1 | −63.1± 96.9 |
ΔSID/ΔpH (%) | −12.3 ± 6.5 | −13.5 ± 12.7 | −11.6 ± 12.7 | −11.0 ± 14.6 | −18.2 ± 26.2 |
ΔSID/Δ[H+], (mEq/nmol/L) | 0.66 ± 0.34 | 0.58 ± 0.53 | 0.68 ± 0.79 | 0.53 ± 0.58 | 0.46 ± 0.69 |
ΔSID/Δ[H+] (%) | 0.69 ± 0.37 | 0.76 ± 0.72 | 0.65 ± 0.73 | 0.63 ± 0.86 | 1.07 ± 1.56 |
ΔPCO2/ΔpH, (mmHg/unit pH) | −183.3 ± 34.5 | −224.9 ± 102.7 | −192.4 ± 96.0 | −283.7 ± 178.8 | −198.6 ± 128.1 |
ΔPCO2/ΔpH (%) | −38.1 ± 7.5 | −36.8 ± 14.2 | −37.8 ± 18.3 | −48.3 ± 27.7 | −35.0 ± 23.4 |
ΔPCO2/Δ[H+], (mmHg/nmol/L) | 2.08 ± 0.31 | 2.12 ± 0.79 | 2.32 ± 1.18 | 2.65 ± 1.55 | 1.44 ± 0.87 |
ΔPCO2/Δ[H+] (%) | 2.13 ± 0.44 | 2.05 ± 0.79 | 2.10 ± 1.06 | 2.76 ± 1.64 | 2.03 ± 1.42 |
Univariable Models | Hazard Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Admission ΔPCO2/ΔpH (%) | 0.98 | 0.97–0.99 | 0.01 |
Admission ΔPCO2/Δ[H+] (%) | 1.39 | 1.09–1.77 | 0.008 |
Remission/deterioration ΔSID/ΔpH (%) | 0.98 | 0.96–0.99 | 0.03 |
Remission/deterioration ΔSID/Δ[H+] (%) | 1.46 | 1.07–2.00 | 0.02 |
Remission/deterioration ΔPCO2/Δ[H+] (mmHg/nmol/L) | 0.41 | 0.27–0.64 | <0.001 |
Models adjusted for SOFA score * | Hazard ratio | 95% confidence Interval | p value |
Admission ΔPCO2/ΔpH (%) | 0.98 | 0.97–0.99 | 0.02 |
Admission ΔPCO2/Δ[H+] (%) | 1.27 | 0.98–1.65 | 0.07 |
Remission/deterioration ΔPCO2/Δ[H+] (mmHg/nmol/L) | 0.56 | 0.33–0.96 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasileiadis, I.; Kompoti, M.; Rovina, N.; Tripodaki, E.-S.; Filis, C.; Alevrakis, E.; Kyriakoudi, A.; Kyriakopoulou, M.; Koulouris, N.; Koutsoukou, A. Buffering Capacity in Sepsis: A Prospective Cohort Study in Critically Ill Patients. J. Clin. Med. 2019, 8, 1759. https://doi.org/10.3390/jcm8111759
Vasileiadis I, Kompoti M, Rovina N, Tripodaki E-S, Filis C, Alevrakis E, Kyriakoudi A, Kyriakopoulou M, Koulouris N, Koutsoukou A. Buffering Capacity in Sepsis: A Prospective Cohort Study in Critically Ill Patients. Journal of Clinical Medicine. 2019; 8(11):1759. https://doi.org/10.3390/jcm8111759
Chicago/Turabian StyleVasileiadis, Ioannis, Maria Kompoti, Nikoletta Rovina, Elli-Sophia Tripodaki, Christos Filis, Emmanouil Alevrakis, Anna Kyriakoudi, Magdalini Kyriakopoulou, Nikolaos Koulouris, and Antonia Koutsoukou. 2019. "Buffering Capacity in Sepsis: A Prospective Cohort Study in Critically Ill Patients" Journal of Clinical Medicine 8, no. 11: 1759. https://doi.org/10.3390/jcm8111759
APA StyleVasileiadis, I., Kompoti, M., Rovina, N., Tripodaki, E.-S., Filis, C., Alevrakis, E., Kyriakoudi, A., Kyriakopoulou, M., Koulouris, N., & Koutsoukou, A. (2019). Buffering Capacity in Sepsis: A Prospective Cohort Study in Critically Ill Patients. Journal of Clinical Medicine, 8(11), 1759. https://doi.org/10.3390/jcm8111759