The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Treatments
2.3. Ophthalmologic Examinations
3. Results
3.1. Patients with Myopia <6 D
3.2. Patients with Myopia ≥6 D
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Resnikoff, S.; Pascolini, D.; Mariotti, S.P.; Pokharel, G.P. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull. World Health Organ. 2008, 86, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Crim, N.; Esposito, E.; Monti, R.; Correa, L.J.; Serra, H.M.; Urrets-Zavalia, J.A. Myopia as a risk factor for subsequent retinal tears in the course of a symptomatic posterior vitreous detachment. BMC Ophthalmol. 2017, 17, 226. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; Phua, V.; Lee, S.Y.; Wong, T.Y.; Cheung, C.M. Is choroidal or scleral thickness related to myopic macular degeneration? Investig. Ophthalmol. Vis. Sci. 2017, 58, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Saw, S.M.; Gazzard, G.; Shih-Yen, E.C.; Chua, W.H. Myopia and associated pathological complications. Ophthalmic Physiol. Opt. 2005, 25, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Marcus, M.W.; de Vries, M.M.; Junoy Montolio, F.G.; Jansonius, N.M. Myopia as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. Ophthalmology 2011, 118, 1989–1994. [Google Scholar] [CrossRef] [PubMed]
- Leo, S.W.; Young, T.L. An evidence-based update on myopia and interventions to retard its progression. J. AAPOS 2011, 15, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.F.; Chen, C.H.; Chou, A.C.; Ho, T.C.; Lin, L.L.; Hung, P.T. Effects of different concentrations of atropine on controlling myopia in myopic children. J. Ocul. Pharmacol. Ther. 1999, 15, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.S.; Lam, D.S.; Chan, C.K.; Fan, A.H.; Cheung, E.Y.; Rao, S.K. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: A pilot study. Jpn. J. Ophthalmol. 2007, 51, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Mckanna, J.A.; Casagrande, V.A. Atropine affects lid-suture myopia development. Doc. Ophthalmol. 1981, 28, 187–192. [Google Scholar]
- Tigges, M.; Iuvone, P.M.; Fernandes, A.; Sugrue, M.F.; Mallorga, P.J.; Laties, A.M.; Stone, R.A. Effects of muscarinic cholinergic receptor antagonists on postnatal eye growth of rhesus monkeys. Optom. Vis. Sci. 1999, 76, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.A.; Lin, T.; Laties, A.M. Muscarinic antagonist effects on experimental chick myopia. Exp. Eye Res. 1991, 52, 755–758. [Google Scholar] [CrossRef]
- Schmid, K.L.; Wildsoet, C.F. Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom. Vis. Sci. 2004, 81, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Glasser, A.; Howland, H.C. A history of studies of visual accommodation in birds. Q. Rev. Biol. 1996, 71, 475–509. [Google Scholar] [CrossRef] [PubMed]
- McBrien, N.A.; Moghaddam, H.O.; Reeder, A.P. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Investig. Ophthalmol. Vis. Sci. 1993, 34, 205–215. [Google Scholar]
- Jiang, X.; Kurihara, T.; Kunimi, H.; Miyauchi, M.; Ikeda, S.I.; Mori, K.; Tsubota, K.; Torii, H.; Tsubota, K. A highly efficient murine model of experimental myopia. Sci. Rep. 2018, 8, 2026. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.F.; Hsiao, C.K.; Chen, C.J.; Chang, C.W.; Hung, P.T.; Lin, L.L. An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression. Acta Ophthalmol. Scand. 2001, 79, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Chua, W.H.; Cheung, Y.B.; Wong, W.L.; Lingham, A.; Fong, A.; Tan, D. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology 2012, 119, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Chua, W.H.; Wen, L.; Fong, A.; Goon, Y.Y.; Tan, D. Atropine for the treatment of childhood myopia: Changes after stopping atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 2014, 157, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Huang, X.L.; Koh, A.L.; Zhang, X.; Tan, D.T.; Chua, W.H. Atropine for the treatment of childhood myopia: Effect on myopia progression after cessation of atropine. Ophthalmology 2009, 116, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Lu, Q.S.; Tan, D. Five-year clinical trial on atropine for the treatment of myopia 2: Myopia control with atropine 0.01% eyedrops. Ophthalmology 2016, 123, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Janowski, M.; Luo, M.; Wei, H.; Chen, B.; Yang, G.; Liu, L. Efficacy and adverse effects of atropine in childhood myopia: A meta-analysis. JAMA Ophthalmol. 2017, 135, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Pineles, S.L.; Kraker, R.T.; VanderVeen, D.K.; Hutchinson, A.K.; Galvin, J.A.; Wilson, L.B.; Lambert, S.R. Atropine for the prevention of myopia progression in children: A report by the american academy of ophthalmology. Ophthalmology 2017, 124, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Bian, H.L.; Wang, Q. Atropine 0.5% eyedrops for the treatment of children with low myopia: A randomized controlled trial. Medicine (Baltimore) 2017, 96, e7371. [Google Scholar] [CrossRef] [PubMed]
- Na, M.; Yoo, A. The effect of orthokeratology on axial length elongation in children with myopia: Contralateral comparison study. Jpn. J. Ophthalmol. 2018, 62, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Naidu, R.K.; Qu, X. Factors related to axial length elongation and myopia progression in orthokeratology practice. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W. Retardation of myopia in orthokeratology (romio) study: A 2-year randomized clinical trial. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7077–7085. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheung, S.W.; Cho, P. Myopia control using toric orthokeratology (to-see study). Investig. Ophthalmol. Vis. Sci. 2013, 54, 6510–6517. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.W.; Lam, C.; Cho, P. Parents’ knowledge and perspective of optical methods for myopia control in children. Optom. Vis. Sci. 2014, 91, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, M.; Yuan, Y.; Me, R.; Yu, Y.; Shi, G.; Ke, B. Interaction between corneal and internal ocular aberrations induced by orthokeratology and its influential factors. BioMed. Res. Int. 2017, 2017, 3703854. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.S.; Nguyen, T.T.; Bonanno, J.A. Overnight orthokeratology: Visual and corneal changes. Eye Contact Lens 2003, 29, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Wan, L.; Tsai, F.J.; Tsai, Y.Y.; Chen, L.A.; Tsai, A.L.; Huang, Y.C. Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol. 2014, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.; Sankaridurg, P.; Ho, A.; Chen, X.; Lin, Z.; Thomas, V.; Smith, E.L., 3rd; Ge, J.; Holden, B. Myopia progression in chinese children is slower in summer than in winter. Optom. Vis. Sci. 2012, 89, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Gwiazda, J.; Deng, L.; Manny, R.; Norton, T.T.; Group, C.S. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Investig. Ophthalmol. Vis. Sci. 2014, 55, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Rusnak, S.; Salcman, V.; Hecova, L.; Kasl, Z. Myopia progression risk: Seasonal and lifestyle variations in axial length growth in czech children. J. Ophthalmol. 2018, 2018, 5076454. [Google Scholar] [CrossRef] [PubMed]
- Ip, J.M.; Rose, K.A.; Morgan, I.G.; Burlutsky, G.; Mitchell, P. Myopia and the urban environment: Findings in a sample of 12-year-old australian school children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3858–3863. [Google Scholar] [CrossRef] [PubMed]
- Little, J.A.; McCullough, S.J.; Breslin, K.M.; Saunders, K.J. Higher order ocular aberrations and their relation to refractive error and ocular biometry in children. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4791–4800. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.A.; Sankaridurg, P.R.; Naduvilath, T.J.; Mitchell, P. Monochromatic aberrations in hyperopic and emmetropic children. J. Vis. 2009, 9, 23:1–23:14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Feng, H.; Zhu, J.; Qu, X. The impact of amplitude of accommodation on controlling the development of myopia in orthokeratology. Zhonghua Yan Ke Za Zhi 2014, 50, 14–19. [Google Scholar] [PubMed]
Atropine (0.125%) | p-Value | Atropine (0.025%) | p-Value | |||
---|---|---|---|---|---|---|
Yes (OA1) (N = 20) | No (OK1) (N = 26) | Yes (OA2) (N = 20) | No (OK2) (N = 20) | |||
Age | 10.6 ± 1.2 | 10.2 ± 1.7 | >0.05 | 10.4 ± 1.3 | 10.3 ± 1.4 | >0.05 |
Female: male # | 1:1 | 1:1 | 1:1 | 1:1 | ||
Axial length (mm) | ||||||
Baseline | 24.12 ± 1.28 | 24.32 ± 1.53 | >0.05 | 24.08 ± 1.31 | 24.19 ± 1.24 | >0.05 |
2 years | 24.67 ± 1.53 | 24.9 ± 1.98 | 0.042 | 24.73 ± 1.53 | 25.01 ± 1.26 | 0.031 |
Difference in axial length | 0.55 ± 0.12 | 0.58 ± 0.09 | 0.022 | 0.65 ± 0.18 | 0.83 ± 0.16 | 0.029 |
Spherical equivalent (D) | ||||||
Baseline | 4.25 ± 1.75 | 4.25 ± 1.25 | >0.05 | 4.53 ± 1.23 | 4.63 ± 1.35 | >0.05 |
2 years | 4.75 ± 0.75 | 4.8 ± 0.5 | 0.041 | 4.83 ± 1.12 | 5.13 ± 1.56 | 0.039 |
Accommodation | ||||||
Baseline | 16.2 ± 3.1 | 16.7 ± 3.4 | >0.05 | 16.3 ± 3.2 | 16.5 ± 3.4 | >0.05 |
2 years | 4.2 ± 2.7 | 16.3 ± 3.2 | <0.001 | 4.6 ± 1.56 | 16.4 ± 3.2 | <0.001 |
Photopic pupil diameter | ||||||
Baseline | 3.8 ± 0.4 | 3.7 ± 0. 5 | >0.05 | 3.9 ± 0.6 | 3.7 ± 0.45 | >0.05 |
2 years | 6.8 ± 0.5 | 3.6 ± 0.4 | <0.001 | 6.2 ± 0.6 | 3.6 ± 0.5 | <0.001 |
Mesopic pupil diameter | ||||||
Baseline | 4.7 ± 0.5 | 4.3 ± 0.5 | >0.05 | 4.7 ± 0.4 | 4.6 ± 0.6 | >0.05 |
2 years | 7.2 ± 0.4 | 4.6 ± 0.6 | <0.001 | 6.6 ± 0.7 | 4.7 ± 0.5 | <0.001 |
Distance BCVA (log MAR) | ||||||
Baseline | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.00 | 0.01 ± 0.01 | >0.05 |
2 years | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 |
Near BCVA (log MAR) | ||||||
Baseline | 0.01 ± 0.00 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.00 | 0.01 ± 0.01 | >0.05 |
2 years | 0.12 ± 0.02 | 0.01 ± 0.01 | >0.05 | 0.02 ± 0.02 | 0.01 ± 0.01 | >0.05 |
Atropine (0.125%) | p-Value | Atropine (0.025%) | p-Value | |||
---|---|---|---|---|---|---|
Yes (OA3) (N = 24) | No (OK3) (N = 29) | Yes (OA4) (N = 20) | No (OK4) (N = 20) | |||
Age | 11.0 ± 1.8 | 10.8 ± 1.8 | >0.05 | 10.8 ± 1.2 | 10.9 ± 1.3 | >0.05 |
Female: male # | 1:1 | 1.07:1 | 1:1 | 1:1 | ||
Axial length (mm) | ||||||
Baseline | 25.21 ± 1.35 | 25.29 ± 1.78 | >0.05 | 25.28 ± 1.53 | 25.65 ± 1.67 | >0.05 |
2 years | 25.78 ± 1.46 | 25.93 ± 1.94 | 0.021 | 25.86 ± 1.21 | 26.05 ± 1.57 | 0.011 |
Difference in axial length | 0.57 ± 0.17 | 0.64 ± 0.14 | 0.015 | 0.58 ± 0.08 | 0.4 ± 0.15 | 0.023 |
Spherical equivalent (D) | ||||||
Baseline | 6.75 ± 1.5 | 6.75 ± 1.5 | >0.05 | 6.63 ± 1.56 | 6.67 ± 1.73 | >0.05 |
2 years | 7.0 ± 0.5 | 7.2 ± 0.75 | 0.028 | 7.12 ± 1.83 | 7.32 ± 1.87 | 0.027 |
Accommodation | ||||||
Baseline | 16.6 ± 2.9 | 16.8 ± 3.2 | >0.05 | 16.6 ± 2.8 | 16.8 ± 3.1 | >0.05 |
2 years | 3.8 ± 2.9 | 15.9 ± 3.8 | <0.001 | 3.9 ± 2.01 | 16.6 ± 2.9 | <0.001 |
Photopic pupil diameter | ||||||
Baseline | 3.9 ± 0.5 | 3.8 ± 0.7 | >0.05 | 3.8 ± 0.57 | 3.6 ± 0.63 | >0.05 |
2 years | 6.6 ± 0.4 | 3.5 ± 0.6 | <0.001 | 6.0 ± 0.7 | 3.7 ± 0.5 | <0.001 |
Mesopic pupil diameter | ||||||
Baseline | 4.8 ± 0.6 | 4.5 ± 0.7 | >0.05 | 4.8 ± 0.5 | 4.7 ± 0.6 | >0.05 |
2 years | 6.9 ± 0.6 | 4.5 ± 0.8 | <0.001 | 6.8 ± 0.6 | 4.8 ± 0.5 | <0.001 |
Distance BCVA (log MAR) | ||||||
Baseline | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.01 | 0.01 ± 0.00 | >0.05 |
2 years | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.00 | 0.01 ± 0.00 | >0.05 |
Near BCVA (log MAR) | ||||||
Baseline | 0.00 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.01 | 0.01 ± 0.00 | >0.05 |
2 years | 0.02 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.012 ± 0.03 | 0.01 ± 0.00 | >0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Wei, C.-C.; Chen, C.S.; Chang, C.-Y.; Lin, C.-J.; Chen, J.J.-Y.; Tien, P.-T.; Lin, H.-J. The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. J. Clin. Med. 2018, 7, 259. https://doi.org/10.3390/jcm7090259
Wan L, Wei C-C, Chen CS, Chang C-Y, Lin C-J, Chen JJ-Y, Tien P-T, Lin H-J. The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. Journal of Clinical Medicine. 2018; 7(9):259. https://doi.org/10.3390/jcm7090259
Chicago/Turabian StyleWan, Lei, Chang-Ching Wei, Chih Sheng Chen, Ching-Yao Chang, Chao-Jen Lin, Jamie Jiin-Yi Chen, Peng-Tai Tien, and Hui-Ju Lin. 2018. "The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia" Journal of Clinical Medicine 7, no. 9: 259. https://doi.org/10.3390/jcm7090259
APA StyleWan, L., Wei, C.-C., Chen, C. S., Chang, C.-Y., Lin, C.-J., Chen, J. J.-Y., Tien, P.-T., & Lin, H.-J. (2018). The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. Journal of Clinical Medicine, 7(9), 259. https://doi.org/10.3390/jcm7090259