The Role of Resilience in Internet Addiction among Adolescents between Sexes: A Moderated Mediation Model
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.2.1. Young’s Internet Addiction Test (Y-IAT)
2.2.2. Behavioral Inhibition System/Behavioral Activation System Scales (BIS/BAS)
2.2.3. Beck Depression Inventory (BDI-II)
2.2.4. Beck Anxiety Inventory (BAI)
2.2.5. Barratt Impulsiveness Scale, Version 11 (BIS-11)
2.2.6. State-Trait Anger Expression Inventory (STAXI)
2.2.7. Connor-Davison Resilience Scale (CDRS)
2.3. Statistical Analyses
2.3.1. Test of Mediation
2.3.2. Test of Moderated Mediation
2.4. Ethics
3. Results
3.1. Correlations Between Overall Variables
3.2. Sex Differences in Overall Variables
3.3. Tests of Mediation
3.3.1. Boys
3.3.2. Girls
3.4. Tests of Moderated Mediation
3.4.1. Boys
3.4.2. Girls
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Dsm-IV; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Jang, K.S.; Hwang, S.Y.; Choi, J.Y. Internet addiction and psychiatric symptoms among Korean adolescents. J. Sch. Health 2008, 78, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Van den Eijnden, R.J.; Meerkerk, G.J.; Vermulst, A.A.; Spijkerman, R.; Engels, R.C. Online communication, compulsive internet use, and psychosocial well-being among adolescents: A longitudinal study. Dev. Psychol. 2008, 44, 655. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Arlington, MA, USA, 2013. [Google Scholar]
- Morahan-Martin, J.; Schumacher, P. Incidence and correlates of pathological internet use among college students. Comput. Hum. Behav. 2000, 16, 13–29. [Google Scholar] [CrossRef]
- Shapira, N.A.; Lessig, M.C.; Goldsmith, T.D.; Szabo, S.T.; Lazoritz, M.; Gold, M.S.; Stein, D.J. Problematic internet use: Proposed classification and diagnostic criteria. Depress. Anxiety 2003, 17, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol Abuse 2010, 36, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction and a Winning Strategy for Recovery; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Kormas, G.; Critselis, E.; Janikian, M.; Kafetzis, D.; Tsitsika, A. Risk factors and psychosocial characteristics of potential problematic and problematic internet use among adolescents: A cross-sectional study. BMC Public Health 2011, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Saville, B.K.; Gisbert, A.; Kopp, J.; Telesco, C. Internet addiction and delay discounting in college students. Psychol. Rec. 2010, 60, 273–286. [Google Scholar] [CrossRef]
- Young, K.S.; Rogers, R.C. The relationship between depression and internet addiction. Cyberpsychol. Behav. 1998, 1, 25–28. [Google Scholar] [CrossRef]
- Stahl, S.M.; Iversen, S.D.; Goodman, E.C. Cognitive Neurochemistry; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Van Goozen, S.H.; Van de Poll, N.E.; Sergeant, J.A. Emotions: Essays on Emotion Theory; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1994. [Google Scholar]
- Carver, C.S.; White, T.L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. J. Pers. Soc. Psychol. 1994, 67, 319–333. [Google Scholar] [CrossRef]
- Dawe, S.; Loxton, N.J. The role of impulsivity in the development of substance use and eating disorders. Neurosci. Biobehav. Rev. 2004, 28, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Carver, C.S.; Scheier, M.F. On the Self-Regulation of Behavior; Cambridge University Press: Cambrige, UK, 1998. [Google Scholar]
- Depue, R.A.; Collins, P.F. Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behav. Brain Sci. 1999, 22, 491–517. [Google Scholar] [CrossRef] [PubMed]
- Franken, I.H.; Muris, P. BIS/BAS personality characteristics and college students’ substance use. Pers. Individ. Differ. 2006, 40, 1497–1503. [Google Scholar] [CrossRef]
- Franken, I.H.; Muris, P.; Georgieva, I. Gray’s model of personality and addiction. Addict. Behav. 2006, 31, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Corr, P.J. Ja gray’s reinforcement sensitivity theory: Tests of the joint subsystems hypothesis of anxiety and impulsivity. Pers. Individ. Differ. 2002, 33, 511–532. [Google Scholar] [CrossRef]
- Jorm, A.F.; Christensen, H.; Henderson, A.S.; Jacomb, P.A.; Korten, A.E.; Rodgers, B. Using the BIS/BAS scales to measure behavioural inhibition and behavioural activation: Factor structure, validity and norms in a large community sample. Pers. Individ. Differ. 1998, 26, 49–58. [Google Scholar] [CrossRef]
- Kimbrel, N.A.; Nelson-Gray, R.O.; Mitchell, J.T. Reinforcement sensitivity and maternal style as predictors of psychopathology. Pers. Individ. Differ. 2007, 42, 1139–1149. [Google Scholar] [CrossRef]
- Loxton, N.J.; Dawe, S. Alcohol abuse and dysfunctional eating in adolescent girls: The influence of individual differences in sensitivity to reward and punishment. Int. J. Eating Disord. 2001, 29, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Hundt, N.E.; Kimbrel, N.A.; Mitchell, J.T.; Nelson-Gray, R.O. High bas, but not low bis, predicts externalizing symptoms in adults. Pers. Individ. Differ. 2008, 44, 565–575. [Google Scholar] [CrossRef]
- Johnson, S.L.; Turner, R.J.; Iwata, N. BIS/BAS levels and psychiatric disorder: An epidemiological study. J. Psychopathol. Behav. Assess. 2003, 25, 25–36. [Google Scholar] [CrossRef]
- Giles, G.; Price, I.R. Adolescent computer use: Approach, avoidance, and parental control. Aust. J. Psychol. 2008, 60, 63–71. [Google Scholar] [CrossRef]
- Meerkerk, G.-J.; Van den Eijnden, R.J.; Franken, I.; Garretsen, H. Is compulsive internet use related to sensitivity to reward and punishment, and impulsivity? Comput. Hum. Behav. 2010, 26, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Park, Y.A.; Lee, H.W.; Jung, H.Y.; Lee, J.-Y.; Choi, J.-S. The effects of behavioral inhibition/approach system as predictors of internet addiction in adolescents. Pers. Individ. Differ. 2013, 54, 7–11. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Cheng-Fang, Y.; Chen, C.-S.; Chang, Y.-H.; Yeh, Y.-C.; Ko, C.-H. The bidirectional interactions between addiction, behaviour approach and behaviour inhibition systems among adolescents in a prospective study. Psychiatry Res. 2012, 200, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Cumming, S.R.; Hughes, I. Internet use by the socially fearful: Addiction or therapy? Cyber. Psychol. Behav. 2006, 9, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.J. Neuropsychological Perspectives on Affective and Anxiety Disorders; Psychology Press: East Sussex, UK, 1998. [Google Scholar]
- Zuckerman, M. Psychobiology of Personality; Cambtidge University Press: Cambridge, UK, 2005. [Google Scholar]
- Larsen, R.J.; Ketelaar, T. Personality and susceptibility to positive and negative emotional states. J. Pers. Soc. Psychol. 1991, 61, 132. [Google Scholar] [CrossRef] [PubMed]
- Impulse Control Disorders; Hakjisa: Seoul, Korea, 2000.
- Caplan, S.E. Problematic internet use and psychosocial well-being: Development of a theory-based cognitive-behavioral measurement instrument. Comput. Hum. Behav. 2002, 18, 553–575. [Google Scholar] [CrossRef]
- Davis, R.A. A cognitive-behavioral model of pathological internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kwon, J.G.; Lee, J.Y.; Jung, H.Y.; Sohn, B.K.; Choi, S.W.; Kim, D.J.; Choi, J.S. Gender differences in clinical and psychopathological features of adolescents at high-risk for internet addiction. J. Korean Acad. Addict. Psychol. 2016, 20, 22–29. [Google Scholar] [CrossRef]
- Choi, E.M.; Shin, J.R.; Bae, J.H.; Kim, M.S. The relationships among depression, anxiety, impulsivity and aggression and internet addiction of college students-moderating effect of resilience. J. Korea Contents Assoc. 2014, 14, 329–341. [Google Scholar] [CrossRef]
- Goldstein, A.L.; Faulkner, B.; Wekerle, C. The relationship among internal resilience, smoking, alcohol use, and depression symptoms in emerging adults transitioning out of child welfare. Child. Abuse Negl. 2013, 37, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Huh, H.J.; Cho, H.; Kwon, M.; Choi, J.H.; Ahn, H.J.; Lee, S.W.; Kim, Y.J.; Kim, D.J. The effect of depression, impulsivity, and resilience on smartphone addiction in university students. J. Korean Neuropsychiatr. Assoc. 2014, 53, 214–220. [Google Scholar] [CrossRef]
- Connor, K.M.; Davidson, J.R. Development of a new resilience scale: The Connor-Davidson resilience scale (CD-RISC). Depress. Anxiety 2003, 18, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Fergus, S.; Zimmerman, M.A. Adolescent resilience: A framework for understanding healthy development in the face of risk. Annu. Rev. Public Health 2005, 26, 399–419. [Google Scholar] [CrossRef] [PubMed]
- Werner, E.E.; Smith, R.S. Overcoming the Odds: High. Risk Children from Birth to Adulthood; Cornell University Press: New York, NY, USA, 1992. [Google Scholar]
- Wisniewski, P.; Jia, H.; Wang, N.; Zheng, S.; Xu, H.; Rosson, M.B.; Carroll, J.M. Resilience Mitigates the Negative Effects of Adolescent Internet Addiction and Online Risk Exposure. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 4029–4038. [Google Scholar]
- Li, D.; Zhang, W.; Li, X.; Zhen, S.; Wang, Y. Stressful life events and problematic internet use by adolescent women and men: A mediated moderation model. Comput. Hum. Behav. 2010, 26, 1199–1207. [Google Scholar] [CrossRef]
- Blair, C. Behavioral inhibition and behavioral activation in young children: Relations with self-regulation and adaptation to preschool in children attending head start. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 2003, 42, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Matton, A.; Goossens, L.; Braet, C.; Vervaet, M. Punishment and reward sensitivity: Are naturally occurring clusters in these traits related to eating and weight problems in adolescents? Eur. Eat. Disord. Rev. 2013, 21, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Verbeken, S.; Braet, C.; Lammertyn, J.; Goossens, L.; Moens, E. How is reward sensitivity related to bodyweight in children? Appetite 2012, 58, 478–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vervoort, L.; Vandeweghe, L.; Vandewalle, J.; Van Durme, K.; Vandevivere, E.; Wante, L.; McIntosh, K.; Verbeken, S.; Moens, E.; Goossens, L. Measuring punishment and reward sensitivity in children and adolescents with a parent-report version of the BIS/BAS-scales. Pers. Individ. Differ. 2015, 87, 272–277. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, D.J.; Choi, J.S.; Ahn, H.; Choi, E.J.; Song, W.-Y.; Kim, S.; Youn, H. Comparison of risk and protective factors associated with smartphone addiction and internet addiction. J. Behav. Addict. 2015, 4, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, Y.M.; Hwang, W.J. Gender differences in internet addiction associated with psychological health indicators among adolescents using a national web-based survey. Int. J. Ment. Health Addict. 2014, 12, 660–669. [Google Scholar] [CrossRef]
- Frydenberg, E.; Lewis, R. Boys play sport and girls turn to others: Age, gender and ethnicity as determinants of coping. J. Adolesc. 1993, 16, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Hampel, P.; Petermann, F. Age and gender effects on coping in children and adolescents. J. Youth Adolesc. 2005, 34, 73–83. [Google Scholar] [CrossRef]
- Isaacs, A.J. Gender differences in resilience of academic deans. J. Res. Educ. 2014, 24, 112–119. [Google Scholar]
- Masood, A.; Masud, Y.; Mazahir, S. Gender differences in resilience and psychological distress of patients with burns. Burns 2016, 42, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Eschenbeck, H.; Kohlmann, C.-W.; Lohaus, A. Gender differences in coping strategies in children and adolescents. J. Individ. Differ. 2007, 28, 18–26. [Google Scholar] [CrossRef]
- Roecker, C.E.; Dubow, E.F.; Donaldson, D. Cross-situational patterns in children’s coping with observed interpersonal conflict. J. Clin. Child. Psychol. 1996, 25, 288–299. [Google Scholar] [CrossRef]
- Stark, L.J.; Spirito, A.; Williams, C.A.; Guevremont, D.C. Common problems and coping strategies I: Findings with normal adolescents. J. Abnorm. Child. Psychol. 1989, 17, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Chon, K.-K.; Hahn, D.-W.; Lee, C.-H.; Spielberger, C. Korean adaptation of the state-trait anger expression inventory: Anger and blood pressure. Korean J. Health Psychol. 1997, 2, 60–78. [Google Scholar]
- Lee, K.; Lee, H.-K.; Gyeong, H.; Yu, B.; Song, Y.-M.; Kim, D. Reliability and validity of the Korean version of the internet addiction test among college students. J. Korean Med. Sci. 2013, 28, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.-S.; Lee, K.-U.; Joo, E.-J.; Lee, M.-Y.; Choi, K.-S. Reliability and validity of the Korean version of the connor-davidson resilience scale. Psychiatr. Investig. 2010, 7, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, W.S. Korean-BAS/BIS scale. Korean J. Health Psychol. 2001, 6, 19–37. [Google Scholar]
- Heo, S.Y.; Oh, J.Y.; Kim, J.H. The Korean version of the Barratt impulsiveness scale, 11th version: Its reliability and validity. Korean J. Psychol. Gen. 2012, 31, 769–782. [Google Scholar]
- Sung, H.M.; Kim, J.B.; Park, Y.N.; Bai, D.S.; Lee, S.H.; Ahn, H.N. A study on the reliability and the validity of Korean version of the beck depression inventory-II (BDI-II). J. Korean Soc. Biol. Ther. Psychiatry 2008, 14, 201–212. [Google Scholar]
- Yook, S.P.; Kim, Z.S. A clinical study on the Korean version of beck anxiety inventory: Comparative study of patient and non-patient. Korean J. Clin. Psychol. 1997, 16, 185–197. [Google Scholar]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996; Volume 78, pp. 490–498. [Google Scholar]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Barratt, E.S. Impulsiveness subtraits: Arousal and information processing. Motiv. Emot. Pers. 1985, 5, 137–146. [Google Scholar]
- Aiken, L.S.; West, S.G. Multiple Regression: Testing and Interpreting Interactions; Sage Publication: New York, NY, USA, 1991. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Kenny, D.A.; Kashy, D.A.; Bolger, N. Data analysis in social psychology. In Handbook of Social Psychology, 4th ed.; Roberts, M.C., Steele, R.G., Eds.; The Guilford Press: New York, NY, USA, 1998; pp. 233–265. [Google Scholar]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422–445. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Process: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modeling; University of Kansas: Kansas City, KS, USA, 2012. [Google Scholar]
- Cole, M.S.; Walter, F.; Bruch, H. Affective mechanisms linking dysfunctional behavior to performance in work teams: A moderated mediation study. J. Appl. Psychol. 2008, 93, 945–958. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-Y.; Hsiao, B.; Chern, C.-C.; Chen, H.-G. Affective mechanisms linking internet use to learning performance in high school students: A moderated mediation study. Comput. Hum. Behav. 2014, 35, 431–443. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Preacher, K.J.; Curran, P.J.; Bauer, D.J. Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. J. Educ. Behav. Stat. 2006, 31, 437–448. [Google Scholar] [CrossRef]
- Cox, D.L.; Stabb, S.D.; Hulgus, J.F. Anger and depression in girls and boys: A study of gender differences. Psychol. Women Q. 2000, 24, 110–112. [Google Scholar] [CrossRef]
- Newman, J.L.; Gray, E.A.; Fuqua, D.R. Sex differences in the relationship of anger and depression: An empirical study. J. Couns. Dev. 1999, 77, 198–203. [Google Scholar] [CrossRef]
- Dyer, J.G.; McGuinness, T.M. Resilience: Analysis of the concept. Arch. Psychiatr. Nurs. 1996, 10, 276–282. [Google Scholar] [CrossRef]
- Teo, T.S.; Lim, V.K. Gender differences in internet usage and task preferences. Behav. Inf. Technol. 2000, 19, 283–295. [Google Scholar] [CrossRef]
- Everall, R.D.; Altrows, K.J.; Paulson, B.L. Creating a future: A study of resilience in suicidal female adolescents. J. Couns. Dev. 2006, 84, 461–470. [Google Scholar] [CrossRef]
- Rosen, D.; Stefanone, M.A.; Lackaff, D. Online and Offline Social Networks: Investigating Culturally-Specific Behavior and Satisfaction. In Proceedings of the System Sciences (HICSS), 2010 43rd Hawaii International Conference, Honolulu, HI, USA; 2010; pp. 1–10. [Google Scholar]
- Lim, J. Relationship between middle school boysboredom proneness and game addiction: Focused on the mediation effects of impulsiveness. J. Korea Contents Assoc. 2014, 14, 610–618. [Google Scholar] [CrossRef]
- Annalakshmi, N. Resilience, behaviour approach and inhibition among adolescents. J. Indian Acad. Appl. Psychol. 2011, 37, 119–127. [Google Scholar]
- Hayes, A.F. Partial, conditional, and moderated moderated mediation: Quantification, inference, and interpretation. Commun. Monogr. 2018, 85, 4–40. [Google Scholar] [CrossRef]
- Karacic, S.; Oreskovic, S. Internet addiction through the phase of adolescence: A questionnaire study. JMIR Ment. Health 2017, 4, PMC5394260. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. BIS | ||||||||||
2. BAS_r | 0.581 ** | |||||||||
3. BAS_d | 0.413 ** | 0.769 ** | ||||||||
4. BAS_f | 0.375 ** | 0.721 ** | 0.714 ** | |||||||
5. BDI | 0.389 ** | 0.176 ** | 0.145 ** | 0.182 ** | ||||||
6. BAI | 0.377 ** | 0.264 ** | 0.280 ** | 0.284 ** | 0.674 ** | |||||
7. BIS-11 | 0.080 | 0.124 ** | 0.050 | 0.173 ** | 0.297 ** | 0.322 ** | ||||
8. STAXI | 0.416 ** | 0.446 ** | 0.410 ** | 0.388 ** | 0.295 ** | 0.310 ** | 0.169 ** | |||
9. CDRS | −0.122 ** | 0.118 ** | 0.196 ** | 0.132 ** | −0.304 ** | −0.215 ** | −0.330 ** | −0.019 | ||
10. Y-IAT | 0.117 ** | 0.199 ** | 0.232 ** | 0.273 ** | 0.197 ** | 0.333 ** | 0.321 ** | 0.243 ** | -0.122 ** | |
M | 17.42 | 11.85 | 8.58 | 8.38 | 7.54 | 6.55 | 63.19 | 54.04 | 62.55 | 33.84 |
SD | 3.691 | 3.716 | 2.889 | 2.909 | 7.867 | 8.36 | 8.608 | 10.68 | 18.13 | 12.696 |
Mean (SD) | t(p) | ||
---|---|---|---|
Boys | Girls | ||
1. BIS | 16.68 (3.344) | 18.22 (3.881) | −4.804 (0.000) *** |
2. BAS_r | 11.53 (3.845) | 12.18 (3.551) | −1.984 (0.047) * |
3. BAS_d | 8.51 (3.040) | 8.65 (2.724) | −0.546 (0.585) |
4. BAS_f | 8.33 (3.071) | 8.44 (2.730) | −0.417 (0.677) |
5. BDI | 5.87 (6.444) | 9.33 (8.812) | −5.085 (0.000) *** |
6. BAI | 5.92 (7.310) | 7.24 (9.319) | −1.783 (0.075) |
7. BIS-11 | 63.25 (8.161) | 63.12 (9.078) | 0.162 (0.872) |
8. STAXI | 52.75 (11.393) | 55.41 (9.699) | −2.851 (0.005) ** |
9. CDRS | 63.02 (19.025) | 62.05 (17.148) | 0.612 (0.541) |
10. Y-IAT | 36.83 (13.045) | 30.66 (11.510) | 5.723 (0.000) *** |
Personality Features | Clinical Features | B | ||||
---|---|---|---|---|---|---|
a | b | c | c’ | Indirect Effect (ab) | ||
1. BIS | BDI | 0.614 *** | 0.608 *** | 0.300 | 0.673 ** | 0.373 *** |
BAI | 0.785 *** | 0.629 *** | 0.180 | 0.494 *** | ||
STAXI | 1.335*** | 0.323 *** | 0.242 | 0.431 *** | ||
2. BAS_r | BDI | 0.230 * | 0.607 *** | 0.622 ** | 0.761 *** | 0.140 *** |
BAI | 0.519 *** | 0.593 *** | 0.454 * | 0.308 *** | ||
STAXI | 1.500*** | 0.297 *** | 0.316 | 0.445 *** | ||
3. BAS_d | BDI | 0.368 * | 0.587 *** | 0.859 *** | 1.075 *** | 0.216 *** |
BAI | 0.703 *** | 0.577 *** | 0.669 ** | 0.406 *** | ||
STAXI | 1.853*** | 0.277 *** | 0.563 | 0.512 *** | ||
4. BAS_f | BDI | 0.372 ** | 0.574 *** | 0.992 *** | 1.205 *** | 0.214 * |
BAI | 0.742 *** | 0.554 *** | 0.794 ** | 0.411 *** | ||
BIS-11 | 0.347 * | 0.488 *** | 1.036 *** | 0.169 * | ||
STAXI | 1.694*** | 0.256 *** | 0.772 ** | 0.433 *** |
Personality Features | Clinical Features | B | ||||
---|---|---|---|---|---|---|
a | b | c | c’ | Indirect Effect (ab) | ||
1. BIS | BDI | 0.884 *** | 0.234 ** | 0.338 | 0.545 ** | 0.207 * |
BAI | 0.908 *** | 0.435 *** | 0.149 | 0.396 *** | ||
STAXI | 1.057 *** | 0.251 ** | 0.280 | 0.265 *** | ||
2. BAS_r | BDI | 0.468 ** | 0.244 ** | 0.638 ** | 0.752 *** | 0.114 * |
BAI | 0.663 *** | 0.413 *** | 0.478 * | 0.274 ** | ||
BIS-11 | 0.408 * | 0.375 *** | 0.599 ** | 0.153 * | ||
STAXI | 0.963 *** | 0.229 ** | 0.531 * | 0.221 ** | ||
3. BAS_d | BAI | 0.940 *** | 0.409 *** | 0.623 * | 1.007 *** | 0.384 *** |
STAXI | 1.045 *** | 0.235 ** | 0.761 ** | 0.246 ** | ||
4. BAS_f | BDI | 0.630 ** | 0.227 ** | 1.079 *** | 1.222 *** | 0.143 * |
BAI | 0.905 *** | 0.392 *** | 0.867 *** | 0.354 *** | ||
BIS-11 | 0.737 *** | 0.965 *** | 0.965 *** | 0.257 ** | ||
STAXI | 1.045 *** | 0.215 ** | 0.997 *** | 0.225 * |
Personality Feature | Clinical Feature | B | Conditional Indirect Effect (ab1) at Different Values of the Moderator | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b1 | b2 | Boot Indirect Effect | Boot SE | 95% Boot LLCI | 95% Boot ULCI | |||
1. BIS | BAI | 0.908 *** | 0.251 *** | −0.008 * | −1SD | 0.355 * | 0.145 | 0.111 | 0.698 |
M | 0.228 | 0.134 | −0.056 | 0.491 | |||||
+1SD | 0.101 | 0.224 | −0.406 | 0.475 | |||||
2. BAS_r | BAI | 0.663 *** | 0.209 * | −0.008 ** | −1SD | 0.235 *** | 0.122 | 0.049 | 0.559 |
M | 0.139 | 0.097 | −0.035 | 0.344 | |||||
+1SD | 0.043 | 0.148 | −0.312 | 0.272 | |||||
BIS-11 | 0.408 * | 0.336 *** | −0.010 * | −1SD | 0.208 *** | 0.096 | 0.061 | 0.445 | |
M | 0.137 | 0.065 | 0.040 | 0.299 | |||||
+1SD | 0.067 | 0.053 | −0.008 | 0.211 | |||||
3. BAS_d | BAI | 0.940 *** | 0.189 * | −0.008* | −1SD | 0.301 *** | 0.171 | 0.053 | 0.757 |
M | 0.178 | 0.140 | −0.070 | 0.476 | |||||
+1SD | 0.055 | 0.205 | −0.430 | 0.381 | |||||
4. BAS_f | BAI | 0.905 *** | 0.199 * | −0.007 * | −1SD | 0.293 *** | 0.161 | 0.048 | 0.693 |
M | 0.181 | 0.123 | −0.048 | 0.448 | |||||
+1SD | 0.069 | 0.192 | −0.486 | 0.342 | |||||
BIS-11 | 0.737 *** | 0.289 *** | −0.008 * | −1SD | 0.318 *** | 0.126 | 0.118 | 0.611 | |
M | 0.213 | 0.089 | 0.072 | 0.422 | |||||
+1SD | 0.108 | 0.082 | −0.027 | 0.304 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, C.R.; Lee, D.H.; Lee, J.Y.; Choi, A.R.; Chung, S.J.; Kim, D.-J.; Bhang, S.-Y.; Kwon, J.-G.; Kweon, Y.-S.; Choi, J.-S. The Role of Resilience in Internet Addiction among Adolescents between Sexes: A Moderated Mediation Model. J. Clin. Med. 2018, 7, 222. https://doi.org/10.3390/jcm7080222
Nam CR, Lee DH, Lee JY, Choi AR, Chung SJ, Kim D-J, Bhang S-Y, Kwon J-G, Kweon Y-S, Choi J-S. The Role of Resilience in Internet Addiction among Adolescents between Sexes: A Moderated Mediation Model. Journal of Clinical Medicine. 2018; 7(8):222. https://doi.org/10.3390/jcm7080222
Chicago/Turabian StyleNam, Cho Rong, Da Heen Lee, Ji Yoon Lee, A Ruem Choi, Sun Ju Chung, Dai-Jin Kim, Soo-Young Bhang, Jun-Gun Kwon, Yong-Sil Kweon, and Jung-Seok Choi. 2018. "The Role of Resilience in Internet Addiction among Adolescents between Sexes: A Moderated Mediation Model" Journal of Clinical Medicine 7, no. 8: 222. https://doi.org/10.3390/jcm7080222
APA StyleNam, C. R., Lee, D. H., Lee, J. Y., Choi, A. R., Chung, S. J., Kim, D.-J., Bhang, S.-Y., Kwon, J.-G., Kweon, Y.-S., & Choi, J.-S. (2018). The Role of Resilience in Internet Addiction among Adolescents between Sexes: A Moderated Mediation Model. Journal of Clinical Medicine, 7(8), 222. https://doi.org/10.3390/jcm7080222