Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II
Abstract
1. Introduction
2. Hypothesis of Demyelination of Neurons in Type II RHM by Disturbances in Lipid Metabolism
3. Additional Roles for Membrane-Bound CYB5R3
4. New Insights on the Aetiology of Neurological Disorders Caused by CYB5R3 Deficiency
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fisher, R.A.; Povey, S.; Bobrow, M.; Solomon, E.; Boyd, Y.; Carritt, B. Assignment of the DIA1 locus to chromosome 22. Ann. Hum. Genet. 1977, 41, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Junien, C.; Vibert, M.; Weil, D.; Van-Cong, N.; Kaplan, J.C. Assignment of NADH-cytochrome b5 reductase (DIA1 locus) to human chromosome 22. Hum. Genet. 1978, 42, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Siendones, E.; Santa Cruz-Calvo, S.; Martin-Montalvo, A.; Cascajo, M.V.; Ariza, J.; Lopez-Lluch, G.; Villalba, J.M.; Acquaviva-Bourdain, C.; Roze, E.; Bernier, M.; et al. Membrane-bound CYB5R3 is a common effector of nutritional and oxidative stress response through FOXO3a and Nrf2. Antioxid. Redox Signal. 2014, 21, 1708–1725. [Google Scholar] [CrossRef] [PubMed]
- Borgese, N.; D’Arrigo, A.; De Silvestris, M.; Pietrini, G. NADH-cytochrome b5 reductase and cytochrome b5. The problem of posttranslational targeting to the endoplasmic reticulum. Subcell. Biochem. 1993, 21, 313–341. [Google Scholar] [PubMed]
- Leroux, A.; Mota Vieira, L.; Kahn, A. Transcriptional and translational mechanisms of cytochrome b5 reductase isoenzyme generation in humans. Biochem. J. 2001, 355, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.M.; Griffith, I.V. The enzymic defect of hereditary methemoglobinemia: Diaphorase. Biochim. Biophys. Acta 1959, 34, 584–586. [Google Scholar] [CrossRef]
- Hultquist, D.E.; Passon, P.G. Catalysis of methaemoglobin reduction by erythrocyte cytochrome b5 and cytochrome b5 reductase. Nature 1971, 229, 252–254. [Google Scholar] [CrossRef]
- Percy, M.J.; Lappin, T.R. Recessive congenital methaemoglobinemia: Cytochrome b5 reductase deficiency. Br. J. Haematol. 2008, 141, 298–308. [Google Scholar] [PubMed]
- Ewenczyk, C.; Leroux, A.; Roubergue, A.; Laugel, V.; Afenjar, A.; Saudubray, J.M.; Beauvais, P.; Billette de Villemeur, T.; Vidailhet, M.; Roze, E. Recessive hereditary methaemoglobinaemia, type II: Delineation of the clinical spectrum. Brain 2008, 131, 760–761. [Google Scholar] [CrossRef] [PubMed]
- Shirabe, K.; Landi, M.T.; Takeshita, M.; Uziel, G.; Fedrizzi, E.; Borgese, N. A Novel Point Mutation in a 3’ Splice Site of the NADHCytochrome b5 Reductase Gene Results in Immunologically Undetectable Enzyme and Impaired NADH-Dependent Ascorbate Regeneration in Cultured Fibroblasts of a Patient with Type II Hereditary Methemoglobinemia. Am. J. Hum. Genet. 1995, 57, 302–310. [Google Scholar] [PubMed]
- Percy, M.J.; Crowley, L.J.; Roper, D.; Vulliamy, T.J.; Layton, D.M.; Barber, M.J. Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b (5) reductase: An aid to determine recessive congenital methemoglobinemia status in an infant. Blood Cells Mol. Dis. 2006, 36, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Warang, P.P.; Kedar, P.S.; Shanmukaiah, C.; Ghosh, K.; Colah, R.B. Clinica spectrum and molecular basis of recessive congenital methemoglobinemia in India. Clin. Genet. 2015, 87, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Percy, M.J.; Barnes, C.; Crighton, G.; Leventer, R.J.; Wynn, R.; Lappin, T.R. Methemoglobin reductase deficiency: Novel mutation is associated with a disease phenotype of intermediate severity. J. Pediatr. Hematol. Oncol. 2012, 34, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Mannino, E.A.; Pluim, T.; Wessler, J.; Cho, M.T.; Juusola, J.; Schrier Vergano, S.A. Congenital methemoglobinemia type II in a 5-year-old boy. Clin. Case Rep. 2017, 6, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Da-Silva, S.S.; Sajan, I.S.; Underwood, J.P. Congenital methemoglobinemia: A rare cause of cyanosis in the newborn—A case report. Pediatrics 2003, 112, 158–161. [Google Scholar] [CrossRef]
- Cooper, MS.; Randall, M.; Rowell, M.; Charlton, M.; Greenway, A.; Barnes, C. Congenital Methemoglobinemia Type II-Clinical Improvement with Short-Term Methylene Blue Treatment. Pediatr. Blood Cancer 2016, 63, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Hudspeth, M.P.; Joseph, S.; Holden, K.R. A novel mutation in type II methemoglobinemia. J. Child. Neurol. 2010, 25, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.V.; Kupfer, D.; Caspi, E. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J. Biol. Chem. 1977, 252, 2797–2801. [Google Scholar] [PubMed]
- Fukushima, H.; Grinstead, G.F.; Gaylor, F.L. Total Enzymic Synthesis of Cholesterol from Lanosterol. Cytochome b5-dependence of 4-methyl sterol oxidase. J. Biol. Chem. 1981, 256, 4822–4826. [Google Scholar] [PubMed]
- Oshino, N.; Imai, Y.; Sato, R. A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J. Biochem. 1971, 69, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, P.; Spatz, L.; Corcoran, D.; Rogers, M.J.; Setlow, B.; Redline, R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc. Natl. Acad. Sci. USA 1974, 71, 4565–4569. [Google Scholar] [CrossRef] [PubMed]
- Hirono, H. Lipids of Myelin, White Matter and Gray Matter in a Case of Generalized Deficiency of Cgtochrome b5 Reductase in Congenital Methemoglobinemia with Mental Retardation. Lipids 1980, 15, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Hirono, H. Adipose fatty acid composition in a case of generalized deficiency of cytochrome b5 reductase in congenital methemoglobinemia with mental retardation. Tohoku J. Exp. Med. 1983, 140, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Hirono, H. Lipids of liver, kidney, spleen and muscle in a case of generalized deficiency of cytochrome b5 reductase in congenital methemoglobinemia with mental retardation. Lipids 1984, 19, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, A.; Estabrook, R.W. Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch. Biochem. Biophys. 1971, 143, 66–79. [Google Scholar] [CrossRef]
- Henderson, C.J.; McLaughlin, L.A.; Wolf, C.R. Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol. Pharmacol. 2013, 83, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Martin-Montalvo, A.; Sun, Y.; Diaz-Ruiz, A.; Ali, A.; Gutierrez, V.; Palacios, H.H.; Curtis, J.; Siendones, E.; Ariza, J.; Abulwerdi, G.A.; et al. Cytochrome b5 reductase and the control of lipid metabolism and healthspan. NPJ Aging Mech. Dis. 2016, 2, 16006. [Google Scholar] [CrossRef] [PubMed]
- Ito, A. Cytochrome b5-like hemoprotein of outer mitochondrial membrane: OM cytochrome bI. Purification of OM cytochrome b from rat liver mitochondria and comparison of its molecular properties with those of cytochrome b5. J. Biochem. 1980, 87, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Hayashi, S.; Yoshida, T. Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in NADH-semidehydroascorbic acid reductase of rat liver. Biochem. Biophys. Res. Commun. 1981, 101, 591–598. [Google Scholar] [CrossRef]
- Nishino, H.; Ito, A. Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver. J. Biochem. 1986, 100, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.; Villalba, J.M.; Crane, F.L.; Mackellar, W.C.; Navas, P. A phospholipid-dependent NADH-coenzyme Q reductase from liver plasma membrane. Biochem. Biophys. Res. Commun. 1995, 212, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.M.; Navarro, F.; Cordoba, F.; Serrano, A.; Arroyo, A.; Crane, F.L.; Navas, P. Coenzyme Q reductase from liver plasma membrane: Purification and role in trans-plasma-membrane electron transport. Proc. Natl. Acad. Sci. USA 1995, 92, 4887–4891. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.M.; Navarro, F.; Gómez-Díaz, C.; Arroyo, A.; Bello, R.I.; Navas, P. Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol. Asp. Med. 1997, 18, S7–S13. [Google Scholar] [CrossRef]
- Kagan, V.E.; Arroyo, A.; Tyurin, V.A.; Tyurina, Y.Y.; Villaba, J.M.; Navas, P. Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. FEBS Lett. 1998, 428, 43–46. [Google Scholar] [CrossRef]
- Navas, P.; Fernández-Ayala, D.M.; Martin, S.F.; Lopez-Lluch, G.; De Cabo, R.; Rodriguez-Aguilera, J.C.; Villaba, J.M. Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic. Res. 2002, 36, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Navas, P.; Villalba, J.M.; de Cabo, R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 2007, 7, S34–S40. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.V.; Kuhn, T.B. CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability. J. Neurochem. 2002, 83, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.H.; Hunt, N.D.; Emerson, S.S.; Hernandez, J.O.; Mattson, M.P.; De Cabo, R. Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J. Neurochem. 2007, 100, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.H.; Lee, G.H. Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics. AGE 2015, 37, 122. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.H.; Emerson, S.S.; Jo, D.G.; Mattson, M.P.; De Cabo, R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc. Natl. Acad. Sci. USA 2006, 103, 19908–19912. [Google Scholar] [CrossRef] [PubMed]
- Carew, N.T.; Altmann, H.M.; Galley, J.C.; Hahn, S.; Miller, M.P.; Shiva, S.; McNamara, D.; Straub, A.C. Cytochrome b5 reductase 3 is essential for cardiomyocyte function. Circulation 2017, 136, A20733. [Google Scholar]
- Samhan-Arias, A.; Garcia-Bereguiain, M.A.; Martin-Romero, F.J.; Gutierrez-Merino, C. Clustering of plasma membrane-bound cytochrome b5 reductase within ‘lipid raft’ microdomains of the neuronal plasma membrane. Mol. Cell Neurosci. 2009, 40, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Marques-da-Silva, D.; Samhan-Arias, A.K.; Tiago, T.; Gutierrez-Merino, C. L-type calcium channels and cytochrome b5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane. J. Proteome 2010, 73, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Chatenay-Rivauday, C.; Cakar, Z.P.; Jenö, P.; Kuzmenko, E.S.; Fiedler, K. Caveolae: Biochemical analysis. Mol. Biol. Rep. 2004, 31, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Straub, A.C.; Lohman, A.W.; Billaud, M.; Johnstone, S.R.; Dwyer, S.T.; Lee, M.Y.; Bortz, P.S.; Best, A.K.; Columbus, L.; Gaston, B.; et al. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 2012, 491, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Reinders, F.G.; Koes, D.; Nguyen, A.T.; Mutchler, S.M.; Sparacino-Watkins, C.; Alvarez, R.A.; Miller, M.P.; Cheng, D.; Chen, B.B.; et al. Structure Guided Chemical Modifications of Propylthiouracil Reveal Novel Small Molecule Inhibitors of Cytochrome b5 Reductase 3 That Increase Nitric Oxide Bioavailability. J. Biol. Chem. 2015, 290, 16861–16872. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Nguyen, A.T.; Miller, M.P.; Hahn, S.A.; Sparacino-Watkins, C.; Jobbagy, S.; Carew, N.T.; Cantu-Medellin, N.; Wood, K.C.; Baty, C.J.; et al. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circ. Res. 2017, 121, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Leroux, A.; Junien, C.; Kaplan, J.C. Generalised deficiency of cytochrome b5 reductase in congenital methemoglobinemia with mental retardation. Nature 1975, 258, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Ozols, J. The role of microsomal cytochrome b5 in the metabolism of ethanol, drugs and the desaturation of fatty acids. Ann. Clip. Res. 1976, 8, 182–192. [Google Scholar]
- Jaffé, E.R. Methemoglobin pathophysiology. Prog. Clin. Biol. Res. 1981, 51, 133–151. [Google Scholar] [PubMed]
- Idkowiak, J.; Randell, T.; Dhir, V.; Patel, P.; Shackleton, C.H.; Taylor, N.F.; Krone, N.; Arlt, W. A missense mutation in the human cytochrome b5 gene causes 46, XY disorder of sex development due to true isolated 17, 20 lyase deficiency. J. Clin. Endocrinol. Metab. 2012, 97, E465–E475. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, L.A.; Ronseaux, S.; Finn, R.D.; Henderson, C.J.; Roland, W.C. Deletion of microsomal cytochrome b5 profoundly affects hepatic and extrahepatic drug metabolism. Mol. Pharmacol. 2010, 78, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; McLaughlin, L.A.; Hughes, C.; Song, C.; Henderson, C.J.; Roland Wolf, C. Cytochrome b5 null mouse: A new model for studying inherited skin disorders and the role of unsaturated fatty acids in normal homeostasis. Transgenic Res. 2011, 20, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Gostincar, C.; Turk, M.; Gunde-Cimerman, N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J. Membr. Biol. 2010, 233, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Williard, D.E.; Nwankwo, J.O.; Kaduce, T.L.; Harmon, S.D.; Irons, M.; Moser, H.W.; Raymond, G.V.; Spector, A.A. Identification of a fatty acid delta6-desaturase deficiency in human skin fibroblasts. J. Lipid Res. 2001, 42, 501–508. [Google Scholar] [PubMed]
- Marino, B.S.; Lipkin, P.H.; Newburger, J.W.; Peacock, G.; Gerdes, M.; Gaynor, J.W.; Mussatto, K.A.; Uzark, K.; Goldberg, C.S.; Johnson, W.H.; et al. American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: Evaluation and management: A scientific statement from the American Heart Association. Circulation 2012, 126, 1143–1172. [Google Scholar] [PubMed]
- Rollins, C.K.; Newburger, J.W.; Roberts, A.E. Genetic contribution to neurodevelopmental outcomes in congenital heart disease: Are some patients predetermined to have developmental delay? Curr. Opin. Pediatr. 2017, 29, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Gharavi, R.; Pitta, M.; Gleichmann, M.; Mattson, M.P. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol. Med. 2009, 11, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Pitta, M.; Mattson, M.P. Preventing NAD+ depletion protects neurons against excitotoxicity: Bioenergetic effects of mild mitochondrial uncoupling and caloric restriction. Ann. N. Y. Acad. Sci. 2008, 1147, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Nie, H.; Chen, H.; Li, J.; Hong, Y.; Wang, B.; Wang, C.; Zhang, J.; Cao, W.; Zhang, M.; et al. NAD+/NADH metabolism and NAD+-dependent enzymes in cell death and ischemic brain injury: Current advances and therapeutic implications. Curr. Med. Chem. 2015, 22, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Long, A.N.; Owens, K.; Schlappal, A.E.; Kristian, T.; Fishman, P.S.; Schuh, R.A. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 2015, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Elamin, M.; Ruskin, D.N.; Masino, S.A.; Sacchetti, P. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism? Front. Mol. Neurosci. 2017, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Kamiguchi, H. The region-specific activities of lipid rafts during axon growth and guidance. J. Neurochem. 2006, 98, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Guirland, C.; Zheng, J.Q. Membrane lipid rafts and their role in axon guidance. Adv. Exp. Med. Biol. 2007, 621, 44–55. [Google Scholar]
- Martin-Romero, F.J.; Gutierrez-Martin, Y.; Henao, F.; Gutierrez-Merino, C. The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite. J. Neurochem. 2002, 82, 604–614. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siendones, E.; Ballesteros, M.; Navas, P. Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. J. Clin. Med. 2018, 7, 341. https://doi.org/10.3390/jcm7100341
Siendones E, Ballesteros M, Navas P. Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. Journal of Clinical Medicine. 2018; 7(10):341. https://doi.org/10.3390/jcm7100341
Chicago/Turabian StyleSiendones, Emilio, Manuel Ballesteros, and Plácido Navas. 2018. "Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II" Journal of Clinical Medicine 7, no. 10: 341. https://doi.org/10.3390/jcm7100341
APA StyleSiendones, E., Ballesteros, M., & Navas, P. (2018). Cellular and Molecular Mechanisms of Recessive Hereditary Methaemoglobinaemia Type II. Journal of Clinical Medicine, 7(10), 341. https://doi.org/10.3390/jcm7100341