Acute Kidney Injury Definition and Diagnosis: A Narrative Review
Abstract
:1. Introduction
2. Definitions and Classification
2.1. Risk, Injury, Failure, Loss of Kidney Function, End-Stage Kidney Disease (RIFLE) Classification
2.2. Acute Kidney Injury Network (AKIN) Classification
2.3. Kidney Disease Improving Global Outcomes (KDIGO) Classification
2.4. RIFLE vs. AKIN vs. KDIGO
2.5. Limitations
2.6. Future Biomarkers
3. Conclusions
Author Contributions
Funding
Conflict of Interest
References
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. Acute Kidney Injury Advisory Group of the American Society of Nephrology. World incidence of AKI: A meta-analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.; Burdick, E.; Honour, M.; Bonventre, J.; Bates, D. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N.; van Biesen, W.; Vanholder, R. The changing epidemiology of acute renal failure. Nat. Clin. Nephrol. 2006, 2, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; George, C.; Bellomo, R.; ANZICS Database Management Committee. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit. Care 2007, 11, R68. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R. The epidemiology of acute renal failure: 1975 versus 2005. Curr. Opin. Crit. Care. 2006, 12, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Feest, T.G.; Round, A.; Hamad, S. Incidence of severe acute renal failure in adults: Results of a community-based study. BMJ 1993, 306, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Liano, F.; Pascual, J. Epidemiology of acute renal failure: A prospective, multicenter, community-based study. Kidney Int. 1996, 50, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.P.; Salisbury, A.C.; McCullough, P.A.; Gosch, K.; Spertus, J.A.; Venkitachalam, L.; Stolker, J.M.; Parikh, C.R.; Masoudi, F.A.; Jones, P.G.; et al. Trends in the incidence of acute kidney injury in patients hospitalized with acute myocardial infarction. Arch. Intern. Med. 2012, 172, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.; Cruz, D.N.; et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur. Heart J. 2010, 31, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Hsu, R.K.; McCulloch, C.E.; Dudley, R.A.; Lo, L.J.; Hsu, C.Y. Temporal changes in incidence of dialysis-requiring AKI. J. Am. Soc. Nephrol. 2013, 24, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Singbartl, K.; Kellum, J.A. AKI in the ICU: Definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012, 81, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Uchino, U.S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Kellum, J.A.; Ronco, C.; Wald, R.; Martensson, J.; Maiden, M.; Bagshaw, S.M.; Glassford, N.J.; Lankadeva, Y.; Vaara, S.T.; et al. Acute kidney injury in sepsis. Intensive Care Med. 2017, 43, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; George, C.; Bellomo, R.; ANZICS Database Management Committee. Early acute kidney injury and sepsis: A multicentre evaluation. Crit. Care 2008, 12, R47. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.A.; Jorge, S.; Resina, C.; Santos, C.; Pereira, A.; Neves, J.; Antunes, F.; Prata, M.M. Acute kidney injury in patients with sepsis: A contemporary analysis. Int. J. Infect. Dis. 2009, 13, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Thakar, C.V. Perioperative acute kidney injury. Adv. Chronic Kidney Dis. 2013, 20, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Grams, M.E.; Sang, Y.; Coresh, J.; Ballew, S.; Matsushita, K.; Molnar, M.Z.; Szabo, Z.; Kalantar-Zadeh, K.; Kovesdy, C.P. Acute kidney injury after major surgery: A retrospective analysis of veteran’s health administration data. Am. J. Kidney Dis. 2016, 67, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, J.; Fonseca, J.A.; Neves, M.; Jorge, S.; Lopes, J.A. Acute kidney injury in major abdominal surgery: Incidence, risk factors, pathogenesis and outcomes. Ann. Intensive Care 2018, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Husain-Syed, F.; Ronco, C. The odyssey of risk stratification in acute kidney injury. Nat. Rev. Nephrol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjunath, G.; Sarnak, M.J.; Levey, A.S. Prediction equations to estimate glomerular filtration rate: An update. Curr. Opin. Nephrol. Hypertens. 2001, 10, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Brivet, F.G.; Kleinknecht, D.J.; Loirat, P.; Landais, P.J. Acute renal failure in intensive care units—Causes, outcome, and prognostic factors of hospital mortality: A prospective, multicenter study. Crit. Care Med. 1996, 24, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Silvester, W.; Bellomo, R.; Cole, L. Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Crit. Care Med. 2001, 29, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.A.; Jorge, S. The RIFLE and AKIN classifications for acute kidney injury: A critical and comprehensive review. Clin. Kidney J. 2013, 6, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Bellomo, R.; Goldsmith, D.; Bates, S.; Ronco, C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit. Care Med. 2006, 34, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.; Clermont, G.; Kersten, A.; Venkataraman, R.; Angus, D.C.; De Bacquer, D.; Kellum, J.A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit. Care 2006, 10, R73. [Google Scholar] [CrossRef] [PubMed]
- Lassnigg, A.; Schmidlin, D.; Mouhieddine, M.; Bachmann, L.M.; Druml, W.; Bauer, P.; Hiesmayr, M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: A prospective cohort study. J. Am. Soc. Nephrol. 2004, 15, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.A.; Fernandes, P.; Jorge, S.; Gonçalves, S.; Alvarez, A.; Costae, S.Z.; França, C.; Prata, M.M. Acute kidney injury in intensive care unit patients: A comparison between the RIFLE and the Acute Kidney Injury Network classifications. Crit. Care 2008, 12, R110. [Google Scholar] [CrossRef] [PubMed]
- Barrantes, F.; Feng, Y.; Ivanov, O.; Yalamanchili, H.B.; Patel, J.; Buenafe, X.; Cheng, V.; Dijeh, S.; Amoateng-Adjepong, Y.; Manthous, C.A. Acute kidney injury predicts outcomes of non-critically ill patients. Mayo Clin. Proc. 2009, 84, 410–416. [Google Scholar] [CrossRef]
- Barrantes, F.; Tian, J.; Vazquez, R.; Amoateng-Adjepong, Y.; Manthous, C.A. Acute kidney injury criteria predict outcomes of critically ill patients. Crit. Care Med. 2008, 36, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; George, C.; Bellomo, R. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 2008, 23, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Lassnigg, A.; Schmid, E.R.; Hiesmayr, M.; Falk, C.; Druml, W.; Bauer, P.; Schmidlin, D. Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: Do we have to revise current definitions of acute renal failure? Crit. Care Med. 2008, 36, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Joannidis, M.; Metnitz, B.; Bauer, P.; Schusterschitz, N.; Moreno, R.; Druml, W.; Metnitz, P.G. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 2009, 35, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Chang, R.W. Challenges of defining acute kidney injury. QJM 2011, 104, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Englberger, L.; Suri, R.M.; Li, Z.; Casey, E.T.; Daly, R.C.; Dearani, J.A.; Schaff, H.V. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit. Care 2011, 15, R16. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.M.; Kramer, R.S.; Dacey, L.J.; Charlesworth, D.C.; Leavitt, B.J.; Helm, R.E.; Hernandez, F.; Sardella, G.L.; Frumiento, C.; Likosky, D.S.; et al. Cardiac surgery associated acute kidney injury: A comparison of two consensus criteria. Ann. Thorac. Surg. 2010, 90, 1939–1943. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guideline for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Nisula, S.; Kaukonen, K.M.; Vaara, S.T.; Korhonen, A.M.; Poukkanen, M.; Karlsson, S.; Haapio, M.; Inkinen, O.; Parviainen, I.; Suojaranta-Ylinen, R.; et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: The FINNAKI study. Intensive Care Med. 2013, 39, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.K.; Mc Gorrian, C.; Treacy, C.; Kavanaugh, E.; Brennan, A.; Mahon, N.G.; Murray, P.T. A comparison of traditional and novel definitions (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. Cardiorenal Med. 2013, 3, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Bastin, A.J.; Ostermann, M.; Slack, A.J.; Diller, G.P.; Finney, S.J.; Evans, T.W. Acute kidney injury after cardiac surgery according to risk/injury/failure/loss/end-stage, acute kidney injury network, and kidney disease: Improving global outcomes classifications. J. Crit. Care 2013, 28, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; McMahon, G.M.; Brunelli, S.M.; Bates, D.W.; Waikar, S.S. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin. J. Am. Soc. Nephrol. 2014, 9, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Levi, T.M.; de Souza, S.P.; de Magalhães, J.G.; de Carvalho, M.S.; Cunha, A.L.; Dantas, J.G.; Cruz, M.G.; Guimarães, Y.L.; Cruz, C.M. Comparison of the RIFLE, AKIN and KDIGO criteria to predict mortality in critically ill patients. Rev. Bras. Ter. Intensiva 2013, 25, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.; Fidalgo, P.; Gonçalves, C.; Leitão, S.; Santos, R.M.; Carvalho, A.; Costa, J.M. Acute kidney injury in an internal medicine ward in a Portuguese quaternary hospital. Eur. J. Intern. Med. 2014, 25, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.B.; Bruetto, R.G.; Torres, U.S.; Otaviano, A.P.; Zanetta, D.M.; Burdmann, E.A. Incidence and mortality of acute kidney injury after myocardial infarction: A comparison between KDIGO and RIFLE criteria. PLoS ONE 2013, 8, e69998. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Jiang, L.; Du, B.; Wen, Y.; Wang, M.; Xi, X. A comparison of different diagnostic criteria in acute kidney injury in critically ill patients. Crit. Care 2014, 18, R144. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Uchino, S.; Takinami, M.; Bellomo, R. Validation of the kidney disease improving global outcomes criteria for AKI and comparison of three criteria in hospitalized patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Cai, L.; Liang, X.; Du, Z.; Chen, Y.; An, S.; Tan, N.; Xu, L.; Li, R.; Li, L.; et al. Identification and predicting short-term prognosis of early cardiorenal syndrome type 1: KDIGO is superior to RIFLE or AKIN. PLoS ONE 2014, 9, e114369. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Rodrigues, N.; Godinho, I.; Gameiro, J.; Neves, M.; Gouveia, J.; Costa, E.; Silva, Z.; Lopes, J.A. Acute kidney injury in patients with severe sepsis or septic shock: A comparison between the “Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease” (RIFLE), Acute Kidney Injury Network (AKIN) and Kidney Disease: Improving Global Outcomes (KDIGO) classifications. Clin. Kidney J. 2017, 10, 332–340. [Google Scholar] [PubMed]
- Koeze, J.; Keus, F.; Dieperink, W.; van der Horst, I.C.C.; Zijlstra, J.G.; van Meurs, M. Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol. 2017, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.Y.; Chien, H.; Tsai, F.C.; Pan, H.C.; Yang, H.Y.; Lee, S.Y.; Hsu, H.H.; Fang, J.T.; Yang, C.W.; Chen, Y.C. Comparison of RIFLE, AKIN, and KDIGO classifications for assessing prognosis of patients on extracorporeal membrane oxygenation. J. Formos. Med. Assoc. 2017, 116, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Lee, L.C.; Wang, W.J. Incidence and mortality of postoperative acute kidney injury in non-dialysis patients: Comparison between the AKIN and KDIGO criteria. Ren. Fail. 2016, 38, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Y.; Tang, Y.; Liu, F.; Zhang, L.; Zeng, X.; Feng, Y.; Tao, Y.; Yang, L.; Fu, P. A comparison of RIFLE, AKIN, KDIGO, and Cys-C criteria for the definition of acute kidney injury in critically ill patients. Int. Urol. Nephrol. 2016, 48, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, B.; Sheng, X.; Jin, N. Cystatin C in prediction of acute kidney injury: A systemic review and meta-analysis. Am. J. Kidney Dis. 2011, 58, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.C.; Chien, Y.S.; Jenq, C.C.; Tsai, M.H.; Fan, P.C.; Chang, C.H. Acute kidney injury classification for critically Ill cirrhotic patients: A comparison of the KDIGO, AKIN, and RIFLE classifications. Sci. Rep. 2016, 6, 23022. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Kittanamongkolchai, W.; Srivali, N.; Ungprasert, P.; Kashani, K. Optimum methodology for estimating baseline serum creatinine for the acute kidney injury classification. Nephrology (Carlton) 2015, 20, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Harrison, A.M.; Kittanamongkolchai, W.; Ungprasert, P.; Srivali, N.; Akhoundi, A.; Kashani, K.B. The comparison of the commonly used surrogates for baseline renal function in acute kidney injury diagnosis and staging. BMC Nephrol. 2016, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Waikar, S.S.; Betensky, R.A.; Emerson, S.C.; Bonventre, J.V. Imperfect gold standards for kidney injury biomarker evaluation. J. Am. Soc. Nephrol. 2012, 23, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Macedo, E.; Malhotra, R.; Claure-Del Granado, R.; Fedullo, P.; Mehta, R.L. Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 2011, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Macedo, E.; Bouchard, J.; Soroko, S.H.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit. Care 2010, 14, R82. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Akhoundi, A.; Ahmed, A.H.; Kashani, K.B. Actual versus ideal body weight for acute kidney injury diagnosis and classification in critically ill patients. BMC Nephrol. 2014, 15, 176. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Philips, B.J.; Forni, L.G. Clinical review: Biomarkers of acute kidney injury: Where are we now? Crit. Care 2012, 16, 233. [Google Scholar] [CrossRef] [PubMed]
- Schinstock, C.A.; Semret, M.H.; Wagner, S.J.; Borland, T.M.; Bryant, S.C.; Kashani, K.B.; Larson, T.S.; Lieske, J.C. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol. Dial. Transplant. 2013, 28, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Parikh, C.R.; Mishra, J.; Thiessen-Philbrook, H.; Dursun, B.; Ma, Q.; Kelly, C.; Dent, C.; Devarajan, P.; Edelstein, C.L. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006, 70, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Somma, S.; Magrini, L.; De Berardinis, B.; Marino, R.; Ferri, E.; Moscatelli, P.; Ballarino, P.; Carpinteri, G.; Noto, P.; Gliozzo, B.; et al. Additive value of blood neutrophil gelatinase associated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit. Care 2013, 17, R29. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.; Dent, C.L.; Ma, Q.; Dastrala, S.; Grenier, F.; Workman, R.; Syed, H.; Ali, S.; Barasch, J.; Devarajan, P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: A prospective study. Clin. J. Am. Soc. Nephrol. 2008, 3, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Hall, I.E.; Yarlagadda, S.G.; Coca, S.G.; Wang, Z.; Doshi, M.; Devarajan, P.; Han, W.K.; Marcus, R.J.; Parikh, C.R. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J. Am. Soc. Nephrol. 2010, 21, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.M.; Huang, L.F.; Zheng, Y.; Li, W.X. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: A meta-analysis. Crit. Care 2017, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Bargnoux, A.S.; Piéroni, L.; Cristol, J.P. Analytical study of a new turbidimetric assay for urinary neutrophil gelatinase-associated lipocalin (NGAL) determination. Clin. Chem. Lab. Med. 2013, 51, e293–e296. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, J.H.; Tönshoff, B.; Waldherr, S.; Pöschl, J.; Teufel, U.; Westhoff, T.H.; Fichtner, A. Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS ONE 2015, 10, e0143628. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Macedo, E. Urinary biochemistry in the diagnosis of acute kidney injury. Dis. Markers 2018. [Google Scholar] [CrossRef] [PubMed]
- Vanmassenhove, J.; Vanholder, R.; Nagler, E.; van Biesen, W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: An in-depth review of the literature. Nephrol. Dial. Transplant. 2013, 28, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017, 55, 1074–1089. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Ankawi, G.; Zhang, J.; Digvijay, K.; Giavarina, D.; Yin, Y.; Ronco, C. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin. Chem. Lab. Med. 2018. [Google Scholar] [CrossRef]
- Koyner, J.L.; Garg, A.X.; Coca, S.G.; Sint, K.; Thiessen-Philbrook, H.; Patel, U.D.; Shlipak, M.G.; Parikh, C.R. TRIBE-AKI Consortium. Biomarkers predict progression of acute kidney injury after cardiac surgery. J. Am. Soc. Nephrol. 2012, 16, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.; Granath, F.; Martensson, J.; Lofberg, E.; Ekbom, A.; Martling, C.R. Cystatin C is correlated with mortality in patients with and without acute kidney injury. Nephrol. Dial. Transplant. 2009, 16, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Srisawat, N.; Murugan, R.; Lee, M.; Kong, L.; Carter, M.; Angus, D.C.; Kellum, J.A. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011, 16, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Rabb, H.; Griffin, M.D.; McKay, D.B.; Swaminathan, S.; Pickkers, P.; Rosner, M.H.; Kellum, J.A.; Ronco, C. Inflammation in AKI: Current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 2016, 27, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Gomez, H.; Ince, C.; De Backer, D.; Pickkers, P.; Payen, D.; Hotchkiss, J.; Kellum, J.A. A unified theory of sepsis-induced acute kidney injury: Inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 2014, 41, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Cakmak, M.; Inan, O.; Darcin, T.; Akcay, A. Can neutrophil-lymphocyte ratio be independent risk factor for predicting acute kidney injury in patients with severe sepsis? Ren. Fail. 2015, 37, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Park, J.Y.; Ok, S.H.; Shin, I.W.; Sohn, J.T. Association Between the neutrophil/lymphocyte ratio and acute kidney injury after cardiovascular surgery: A retrospective observational study. Medicine (Baltimore) 2015, 94, e1867. [Google Scholar] [CrossRef] [PubMed]
- Abu Alfeilat, M.; Slotki, I.; Shavit, L. Single emergency room measurement of neutrophil/lymphocyte ratio for early detection of acute kidney injury (AKI). Intern. Emerg. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Marx, D.; Metzger, J.; Pejchinovski, M.; Gil, R.B.; Frantzi, M.; Latosinska, A.; Belczacka, I.; Heinzmann, S.S.; Husi, H.; Zoidakis, J.; et al. Proteomics and Metabolomics for AKI Diagnosis. Semin. Nephrol. 2018, 38, 63–87. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.E.; Darmon, M.; Mohan, S.; Hudson, D.; Goldstein, S.L.; Ronco, C.; Kellum, J.A.; Bagshaw, S.M. Applications for detection of acute kidney injury using electronic medical records and clinical information systems: Workgroup statements from the 15(th) ADQI Consensus Conference. Can. J. Kidney Health Dis. 2016, 3, 9. [Google Scholar]
- Selby, N.M.; Crowley, L.; Fluck, R.J.; McIntyre, C.W.; Monaghan, J.; Lawson, N.; Kolhe, N.V. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Kashani, K. Electronic data systems and acute kidney injury. Contrib. Nephrol. 2016, 187, 73–83. [Google Scholar] [PubMed]
- Sutherland, S.M.; Goldstein, S.L.; Bagshaw, S.M. Leveraging big data and electronic health records to enhance novel approaches to acute kidney injury research and care. Blood Purif. 2017, 44, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Prendecki, M.; Blacker, E.; Sadeghi-Alavijeh, O.; Edwards, R.; Montgomery, H.; Gillis, S.; Harber, M. Improving outcomes in patients with acute kidney injury: The impact of hospital based automated AKI alerts. Postgrad. Med. J. 2016, 92, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Feehally, J.; Gilmore, I.; Barasi, S.; Bosomworth, M.; Christie, B.; Davies, A.; Dhesi, J.; Dowdle, R.; Gibbins, C.; Gonzalez, I.; et al. Royal College of Physicians of Edinburgh UK Consensus Conference on Management of acute kidney injury: The role of fluids, e-alerts and biomarkers. J. R. Coll. Physicians Edinb. 2013, 43, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Lachance, P.; Villeneuve, P.M.; Rewa, O.G.; Wilson, F.P.; Selby, N.M.; Featherstone, R.M.; Bagshaw, S.M. Association between e-alert implementation for detection of acute kidney injury and outcomes: A systematic review. Nephrol. Dial. Transplant. 2017, 32, 265–272. [Google Scholar] [CrossRef] [PubMed]
Class/Stage | SCr/GFR | UO | ||||
---|---|---|---|---|---|---|
RIFLE | AKIN | KDIGO | RIFLE | AKIN | KDIGO | |
Risk/1 * | ↑ SCr X 1.5 or ↓ GFR > 25% | ↑ SCr ≥ 26.5 μmol/L (≥0.3 mg/dL or ↑ SCr ≥ 150 to 200% (1.5 to 2X) | ↑ SCr ≥ 26.5 μmol/L (≥0.3 mg/dL) or ↑ SCr ≥ 150 to 200% (1.5 to 2X) | <0.5 mL/kg/h (>6 h) | <0.5 mL/kg/h (>6 h) | <0.5 mL/kg/h (>6 h) |
Injury/2 * | ↑ SCr X 2 or ↓ GFR > 50% | ↑ SCr > 200 to 300% (>2 to 3X) | ↑ SCr > 200 to 300% (>2 to 3X) | <0.5 mL/kg/h (>12 h) | <0.5 mL/kg/h (>12 h) | <0.5 mL/kg/h (>12 h) |
Failure/3* | ↑ SCr X 3 or ↓ GFR >75% or if baseline SCr ≥ 353.6 μmol/L (≥4 mg/dL) ↑ SCr > 44.2 μmol/L (>0.5 mg/dL) | ↑ SCr >300% (>3X) or if baseline SCr ≥ 353.6 μmol/L (≥4 mg/dL) ↑ SCr ≥ 44.2 μmol/L (≥0.5 mg/dL) or initiation of renal replacement therapy | ↑ SCr > 300% (>3X) or ↑ SCr to ≥353.6 μmol/L (≥4 mg/dL) or initiation of renal replacement therapy | <0.3 mL/kg/h (>24 h) or anuria (>12 h) | <0.3 mL /kg/h (24 h) or anuria (12 h) | <0.3 mL/kg/h (24 h) or anuria (12 h) or GFR < 35 mL/min/1.73 m2 in patients younger than 18 years |
Study | Design | Setting | Criteria | AKI Definition | N | AKI Incidence | Mortality |
---|---|---|---|---|---|---|---|
Nisula et al. (2013) [41] | Prospective, multi-centre | ICU | SCr, UO | AKIN, KDIGO | 2901 | AKIN 39.3% KDIGO 39.3% | AKIN 26% KDIGO 26% |
Roy et al. (2013) [42] | Prospective | Hospitalized, HF | SCr | RIFLE, AKIN, KDIGO | 637 | RIFLE 25.6%, AKIN 27.9%, KDIGO 36.7% | RIFLE AUROC 0.76 AKIN AUROC 0.72 KDIGO AUROC 0.74 p = 0.02 |
Bastin et al. (2013) [43] | Retrospective | Cardiac surgery | SCr | RIFLE, AKIN, KDIGO | 1881 | RIFLE 24.9%, AKIN 25.9%, KDIGO 25.9% | RIFLE AUROC 0.78, AKIN AUROC 0.86, p < 0.001 |
Zeng et al. (2014) [44] | Retrospective | Hospitalized | SCr | RIFLE, AKIN, KDIGO | 31,970 | RIFLE 16.1%, AKIN 16.6%, KDIGO 18.3% | RIFLE OR 2.9, AKIN OR 2.6, KDIGO OR 2.8 |
Levi et al. (2013) [45] | Prospective | ICU | SCr, UO | RIFLE, AKIN, KDIGO | 190 | RIFLE 62.6%, AKIN 63.2%, KDIGO 63.2% | RIFLE OR 0.56, AKIN OR 0.58, KDIGO OR 0.58 |
Rodrigues et al. (2013) [46] | Prospective | AMI | SCr | RIFLE, KDIGO | 1050 | RIFLE 14.8% KDIGO 36.6% | RIFLE HR 3.51 (early) 1.84 (late) KDIGO HR 3.99 (early) 2.43 (late) |
Luo et al. (2014) [47] | Prospective | ICU | SCr, UO | RIFLE, AKIN, KDIGO | 3107 | RIFLE 46.9%, AKIN 38.4%, KDIGO 51% p = 0.001 | RIFLE AUROC 0.738 AKIN AUROC 0.746 KDIGO AUROC 0.757 KDIGO vs. RIFLE p = 0.12 KDIGO vs. AKIN p < 0.001 |
Fuji et al. (2014) [48] | Retrospective | Hospitalized | SCr | RIFLE, AKIN, KDIGO | 49,518 | RIFLE 11.0%, AKIN 4.8%, KDIGO 11.8% | RIFLE AUROC 0.77 AKIN AUROC 0.69 KDIGO AUROC 0.78 p = 0.02 |
Neves et al. (2014) [49] | Prospective | Hospitalized | SCr, UO | RIFLE, AKIN, KDIGO | 1045 | RIFLE 6.2%, AKIN 5.5%, KDIGO 5.5% | N/A |
Li et al. (2014) [50] | Retrospective | Hospitalized | SCr | RIFLE, AKIN, KDIGO | 1005 | RIFLE 32.1%, AKIN 34.7%, KDIGO 38.9% | RIFLE OR 2.56 AKIN OR 2.68 KDIGO OR 4.00 p < 0.05 |
Pereira et al. (2017) [51] | Retrospective | ICU, Sepsis | SCr, UO | RIFLE, AKIN, KDIGO | 457 | RIFLE 84.2%, AKIN 72.8%, KDIGO 87.5% | RIFLE AUROC 0.652 AKIN AUROC 0.686 KDIGO AUROC 0.658 p < 0.001 |
Koeze et al. (2017) [52] | Retrospective | ICU | SCr, UO | RIFLE, AKIN, KDIGO | 1376 | RIFLE 28% (SCr) 35% (SCr + UO) AKIN 12% (SCr) 38% (SCr + UO) KDIGO 11% (SCr) 38% (SCr + UO) | RIFLE 84.2%, AKIN 72.8%, KDIGO 87.5% |
Tsai et al. (2017) [53] | Retrospective | ECMO | SCr, UO | RIFLE, AKIN, KDIGO | 167 | RIFLE 75.4%, AKIN 84.4%, KDIGO 85% | RIFLE AUROC 0.826 AKIN AUROC 0.774 KDIGO AUROC 0.840 p < 0.001 |
Wu et al. (2016) [54] | Retrospective | ICU, Surgical | SCr, UO | AKIN, KDIGO | 826 | AKIN 31% KDIGO 30% | AKIN 21.8% (1), 20.2% (2), 27.8% (3) KDIGO 16.9% (1), 17.5% (2), 34.1% (3) |
Zhou et al. (2016) [55] | Retrospective | ICU | SCr, UO, Cys-C | RIFLE, AKIN, KDIGO | 1036 | RIFLE 26.4%, AKIN 34.1%, KDIGO 37.8%, Cys-C 36.1% | RIFLE 57.9%, AKIN 54.4%, KDIGO 51.8%, Cys-C 52.1% |
Pan et al. (2016) [56] | Retrospective | ICU, Cirrhosis | SCr, UO | RIFLE, AKIN, KDIGO | 242 | RIFLE, AKIN, KDIGO | RIFLE AUROC 0.774 AKIN AUROC 0.741 KDIGO AUROC 0.781 p < 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gameiro, J.; Agapito Fonseca, J.; Jorge, S.; Lopes, J.A. Acute Kidney Injury Definition and Diagnosis: A Narrative Review. J. Clin. Med. 2018, 7, 307. https://doi.org/10.3390/jcm7100307
Gameiro J, Agapito Fonseca J, Jorge S, Lopes JA. Acute Kidney Injury Definition and Diagnosis: A Narrative Review. Journal of Clinical Medicine. 2018; 7(10):307. https://doi.org/10.3390/jcm7100307
Chicago/Turabian StyleGameiro, Joana, Jose Agapito Fonseca, Sofia Jorge, and Jose Antonio Lopes. 2018. "Acute Kidney Injury Definition and Diagnosis: A Narrative Review" Journal of Clinical Medicine 7, no. 10: 307. https://doi.org/10.3390/jcm7100307