Exome Sequencing in Fetuses with Structural Malformations
Abstract
:1. Introduction
2. Current Techniques for Prenatal Genetic Diagnosis
2.1. Sampling Methods
2.2. Karyotyping
2.3. Chromosomal Microarray (CMA)
2.4. Non-Invasive Prenatal Testing
3. Prenatal Exome Sequencing
3.1. Exome Sequencing as both a Research Tool and a Diagnostic Test
3.2. Prenatal Exome Sequencing: Proof-of-Concept
3.3. Prenatal Exome Sequencing: Diagnostic Yield
4. The Ethics of Prenatal Exome Sequencing as a Screening Tool
5. Next-Generation Sequencing: The Future of Prenatal Genetic Diagnostics
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Springett, A.; Morris, J.K. Congenital Anomaly Statistics, England and Wales; British Isles Network of Congenital Anomaly Registers: London, UK, 2010. [Google Scholar]
- Vlastos, I.M.; Koudoumnakis, E.; Houlakis, M.; Nasika, M.; Griva, M.; Stylogianni, E. Cleft lip and palate treatment of 530 children over a decade in a single centre. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 993–997. [Google Scholar] [CrossRef]
- Schmidt, W.; Schroeder, T.M.; Buchinger, G.; Kubli, F. Genetics, pathoanatomy and prenatal diagnosis of Potter I syndrome and other urogenital tract diseases. Clin. Genet. 1982, 22, 105–127. [Google Scholar]
- Verity, C.; Firth, H.; French-Constant, C. Congenital abnormalities of the central nervous system. J. Neurol. Neurosurg. Psychiatry 2003, 74. [Google Scholar] [CrossRef]
- Cereda, A.; Carey, J.C. The trisomy 18 syndrome. Orphanet J. Rare Dis. 2012, 7. [Google Scholar] [CrossRef]
- Hillman, S.C.; McMullan, D.J.; Hall, G.; Togneri, F.S.; James, N.; Maher, E.J.; Meller, C.H.; Williams, D.; Wapner, R.J.; Maher, E.R.; et al. Use of prenatal chromosomal microarray: Prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 610–620. [Google Scholar]
- Skinner, M.A.; Safford, S.D.; Reeves, J.G.; Jackson, M.E.; Freemerman, A.J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 2008, 82, 344–351. [Google Scholar] [CrossRef]
- Rousseau, F.; El Ghouzzi, V.; Delezoide, A.L.; Legeai-Mallet, L.; le Merrer, M.; Munnich, A.; Bonaventure, J. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum. Mol. Genet. 1996, 5, 509–512. [Google Scholar] [CrossRef]
- Carss, K.J.; Hillman, S.C.; Parthiban, V.; McMullan, D.J.; Maher, E.R.; Kilby, M.D.; Hurles, M.E. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum. Mol. Genet. 2014, 23. [Google Scholar] [CrossRef]
- Firth, H.V.; Wright, C.F. The Deciphering Developmental Disorders (DDD) study. Dev. Med. Child Neurol. 2011, 53, 702–703. [Google Scholar] [CrossRef]
- Tabor, A.; Philip, J.; Madsen, M.; Bang, J.; Obel, E.B.; Norgaard-Pedersen, B. Randomised controlled trial of genetic amniocentesis in 4606 low-risk women. Lancet 1986, 1, 1287–1293. [Google Scholar]
- Smidt-Jensen, S.; Permin, M.; Philip, J.; Lundsteen, C.; Zachary, J.M.; Fowler, S.E.; Grünig, K. Randomised comparison of amniocentesis and transabdominal and transcervical chorionic villus sampling. Lancet 1992, 340, 1237–1244. [Google Scholar] [CrossRef]
- Group CCC-ACT. Multicentre randomised clinical trial of chorion villus sampling and amniocentesis. First report. Lancet 1989, 1, 1–6. [Google Scholar]
- Tabor, A.; Vestergaard, C.H.; Lidegaard, O. Fetal loss rate after chorionic villus sampling and amniocentesis: An 11-year national registry study. Ultrasound Obstet. Gynecol. 2009, 34, 19–24. [Google Scholar]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar]
- Caspersson, T.; Farber, S.; Foley, G.E.; Kudynowski, J.; Modest, E.J.; Simonsson, E.; Waqh, U.; Zech, L. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 1968, 49, 219–222. [Google Scholar] [CrossRef]
- Sumner, A.T.; Evans, H.J.; Buckland, RA. New technique for distinguishing between human chromosomes. Nat. New Biol. 1971, 232, 31–32. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Bejjani, B.A. A cytogeneticist’s perspective on genomic microarrays. Hum. Reprod. Update 2004, 10, 221–226. [Google Scholar] [CrossRef]
- Driscoll, D.A.; Salvin, J.; Sellinger, B.; Budarf, M.L.; McDonald-McGinn, D.M.; Zackai, E.H.; Emanuel, B.S. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: Implications for genetic counselling and prenatal diagnosis. J. Med. Genet. 1993, 30, 813–817. [Google Scholar] [CrossRef]
- Nickerson, E.; Greenberg, F.; Keating, M.T.; McCaskill, C.; Shaffer, L.G. Deletions of the elastin gene at 7q11.23 occur in approximately 90% of patients with Williams syndrome. Am. J. Hum. Genet. 1995, 56, 1156–1161. [Google Scholar]
- Ligon, A.H.; Kashork, C.D.; Richards, C.S.; Shaffer, L.G. Identification of female carriers for Duchenne and Becker muscular dystrophies using a FISH-based approach. Eur. J. Hum. Genet. 2000, 8, 293–298. [Google Scholar] [CrossRef]
- Brackley, K.J.; Kilby, M.D.; Morton, J.; Whittle, M.J.; Knight, S.J.; Flint, J. A case of recurrent congenital fetal anomalies associated with a familial subtelomeric translocation. Prenat. Diagn. 1999, 19, 570–574. [Google Scholar] [CrossRef]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Melissa Savage, M.S.; Lawrence, D.; Platt, M.D.; Daniel Saltzman, M.D.; et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef]
- Hillman, S.C.; Pretlove, S.; Coomarasamy, A.; McMullan, D.J.; Davison, E.V.; Maher, E.R.; Kilby, M.D. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2011, 37, 6–14. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Dabell, M.P.; Rosenfeld, J.A.; Neill, N.J.; Ballif, B.C.; Coppinger, J.; Diwan, N.R.; Chong, K.; Shohat, M.; Chitayat, D. Referral patterns for microarray testing in prenatal diagnosis. Prenat. Diagn. 2012, 32, 344–350. [Google Scholar] [CrossRef]
- Vanakker, O.; Vilain, C.; Janssens, K.; Van der Aa, N.; Smits, G.; Bandelier, C.; Blaumeiser, B.; Bulk, S.; Caberq, J.H.; de Leener, A.; et al. Implementation of genomic arrays in prenatal diagnosis: The Belgian approach to meet the challenges. Eur. J. Med. Genet. 2014, 57, 151–156. [Google Scholar]
- Bodrug, S.E.; Roberson, J.R.; Weiss, L.; Ray, P.N.; Worton, R.G.; van Dyke, D.L. Prenatal identification of a girl with a t(X;4)(p21;q35) translocation: Molecular characterisation, paternal origin, and association with muscular dystrophy. J. Med. Genet. 1990, 27, 426–432. [Google Scholar]
- De Gregori, M.; Ciccone, R.; Magini, P.; Pramparo, T.; Gimelli, S.; Messa, J.; Novara, F.; Vetro, A.; Rossi, E.; Maraschio, P.; et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: A study of 59 patients. J. Med. Genet. 2007, 44, 750–762. [Google Scholar] [CrossRef]
- Hillman, S.C.; McMullan, D.J.; Maher, E.R.; Kilby, M.D. The use of chromosomal microarray in prenatal diagnosis. Obstet. Gynaecol. 2013, 15, 80–84. [Google Scholar] [CrossRef]
- UKGTN. UK Genetic Testing Network arrayCGH Commissioning Workshop. Phg Foundation: London, UK, 2009. [Google Scholar]
- Valduga, M.; Philippe, C.; Bach Segura, P.; Thiebaugeorges, O.; Miton, A.; Beri, M.; Bonnet, C.; Nemos, C.; Foliquet, B.; Jonveaux, P. A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations. Prenat. Diagn. 2010, 30, 333–341. [Google Scholar]
- Clinical Genetics Clinical Reference Group; (National Health Service, England, UK). Personal communication, 2014.
- The American College of Obstetricians and Gynecologists Committee on Genetics Society for Maternal-Fetal Medicine. Committee Opinion No. 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. 2013, 122, 1374–1377. [Google Scholar] [CrossRef]
- Lo, Y.M.; Tein, M.S.; Lau, T.K.; Haines, C.J.; Leung, T.N.; Poon, P.M.; Wainscoat, J.S.; Johnson, P.J.; Chang, A.M.; Hjelm, N.M. Quantitative analysis of fetal DNA in maternal plasma and serum: Implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet. 1998, 62, 768–775. [Google Scholar]
- Lun, F.M.; Chiu, R.W.; Allen Chan, K.C.; Yeung Leung, T.; Kin Lau, T.; Dennis Lo, Y.M. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem. 2008, 54, 1664–1672. [Google Scholar]
- Palomaki, G.E.; Deciu, C.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Grody, W.W.; et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: An international collaborative study. Genet. Med. 2012, 14, 296–305. [Google Scholar] [CrossRef]
- Fan, H.C.; Blumenfeld, Y.J.; Chitkara, U.; Hudgins, L.; Quake, S.R. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin. Chem. 2010, 56, 1279–1286. [Google Scholar] [CrossRef]
- Nicolaides, K.H.; Syngelaki, A.; Gil, M.; Atanasova, V.; Markova, D. Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat. Diagn. 2013, 33, 575–579. [Google Scholar] [CrossRef]
- Samango-Sprouse, C.; Banjevic, M.; Ryan, A.; Sigurjonsson, S.; Zimmermann, B.; Hill, M.; Hall, M.P.; Westemeyer, M.; Saucier, J.; Demko, Z.; et al. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat. Diagn. 2013, 33, 643–649. [Google Scholar] [CrossRef]
- Hooks, J.; Wolfberg, A.J.; Wang, E.T.; Struble, C.A.; Zahn, J.; Juneau, K.; Mohseni, M.; Huang, S.; Bogard, P.; Song, K.; et al. Non-invasive risk assessment of fetal sex chromosome aneuploidy through directed analysis and incorporation of fetal fraction. Prenat. Diagn. 2014, 34, 496–499. [Google Scholar] [CrossRef]
- Jiang, F.; Ren, J.; Chen, F.; Zhou, Y.; Xie, J.; Dan, S.; Su, Y.; Xie, J.H.; Yin, B.M.; Su, W.; et al. Noninvasive Fetal Trisomy (NIFTY) test: An advanced noninvasive prenatal diagnosis methodology for fetal autosomal and sex chromosomal aneuploidies. BMC Med. Genomics 2012, 5. [Google Scholar] [CrossRef]
- Lau, T.K.; Jiang, F.M.; Stevenson, R.J.; Lo, T.K.; Chan, L.W.; Chan, M.K.; Lo, P.S.; Wang, W.; Zhang, H.Y.; Chen, F.; et al. Secondary findings from non-invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service. Prenat. Diagn. 2013, 33, 602–608. [Google Scholar] [CrossRef]
- Ge, H.; Huang, X.; Li, X.; Chen, S.; Zheng, J.; Jiang, H.; Zhang, C.; Pan, X.; Chen, F.; Chen, N.; et al. Noninvasive prenatal detection for pathogenic CNVs: The application in alpha-thalassemia. PLoS One 2013, 8, e67464. [Google Scholar]
- Wright, C.F.; Wei, Y.; Higgins, J.P.; Sagoo, G.S. Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis. BMC Res. Notes 2012, 5. [Google Scholar] [CrossRef]
- Moise, K.J., Jr.; Boring, N.H.; O’Shaughnessy, R.; Simpson, L.L.; Wolfe, H.M.; Baxter, J.K.; Polzin, W.; Eddleman, K.A.; Hassan, S.S.; Skupski, D.; et al. Circulating cell-free fetal DNA for the detection of RHD status and sex using reflex fetal identifiers. Prenat. Diagn. 2013, 33, 95–101. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, M.J.; Kim, S.Y.; Kim, H.O.; Song, M.J.; Kim, M.H.; Park, S.Y.; Yang, J.H.; Ryu, H.M. Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma. J. Assist. Reprod. Genet. 2011, 28, 167–172. [Google Scholar] [CrossRef]
- Bustamante-Aragones, A.; Gallego-Merlo, J.; Trujillo-Tiebas, M.J.; de Alba, M.R.; Gonzalez-Gonzalez, C.; Glover, G.; Diego-Alvarez, D.; Ayuso, C.; Ramos, C. New strategy for the prenatal detection/exclusion of paternal cystic fibrosis mutations in maternal plasma. J. Cyst. Fibros. 2008, 7, 505–510. [Google Scholar]
- Lench, N.; Barrett, A.; Fielding, S.; McKay, F.; Hill, M.; Jenkins, L.; White, H.; Chitty, L.S. The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: Challenges and progress made. Prenat. Diagn. 2013, 33, 555–562. [Google Scholar] [CrossRef]
- Agarwal, A.; Sayres, L.C.; Cho, M.K.; Cook-Deegan, R.; Chandrasekharan, S. Commercial landscape of noninvasive prenatal testing in the United States. Prenat. Diagn. 2013, 33, 521–531. [Google Scholar] [CrossRef]
- Song, Y.; Liu, C.; Qi, H.; Zhang, Y.; Bian, X.; Liu, J. Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population. Prenat. Diagn. 2013, 33, 700–706. [Google Scholar]
- Hill, M.; Karunaratna, M.; Lewis, C.; Forya, F.; Chitty, L. Views and preferences for the implementation of non-invasive prenatal diagnosis for single gene disorders from health professionals in the United Kingdom. Am. J. Med. Genet. Part A 2013, 161, 1612–1618. [Google Scholar] [CrossRef]
- Fan, H.C.; Gu, W.; Wang, J.; Blumenfeld, Y.J.; El-Sayed, Y.Y.; Quake, S.R. Non-invasive prenatal measurement of the fetal genome. Nature 2012, 487, 320–324. [Google Scholar] [CrossRef]
- Kitzman, J.O.; Snyder, M.W.; Ventura, M.; Lewis, A.P.; Qiu, R.; Simmons, L.E.; Gammill, H.S.; Rubens, C.E.; Santillan, D.A.; Murray, J.C.; et al. Noninvasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef]
- Veltman, J.A.; Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 2012, 13, 565–575. [Google Scholar]
- Yang, Y.; Muzny, D.M.; Reid, J.G.; Bainbridge, M.N.; Willis, A.; Ward, P.A.; Braxton, A.; Beuten, J.; Xia, F.; Niu, Z.; et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 2013, 369, 1502–1511. [Google Scholar]
- O’Roak, B.J.; Deriziotis, P.; Lee, C.; Vives, L.; Schwartz, J.J.; Girirajan, S.; Karakoc, E.; MacKenzie, A.P.; Ng, S.B.; Baker, C.B.; et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 2011, 43, 585–589. [Google Scholar]
- De Ligt, J.; Willemsen, M.H.; van Bon, B.W.; Kleefstra, T.; Yntema, H.G.; Kroes, T.; Anneke, T.; Vulto-van Silfhout, M.D.; David, A.; Koolen, M.D.; et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 2012, 367, 1921–1929. [Google Scholar] [CrossRef]
- Zaidi, S.; Choi, M.; Wakimoto, H.; Ma, L.; Jiang, J.; Overton, J.D.; Romano-Adesman, A.; Bjornson, R.D.; Breitbart, R.E.; Brown, K.K.; et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013, 498, 220–223. [Google Scholar] [CrossRef]
- Ng, S.B.; Turner, E.H.; Robertson, P.D.; Flygare, S.D.; Bigham, A.W.; Lee, C.; Shaffer, T.; Wong, M.; Bhattacharjee, A.; Eichler, E.E.; et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009, 461, 272–276. [Google Scholar] [CrossRef]
- Bainbridge, M.N.; Wang, M.; Burgess, D.L.; Kovar, C.; Rodesch, M.J.; D’Ascenzo, M.; Kitzman, J.; Wu, Y.Q.; Newsham, I.; Richmond, T.A.; et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 2010, 11. [Google Scholar] [CrossRef]
- Stenson, P.D.; Ball, E.V.; Howells, K.; Phillips, A.D.; Mort, M.; Cooper, D.N. The Human Gene Mutation Database: Providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum. Genomics 2009, 4, 69–72. [Google Scholar]
- Ng, S.B.; Buckingham, K.J.; Lee, C.; Bigham, A.W.; Tabor, H.K.; Dent, K.M.; Huff, C.D.; Shannon, P.T.; Jabs, E.W.; Nickerson, D.A.; et al. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010, 42, 30–35. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Yang, B.Z.; Gelernter, J. The role and challenges of exome sequencing in studies of human diseases. Front. Genet. 2013, 4. [Google Scholar] [CrossRef]
- Gahl, W.A.; Markello, T.C.; Toro, C.; Fajardo, K.F.; Sincan, M.; Gill, F.; Carlson-Donohoe, H.; Gropman, A.; Pierson, T.M.; Golas, G.; et al. The National Institutes of Health Undiagnosed Diseases Program: Insights into rare diseases. Genet. Med. 2012, 14, 51–59. [Google Scholar] [CrossRef]
- Dan, S.; Chen, F.; Choy, K.W.; Jiang, F.; Lin, J.; Xuan, Z.; Wang, W.; Chen, S.; Li, X.; Jiang, H.; et al. Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS One 2012, 7, e27835. [Google Scholar]
- Talkowski, M.E.; Ordulu, Z.; Pillalamarri, V.; Benson, C.B.; Blumenthal, I.; Connolly, S.; Hanscom, C.; Hussain, N.; Pereira, S.; Picker, J.; et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. 2012, 367, 2226–2232. [Google Scholar] [CrossRef]
- Filges, I.; Nosova, E.; Bruder, E.; Tercanli, S.; Townsend, K.; Gibson, W.; Röthlisberger, B.; Heinimann, K.; Hall, J.; Gregory-Evans, C.; et al. Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype. Clin. Genet. 2013. [Google Scholar] [CrossRef]
- CoNVex: Copy number variants from exomes. Available online: Available online: ftp://ftp.sanger.ac.uk/pub/users/pv1/CoNVex/ (accessed on 1 February 2013).
- Rauch, A.; Wieczorek, D.; Graf, E.; Wieland, T.; Endele, S.; Schwarzmayr, T. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: An exome sequencing study. Lancet 2012, 380, 1674–1682. [Google Scholar] [CrossRef]
- Awadalla, P.; Gauthier, J.; Myers, R.A.; Casals, F.; Hamdan, F.F.; Griffing, A.R.; Côté, M.; Henrion, E.; Spiegelman, D.; Tarabeux, J.; et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 2010, 87, 316–324. [Google Scholar] [CrossRef]
- Bischoff, I.J.; Zeschnigk, C.; Horn, D.; Wellek, B.; Riess, A.; Wessels, M.; Willems, P.; Jensen, P.; Busche, A.; Bekkebraten, J.; et al. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciogdigital syndrome: A study of the extensive clinical variability. Hum. Mutat. 2013, 34, 237–247. [Google Scholar] [CrossRef]
- Mefford, H.C.; Clauin, S.; Sharp, A.J.; Moller, R.S.; Ullmann, R.; Kapur, R.; Pinkel, D.; Cooper, G.M.; Ventura, M.; Ropers, H.H.; et al. Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am. J. Hum. Genet. 2007, 81, 1057–1069. [Google Scholar] [CrossRef]
- Stanley, C.M.; Sunyaev, S.R.; Greenblatt, M.S.; Oetting, W.S. Clinically relevant variants—Identifying, collecting, interpreting, and disseminating: The 2013 annual scientific meeting of the human genome variation society. Hum. Mutat. 2014, 35, 505–510. [Google Scholar] [CrossRef]
- Isakov, O.; Perrone, M.; Shomron, N. Exome sequencing analysis: A guide to disease variant detection. Methods Mol. Biol. 2013, 1038, 137–158. [Google Scholar]
- Bragin, E.; Chatzimichali, E.A.; Wright, C.F.; Hurles, M.E.; Firth, H.V.; Bevan, A.P.; Swaminathan, G.J. Decipher: Database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucl. Acid. Res. 2014, 42. [Google Scholar] [CrossRef]
- Yurkiewicz, I.R.; Korf, B.R.; Lehmann, L.S. Prenatal whole-genome sequencing—Is the quest to know a fetus’s future ethical? N. Engl. J. Med. 2014, 370, 195–197. [Google Scholar] [CrossRef]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; Amy McGuire, J.D.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef]
- American College of Medical Genetics and Genomics. ACMG Updates Recommendation on “Opt Out” for Genome Sequencing Return of Results 2014. Available online: Available online: https://www.acmg.net/docs/Release_ACMGUpdatesRecommendations_final.pdf (accessed on 10 April 2014).
- Van El, C.G.; Cornel, M.C.; Borry, P.; Hastings, R.J.; Fellmann, F.; Hodgson, S.V.; Howard, H.C.; Cambon-Thomsen, A.; Knoppers, B.M.; Meijers-Heijboer, H.; et al. Whole-genome sequencing in health care. Recommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 2013, 21, S1–S5. [Google Scholar]
- Middleton, A.; Parker, M.; Wright, C.F.; Bragin, E.; Hurles, M.E.; Study, D.D.D. Empirical research on the ethics of genomic research. Am. J. Med. Genet. Part A 2013, 161A, 2099–2101. [Google Scholar]
- Holtzman, N.A. ACMG recommendations on incidental findings are flawed scientifically and ethically. Genet. Med. 2013, 15, 750–751. [Google Scholar] [CrossRef]
- Wright, C.F.; Middleton, A.; Burton, H.; Cunningham, F.; Humphries, S.E.; Hurst, J.; Birney, E.; Firth, H. Policy challenges of clinical genome sequencing. BMJ 2013, 347. [Google Scholar] [CrossRef]
- Hern, W.M. Fetal diagnostic indications for second and third trimester outpatient pregnancy termination. Prenat. Diagn. 2014, 34, 438–444. [Google Scholar] [CrossRef]
- Bernhardt, B.A.; Soucier, D.; Hanson, K.; Savage, M.S.; Jackson, L.; Wapner, R.J. Women’s experiences receiving abnormal prenatal chromosomal microarray testing results. Genet. Med. 2013, 15, 139–145. [Google Scholar] [CrossRef]
- De Jong, A.; Dondorp, W.J.; Macville, M.V.; de Die-Smulders, C.E.; van Lith, J.M.; de Wert, G.M. Microarrays as a diagnostic tool in prenatal screening strategies: Ethical reflection. Hum. Genet. 2014, 133, 163–172. [Google Scholar] [CrossRef]
- McGillivray, G.; Rosenfeld, J.A.; McKinlay Gardner, R.J.; Gillam, L.H. Genetic counselling and ethical issues with chromosome microarray analysis in prenatal testing. Prenat. Diagn. 2012, 32, 389–395. [Google Scholar] [CrossRef]
- Ford, D.; Easton, D.F.; Stratton, M.; Narod, S.; Goldgar, D.; Devilee, P.; Bishop, D.T.; Weber, B.; Lenoir, G.; Chang-Claude, J.; et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 1998, 62, 676–689. [Google Scholar] [CrossRef]
- Weedon, M.N.; Cebola, I.; Patch, A.M.; Flanagan, S.E.; de Franco, E.; Caswell, R.; Rodríguez-Seguí, S.A.; Shaw-Smith, C.; Cho, C.H.H.; Allen, H.L.; et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat. Genet. 2014, 46, 61–64. [Google Scholar]
- Benko, S.; Gordon, C.T.; Mallet, D.; Sreenivasan, R.; Thauvin-Robinet, C.; Brendehaug, A.; Thomas, S.; Bruland, O.; David, M.; Nicolino, M.; et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J. Med. Genet. 2011, 48, 825–830. [Google Scholar] [CrossRef]
- Dathe, K.; Kjaer, K.W.; Brehm, A.; Meinecke, P.; Nurnberg, P.; Neto, J.C.; Brunoni, D.; Tommerup, N.; Ott, C.E.; Klopocki, E.; et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am. J. Hum. Genet. 2009, 84, 483–492. [Google Scholar] [CrossRef][Green Version]
- Lettice, L.A.; Heaney, S.J.; Purdie, L.A.; Li, L.; de Beer, P.; Oostra, B.A.; Goode, D.; Elgar, G.; Hill, R.E.; de Graaff, E.; et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 2003, 12, 1725–1735. [Google Scholar] [CrossRef]
- Wetterstrand, K.A. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute 2013. Available online: Available online: https://www.genome.gov/sequencingcosts (accessed on 7 April 2014).
- Biesecker, L.G.; Shianna, K.V.; Mullikin, J.C. Exome sequencing: The expert view. Gen. Biol. 2011, 12. [Google Scholar]
- Prime Minister’s Office. Press release: DNA tests to revolutionise fight against cancer and help 100,000 NHS patients 2012. Available online: Available online: https://www.gov.uk/government/news/dna-tests-to-revolutionise-fight-against-cancer-and-help-100000-nhs-patients (accessed on 7 April 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mackie, F.L.; Carss, K.J.; Hillman, S.C.; Hurles, M.E.; Kilby, M.D. Exome Sequencing in Fetuses with Structural Malformations. J. Clin. Med. 2014, 3, 747-762. https://doi.org/10.3390/jcm3030747
Mackie FL, Carss KJ, Hillman SC, Hurles ME, Kilby MD. Exome Sequencing in Fetuses with Structural Malformations. Journal of Clinical Medicine. 2014; 3(3):747-762. https://doi.org/10.3390/jcm3030747
Chicago/Turabian StyleMackie, Fiona L., Keren J. Carss, Sarah C. Hillman, Matthew E. Hurles, and Mark D. Kilby. 2014. "Exome Sequencing in Fetuses with Structural Malformations" Journal of Clinical Medicine 3, no. 3: 747-762. https://doi.org/10.3390/jcm3030747