Drug-Induced Osteoporosis
Abstract
1. Introduction
2. Glucocorticoids
- General recommendation for all GC users > 3 months: normalize calcium and protein intake, ensure sufficient vitamin D status, and reduce fall risk.
- Initial assessment of fracture risk is recommended for all adults ≥ 50 years or patients at high fracture risk prior to or early during GC therapy. This includes vertebral imaging and a GC dose-adjusted fracture risk assessment (FRAX®) calculation.
- Pharmacological therapy is indicated in adults ≥ 50 years with (i) fragility fracture, (ii) T-scores ≤ −1.5, (iii) GC dose ≥ 7.5 mg/day, (iv) age ≥ 70 years, or (v) country-specific FRAX® thresholds exceeded.
- First-line therapy: alendronate or risedronate for medium risk; zoledronic acid or denosumab for high risk; teriparatide for very high risk (e.g., multiple or recent vertebral/hip fractures).
- In adults < 50 years, treatment should be individualized for a Z-score ≤ −2 or in the presence of fragility fractures.
| Fracture Risk Category | Definition |
|---|---|
| Medium risk | Adults without a fracture within the past 2 years |
| High risk | Adults with a recent fracture (≤2 years) and/or ≥1 vertebral fracture of moderate or severe grade (Genant ≥ 2) |
| Very high risk | Adults aged ≥70 years with a recent hip or pelvic fracture and/or ≥1 vertebral fracture of moderate or severe grade (Genant ≥ 2) |
3. Aromatase Inhibitors
4. Androgen Deprivation Therapy
5. Thyroxine
6. Proton Pump Inhibitors (PPIs)
7. Anticoagulants (Heparin, Vitamin K Antagonists—Coumarins, and Direct Oral Anticoagulants)
7.1. Heparin
7.2. Vitamin K Antagonists—Coumarins
7.3. Direct Oral Anticoagulants
8. Antidepressants—Non-Selective Serotonin and/or Noradrenaline Reuptake Inhibitors, Selective Serotonin Reuptake Inhibitors
9. Neuroleptics (Antipsychotics)
10. Antidiabetic Drugs—Thiazolidinediones
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| GCs | Glucocorticoids |
| BMD | Bone mineral density |
| AIs | Aromatase inhibitors |
| ADT | Androgen-deprivation therapy |
| PPIs | Proton pump inhibitors |
| VKAs | Vitamin K antagonists |
| TZDs | Thiazolidinediones |
| GIOP | Glucocorticoid-induced osteoporosis |
| BMP | Bone morphogenetic protein(s) |
| RANKL | Receptor Activator of Nuclear Factor κB Ligand |
| ECTS | European Calcified Tissue Society |
| FRAX® | Fracture risk assessment |
| DXA | Dual-energy X-ray absorptiometry |
| NOGG | National Osteoporosis Guideline Group |
| ÖGKM | Austrian Society for Bone and Mineral Research |
| DVO | Dachverband Osteologie e.V. |
| BTIOP | Breast cancer treatment-induced osteoporosis |
| AIBL | Aromatase inhibitor-associated bone loss |
| HR | Hazard ratio |
| RCTs | Randomized controlled trials |
| RR | Relative risk |
| OR | Odds ratio |
| TBS | Trabecular bone score |
| HRpQCT | High-resolution peripheral quantitative computed tomography |
| miRNAs | MicroRNAs |
| GnRH | Gonadotropin-releasing hormone |
| TSH | Thyroid-stimulating hormone |
| DTC | Differentiated thyroid carcinoma |
| ATA | American Thyroid Association |
| PTH | Parathyroid hormone |
| FDA | US Food and Drug Administration |
| UFH | Unfractionated heparin |
| LMWH | Low-molecular-weight heparin |
| DOACs | Direct oral anticoagulants |
| OPG | Osteoprotegerin |
| DOACG | DOAC group |
| WG | Warfarin group |
| CG | Control group |
| MAO | Monoamine oxidase |
| TCAs | Tricyclic antidepressants |
| NSRIs | Non-selective serotonin and/or noradrenaline reuptake inhibitors |
| SSRIs | Selective serotonin reuptake inhibitors |
| hMSCs | Human mesenchymal stem cells |
| CTX | C-telopeptide |
| PINP | Procollagen type 1 N-terminal propeptide |
| TNF-α | Tumor necrosis factor |
| LH | Luteinizing hormone |
| FSH | Follicle-stimulating hormone |
| BUA | Broadband ultrasound attenuation |
| PPARγ | Peroxisome proliferator-activated receptor γ |
| ADOPT | A Diabetes Outcome Progression Trial |
| DPP4 | Dipeptidyl Peptidase-4 |
| GLP-1 | Glucagon-like Peptide-1 |
| SGLT-2 | Sodium-glucose Cotransporter-2 |
| FGF-23 | Fibroblast growth factor 23 |
References
- Mazziotti, G.; Canalis, E.; Giustina, A. Drug-induced osteoporosis: Mechanism and clinical implications. Am. J. Med. 2010, 123, 877–884. [Google Scholar] [CrossRef]
- Panday, K.; Gona, A.; Humphrey, M.B. Medication-induced osteoporosis: Screening and treatment strategies. Ther. Adv. Musculoskel. Dis. 2014, 6, 185–202. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Bagheri, B.; Bagheri, H. Drug-induced bone loss: A major safety concern in Europe. Expert Opin. Drug Saf. 2018, 17, 1005–1014. [Google Scholar] [CrossRef]
- Javed, L.; Khakwani, A.; Khan, U.; Humphrey, M.B. Medication-induced fractures: Screening and treatment strategies. Am. J. Med. Sci. 2024. ahead of print. [Google Scholar] [CrossRef]
- Overman, R.A.; Yeh, J.Y.; Deal, C.L. Prevalence of oral glucocorticoid usage in the United States: A general population perspective. Arthritis Care Res. 2013, 65, 294–298. [Google Scholar] [CrossRef]
- Weinstein, R.S. Clinical practice. Glucocorticoid-induced bone disease. N. Engl. J. Med. 2011, 365, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E. Glucocorticoid-induced osteoporosis: Who to treat with what agent? Nat. Rev. Rheumatol. 2015, 11, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Paccou, J.; Yavropoulou, M.P.; Naciu, A.M.; Chandran, M.; Messina, O.D.; Rolvien, T.; Carey, J.J.; D’oronzo, S.; Anastasilakis, A.D.; Saag, K.G.; et al. Prevention and treatment of glucocorticoid-induced osteoporosis in adults: Recommendations from the European Calcified Tissue Society. Eur. J. Endocrinol. 2024, 191, G1–G17. [Google Scholar] [CrossRef]
- Laurent, M.R.; Goemaere, S.; Verroken, C.; Bergmann, P.; Body, J.J.; Bruyère, O.; Cavalier, E.; Rozenberg, S.; Lapauw, B.; Gielen, E. Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations from the Belgian Bone Club. Front. Endocrinol. 2022, 13, 908727. [Google Scholar] [CrossRef]
- Popp, A.W.; Isenegger, J.; Buergi, E.M.; Buergi, U.; Lippuner, K. Glucocorticosteroid-induced spinal osteoporosis: Scientific update on pathophysiology and treatment. Eur. Spine J. 2006, 15, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.M. Clinical and diagnostic features of glucocorticoid-induced osteoporosis. Clin. Exp. Rheumatol. 2000, 18, S41–S43. [Google Scholar]
- Gregson, C.L.; Armstrong, D.J.; Avgerinou, C.; Bowden, J.; Cooper, C.; Douglas, L.; Edwards, J.; Gittoes, N.J.L.; Harvey, N.C.; Kanis, J.A.; et al. National Osteoporosis Guideline Group (NOGG). The 2024 UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 2025, 20, 119. [Google Scholar] [CrossRef]
- Dimai, H.P.; Muschitz, C.; Amrein, K.; Bauer, R.; Cejka, D.; Gasser, R.W.; Gruber, R.; Haschka, J.; Hasenöhrl, T.; Kainberger, F.; et al. Osteoporose–Definition, Risikoerfassung, Diagnose, Prävention und Therapie (Update 2024): Leitlinie der Österreichischen Gesellschaft für Knochen- und Mineralstoffwechsel [Osteoporosis-Definition, risk assessment, diagnosis, prevention and treatment (update 2024): Guidelines of the Austrian Society for Bone and Mineral Research]. Wien. Klin. Wochenschr. 2024, 136, S599–S668. (In German) [Google Scholar] [CrossRef]
- Dachverband Osteologie e.V. (DVO). Leitlinie 2023–Prophylaxe, Diagnostik und Therapie der Osteoporose bei Postmenopausalen Frauen und bei Männern ab dem 50. Lebensjahr; DVO: Essen, Germany, 10 September 2023; Available online: https://leitlinien.dv-osteologie.org (accessed on 15 October 2025).
- Hadji, P.; Aapro, M.S.; Body, J.J.; Gnant, M.; Brandi, M.L.; Reginster, J.Y.; Zillikens, M.C.; Glüer, C.C.; de Villiers, T.; Baber, R.; et al. Management of Aromatase Inhibitor-Associated Bone Loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: Joint position statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG. J. Bone Oncol. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Diana, A.; Carlino, F.; Giunta, E.F.; Franzese, E.; Guerrera, L.P.; Di Lauro, V.; Ciardiello, F.; Daniele, B.; Orditura, M. Cancer Treatment-Induced Bone Loss (CTIBL): State of the Art and Proper Management in Breast Cancer Patients on Endocrine Therapy. Curr. Treat. Options Oncol. 2021, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Hannon, R. Long-term effects of aromatase inhibitors on bone. J. Steroid. Biochem. Mol. Biol. 2005, 95, 151–154. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet 2015, 386, 1341–1352. [Google Scholar] [CrossRef]
- Coleman, R.; Hadji, P.; Body, J.J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, Ø.; Flamen, P.; Kurth, A.; et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, E. Effects of third-generation aromatase inhibitors on bone. Eur. J. Cancer 2006, 42, 1044–1051. [Google Scholar] [CrossRef]
- Hadji, P.; Aapro, M.; Al-Dagri, N.; Alokail, M.; Biver, E.; Body, J.J.; Brandi, M.L.; Brown, J.; Confavreux, C.; Cortet, B.; et al. Management of aromatase inhibitor-associated bone loss (AIBL) in women with hormone-sensitive breast cancer: An updated joint position statement of the IOF, CABS, ECTS, IEG, ESCEO, IMS, and SIOG. J. Bone Oncol. 2025, 53, 100694. [Google Scholar] [CrossRef]
- Howell, A.; Cuzick, J.; Baum, M.; Buzdar, A.; Dowsett, M.; Forbes, J.F.; Hoctin-Boes, G.; Houghton, J.; Locker, G.Y.; Tobias, J.S. ATAC Trialists’ Group. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 2005, 365, 60–62. [Google Scholar] [CrossRef]
- Goss, P.E.; Ingle, J.N.; Martino, S.; Robert, N.; Muss, H.B.; Piccart, M.J.; Castiglione, M.; Tu, D.; Shepherd, L.E.; Pritchard, K.I.; et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N. Engl. J. Med. 2003, 349, 1793–1802. [Google Scholar] [CrossRef]
- Coates, A.S.; Keshaviah, A.; Thürlimann, B.; Mouridsen, H.; Mauriac, L.; Forbes, J.F.; Paridaens, R.; Castiglione-Gertsch, M.; Gelber, R.D.; Colleoni, M.; et al. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: Update of study BIG 1-98. J. Clin. Oncol. 2007, 25, 486–492. [Google Scholar] [CrossRef]
- Coleman, R.E.; Banks, L.M.; Girgis, S.I.; Kilburn, L.S.; Vrdoljak, E.; Fox, J.; Cawthorn, S.J.; Patel, A.; Snowdon, C.F.; Hall, E.; et al. Intergroup Exemestane Study group. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): A randomised controlled study. Lancet Oncol. 2007, 8, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Chen, S.J.; Liu, C.Y. Fracture risk and adjuvant therapies in young breast cancer patients: A population-based study. PLoS ONE 2015, 10, e0130725. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, E.G.; Kim, H.Y.; Lee, Y.; Lee, S.M.; Suh, D.C.; Yoo, J.I.; Lee, S. Osteoporotic Fractures of the Spine, Hip, and Other Locations after Adjuvant Endocrine Therapy with Aromatase Inhibitors in Breast Cancer Patients: A Meta-analysis. J. Korean Med. Sci. 2020, 35, e403. [Google Scholar] [CrossRef]
- Goldvaser, H.; Barnes, T.A.; Šeruga, B.; Cescon, D.W.; Ocaña, A.; Ribnikar, D.; Amir, E. Toxicity of Extended Adjuvant Therapy with Aromatase Inhibitors in Early Breast Cancer: A Systematic Review and Meta-analysis. J. Natl. Cancer Inst. 2018, 110, 31–39. [Google Scholar] [CrossRef]
- Qian, X.; Li, Z.; Ruan, G.; Tu, C.; Ding, W. Efficacy and toxicity of extended aromatase inhibitors after adjuvant aromatase inhibitors-containing therapy for hormone-receptor-positive breast cancer: A literature-based meta-analysis of randomized trials. Breast Cancer Res. Treat. 2020, 179, 275–285. [Google Scholar] [CrossRef]
- Waqas, K.; Lima Ferreira, J.; Tsourdi, E.; Body, J.J.; Hadji, P.; Zillikens, M.C. Updated guidance on the management of cancer treatment-induced bone loss (CTIBL) in pre- and postmenopausal women with early-stage breast cancer. J. Bone Oncol. 2021, 28, 100355. [Google Scholar] [CrossRef]
- Leslie, W.D.; Morin, S.N.; Lix, L.M.; Niraula, S.; McCloskey, E.V.; Johansson, H.; Harvey, N.C.; Kanis, J.A. Performance of FRAX in Women with Breast Cancer Initiating Aromatase Inhibitor Therapy: A Registry-Based Cohort Study. J. Bone Miner. Res. 2019, 34, 1428–1435. [Google Scholar] [CrossRef]
- Prawiradilaga, R.S.; Gunmalm, V.; Lund-Jacobsen, T.; Helge, E.W.; Brøns, C.; Andersson, M.; Schwarz, P. FRAX Calculated without BMD Resulting in a Higher Fracture Risk Than That Calculated with BMD in Women with Early Breast Cancer. J. Osteoporos. 2018, 2018, 4636028. [Google Scholar] [CrossRef]
- Gazzotti, S.; Aparisi Gómez, M.P.; Schileo, E.; Taddei, F.; Sangiorgi, L.; Fusaro, M.; Miceli, M.; Guglielmi, G.; Bazzocchi, A. High-resolution peripheral quantitative computed tomography: Research or clinical practice? Br. J. Radiol. 2023, 96, 20221016. [Google Scholar] [CrossRef]
- Grillari, J.; Mäkitie, R.E.; Kocijan, R.; Haschka, J.; Vázquez, D.C.; Semmelrock, E.; Hackl, M. Circulating miRNAs in bone health and disease. Bone 2021, 145, 115787. [Google Scholar] [CrossRef]
- Weigl, M.; Kocijan, R.; Ferguson, J.; Leinfellner, G.; Heimel, P.; Feichtinger, X.; Pietschmann, P.; Grillari, J.; Zwerina, J.; Redl, H.; et al. Longitudinal Changes of Circulating miRNAs During Bisphosphonate and Teriparatide Treatment in an Animal Model of Postmenopausal Osteoporosis. J. Bone Miner. Res. 2021, 36, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: Meta-analyses of individual patient data from randomised trials. Lancet 2015, 386, 1353–1361, Erratum in Lancet 2016, 387, 30. Erratum in Lancet 2017, 389, 2472. https://doi.org/10.1016/S0140-6736(17)31454-X. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Xiang, Z.; Yang, J.; Xiang, R. Efficacy of zoledronic acid for prevention of bone loss in early-stage breast cancer patients receiving adjuvant therapy: A meta-analysis of 13 randomized controlled trials. Curr. Probl. Cancer 2020, 44, 100507. [Google Scholar] [CrossRef]
- Miyashita, H.; Satoi, S.; Kuno, T.; Cruz, C.; Malamud, S.; Kim, S.M. Bone modifying agents for bone loss in patients with aromatase inhibitor as adjuvant treatment for breast cancer; insights from a network meta-analysis. Breast Cancer Res. Treat. 2020, 181, 279–289. [Google Scholar] [CrossRef]
- Bassatne, A.; Bou Khalil, A.; Chakhtoura, M.; Arabi, A.; Van Poznak, C.; El-Hajj Fuleihan, G. Effect of antiresorptive therapy on aromatase inhibitor induced bone loss in postmenopausal women with early-stage breast cancer: A systematic review and meta-analysis of randomized controlled trials. Metabolism 2022, 128, 154962. [Google Scholar] [CrossRef]
- Adams, A.; Jakob, T.; Huth, A.; Monsef, I.; Ernst, M.; Kopp, M.; Caro-Valenzuela, J.; Wöckel, A.; Skoetz, N. Bone-modifying agents for reducing bone loss in women with early and locally advanced breast cancer: A network meta-analysis. Cochrane Database Syst. Rev. 2024, 7, CD013451. [Google Scholar] [CrossRef]
- Greenspan, S.L.; Coates, P.; Sereika, S.M.; Nelson, J.B.; Trump, D.L.; Resnick, N.M. Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. J. Clin. Endocrinol. Metab. 2005, 90, 6410–6417. [Google Scholar] [CrossRef]
- Smith, M.R.; Boyce, S.P.; Moyneur, E.; Duh, M.S.; Raut, M.K.; Brandman, J. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J. Urol. 2006, 175, 136–139; discussion 139. [Google Scholar] [CrossRef]
- Compston, J.E. Sex steroids and bone. Physiol. Rev. 2001, 81, 419–447. [Google Scholar] [CrossRef]
- Saylor, P.J.; Smith, M.R. Adverse effects of androgen deprivation therapy: Defining the problem and promoting health among men with prostate cancer. J. Natl. Compr. Cancer Netw. 2010, 8, 211–223, Erratum in J. Natl. Compr. Cancer Netw. 2010, 8, xlv. [Google Scholar] [CrossRef] [PubMed]
- Shahinian, V.B.; Kuo, Y.F.; Freeman, J.L.; Goodwin, J.S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 2005, 352, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J., 3rd; Lieber, M.M.; Atkinson, E.J.; Achenbach, S.J.; Zincke, H.; Therneau, T.M.; Khosla, S. Fracture risk in men with prostate cancer: A population-based study. J. Bone Miner. Res. 2011, 26, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Kabbinavar, F.; Saad, F.; Hussain, A.; Gittelman, M.C.; Bilhartz, D.L.; Wynne, C.; Murray, R.; Zinner, N.R.; Schulman, C.; et al. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J. Clin. Oncol. 2005, 23, 2918–2925. [Google Scholar] [CrossRef]
- Smith, M.R.; Eastham, J.; Gleason, D.M.; Shasha, D.; Tchekmedyian, S.; Zinner, N. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J. Urol. 2003, 169, 2008–2012. [Google Scholar] [CrossRef]
- Michaelson, M.D.; Kaufman, D.S.; Lee, H.; McGovern, F.J.; Kantoff, P.W.; Fallon, M.A.; Finkelstein, J.S.; Smith, M.R. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J. Clin. Oncol. 2007, 25, 1038–1042. [Google Scholar] [CrossRef]
- Greenspan, S.L.; Nelson, J.; Trump, D.L.; Resnick, N.M. Effect of once-weekly oral alendronate on bone loss in men receiving androgen deprivation therapy for prostate cancer: A randomized trial. Ann. Intern. Med. 2007, 146, 416–424. [Google Scholar] [CrossRef]
- Smith, M.R.; Egerdie, B.; Hernández Toriz, N.; Feldman, R.; Tammela, T.L.; Saad, F.; Heracek, J.; Szwedowski, M.; Ke, C.; Kupic, A.; et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 2009, 361, 745–755. [Google Scholar] [CrossRef]
- Smith, M.R.; Morton, R.A.; Barnette, K.G.; Sieber, P.R.; Malkowicz, S.B.; Rodriguez, D.; Hancock, M.L.; Steiner, M.S. Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J. Urol. 2010, 184, 1316–1321, Erratum in J. Urol. 2011, 185, 365. [Google Scholar] [CrossRef]
- Biondi, B. TSH Suppression in Differentiated Thyroid Cancer Patients. Still More Questions than Answers after 30 Years. Thyroid 2024, 34, 671–673. [Google Scholar] [CrossRef]
- Biondi, B.; Bartalena, L.; Cooper, D.S.; Hegedüs, L.; Laurberg, P.; Kahaly, G.J. The 2015 European Thyroid Association Guidelines on Diagnosis and Treatment of Endogenous Subclinical Hyperthyroidism. Eur. Thyroid. J. 2015, 4, 149–163. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 2020, 9, 1034. [Google Scholar] [CrossRef]
- Baliram, R.; Sun, L.; Cao, J.; Li, J.; Latif, R.; Huber, A.K.; Yuen, T.; Blair, H.C.; Zaidi, M.; Davies, T.F. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Investig. 2012, 122, 3737–3741. [Google Scholar] [CrossRef]
- Ku, E.J.; Yoo, W.S.; Lee, E.K.; Ahn, H.Y.; Woo, S.H.; Hong, J.H.; Chung, H.K.; Park, J.W. Effect of TSH Suppression Therapy on Bone Mineral Density in Differentiated Thyroid Cancer: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2021, 106, 3655–3667. [Google Scholar] [CrossRef]
- Daya, N.R.; Fretz, A.; Martin, S.S.; Lutsey, P.L.; Echouffo-Tcheugui, J.B.; Selvin, E.; Juraschek, S.P. Association Between Subclinical Thyroid Dysfunction and Fracture Risk. JAMA Netw. Open 2022, 5, e2240823. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.R.; Bauer, D.C.; Collet, T.H.; Fink, H.A.; Cappola, A.R.; da Costa, B.R.; Wirth, C.D.; Peeters, R.P.; Åsvold, B.O.; Elzen, W.P.J.D.; et al. for the Thyroid Studies Collaboration. Subclinical thyroid dysfunction and fracture risk: A meta-analysis. JAMA 2015, 313, 2055–2065. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, J.; Wang, J.; Zhao, X.; Gu, M. Association of subclinical thyroid dysfunction with bone mineral density and fracture: A meta-analysis of prospective cohort studies. Endocrine 2020, 67, 685–698. [Google Scholar] [CrossRef]
- Targownik, L.E.; Lix, L.M.; Metge, C.J.; Prior, H.J.; Leung, S.; Leslie, W.D. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ 2008, 179, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Voelker, R. Proton pump inhibitors linked to fracture risk. JAMA 2010, 304, 29. [Google Scholar] [CrossRef] [PubMed]
- Thong, B.K.S.; Ima-Nirwana, S.; Chin, K.Y. Proton Pump Inhibitors and Fracture Risk: A Review of Current Evidence and Mechanisms Involved. Int. J. Environ. Res. Public Health 2019, 16, 1571. [Google Scholar] [CrossRef]
- Lespessailles, E.; Toumi, H. Proton Pump Inhibitors and Bone Health: An Update Narrative Review. Int. J. Mol. Sci. 2022, 23, 10733. [Google Scholar] [CrossRef]
- Shin, Y.H.; Gong, H.S.; Baek, G.H. Lower Trabecular Bone Score is Associated with the Use of Proton Pump Inhibitors. J. Clin. Densitom. 2019, 22, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Ghebre, Y.T. Proton Pump Inhibitors and Osteoporosis: Is Collagen a Direct Target? Front. Endocrinol. 2020, 11, 473. [Google Scholar] [CrossRef]
- Staines, K.A.; Myers, K.; Little, K.; Ralston, S.H.; Farquharson, C. Proton Pump Inhibitors Inhibit PHOSPHO1 Activity and Matrix Mineralisation In Vitro. Calcif. Tissue Int. 2021, 109, 696–705. [Google Scholar] [CrossRef]
- Lau, Y.T.; Ahmed, N.N. Fracture risk and bone mineral density reduction associated with proton pump inhibitors. Pharmacotherapy 2012, 32, 67–79. [Google Scholar] [CrossRef]
- Abramowitz, J.; Thakkar, P.; Isa, A.; Truong, A.; Park, C.; Rosenfeld, R.M. Adverse Event Reporting for Proton Pump Inhibitor Therapy: An Overview of Systematic Reviews. Otolaryngol. Head. Neck Surg. 2016, 155, 547–554. [Google Scholar] [CrossRef]
- Yang, S.D.; Chen, Q.; Wei, H.K.; Zhang, F.; Yang, D.L.; Shen, Y.; Ding, W.Y. Bone fracture and the interaction between bisphosphonates and proton pump inhibitors: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 4899–4910. [Google Scholar]
- Kendler, D.L.; Marin, F.; Geusens, P.; López-Romero, P.; Lespessailles, E.; Body, J.J.; Minisola, S. Psychotropic medications and proton pump inhibitors and the risk of fractures in the teriparatide versus risedronate VERO clinical trial. Bone 2020, 130, 115113. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Scuto, S.; Marino, E.; Giusti, M.; Xourafa, A.; Gaudio, A. Anticoagulants and Osteoporosis. Int. J. Mol. Sci. 2019, 20, 5275. [Google Scholar] [CrossRef]
- Rajgopal, R.; Bear, M.; Butcher, M.K.; Shaughnessy, S.G. The effects of heparin and low molecular weight heparins on bone. Thromb. Res. 2008, 122, 293–298. [Google Scholar] [CrossRef]
- Monreal, M.; Lafoz, E.; Olive, A.; del Rio, L.; Vedia, C. Comparison of subcutaneous unfractionated heparin with a low molecular weight heparin (Fragmin) in patients with venous thromboembolism and contraindications to coumarin. Thromb. Haemost. 1994, 71, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Gajic-Veljanoski, O.; Phua, C.W.; Shah, P.S.; Cheung, A.M. Effects of Long-Term Low-Molecular-Weight Heparin on Fractures and Bone Density in Non-Pregnant Adults: A Systematic Review with Meta-Analysis. J. Gen. Intern. Med. 2016, 31, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.V.O.; Nalevaiko, J.Z.; Oliveira, M.F.; Raetsch, A.W.P.; Marques, G.L.; Petterle, R.R.; Moreira, C.A.; Borba, V.Z.C. Trabecular bone score (TBS) and bone mineral density in patients with long-term therapy with warfarin. Arch. Osteoporos. 2020, 15, 102. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, P.J.; Heit, J.A.; Atkinson, E.J.; Silverstein, M.D.; O’Fallon, W.M.; Castro, M.R.; Melton, L.J., 3rd. Long-term use of oral anticoagulants and the risk of fracture. Arch. Intern. Med. 1999, 159, 1750–1756. [Google Scholar] [CrossRef]
- Gage, B.F.; Birman-Deych, E.; Radford, M.J.; Nilasena, D.S.; Binder, E.F. Risk of osteoporotic fracture in elderly patients taking warfarin: Results from the National Registry of Atrial Fibrillation 2. Arch. Intern. Med. 2006, 166, 241–246. [Google Scholar] [CrossRef]
- Fiordellisi, W.; White, K.; Schweizer, M. A Systematic Review and Meta-analysis of the Association Between Vitamin K Antagonist Use and Fracture. J. Gen. Intern. Med. 2019, 34, 304–311. [Google Scholar] [CrossRef]
- Namba, S.; Yamaoka-Tojo, M.; Kakizaki, R.; Nemoto, T.; Fujiyoshi, K.; Hashikata, T.; Kitasato, L.; Hashimoto, T.; Kameda, R.; Meguro, K.; et al. Effects on bone metabolism markers and arterial stiffness by switching to rivaroxaban from warfarin in patients with atrial fibrillation. Heart Vessels 2017, 32, 977–982, Erratum in Heart Vessels 2017, 32, 983. https://doi.org/10.1007/s00380-017-0966-7. [Google Scholar] [CrossRef]
- Nalevaiko, J.Z.; Marques, J.V.O.; Oliveira, M.F.; Raetsch, A.W.P.; Marques, G.L.; Petterle, R.R.; Moreira, C.A.; Borba, V.Z.C. Bone density and quality in patients treated with direct-acting oral anticoagulants versus warfarin. Bone 2021, 150, 116000. [Google Scholar] [CrossRef]
- Tsai, S.H.L.; Hu, C.W.; Shao, S.C.; Tischler, E.H.; Obisesan, O.H.; Vervoort, D.; Chen, W.C.; Hu, J.R.; Kuo, L.T. Comparative Risks of Fracture Among Direct Oral Anticoagulants and Warfarin: A Systematic Review and Network Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 896952. [Google Scholar] [CrossRef]
- Rizzoli, R.; Cooper, C.; Reginster, J.Y.; Abrahamsen, B.; Adachi, J.D.; Brandi, M.L.; Bruyère, O.; Compston, J.; Ducy, P.; Ferrari, S.; et al. Antidepressant medications and osteoporosis. Bone 2012, 51, 606–613. [Google Scholar] [CrossRef]
- Hodge, J.M.; Wang, Y.; Berk, M.; Collier, F.M.; Fernandes, T.J.; Constable, M.J.; Pasco, J.A.; Dodd, S.; Nicholson, G.C.; Kennedy, R.L.; et al. Selective serotonin reuptake inhibitors inhibit human osteoclast and osteoblast formation and function. Biol. Psychiatry 2013, 74, 32–39. [Google Scholar] [CrossRef]
- Kruk, J.S.; Bermeo, S.; Skarratt, K.K.; Fuller, S.J.; Duque, G. The Effect of Antidepressants on Mesenchymal Stem Cell Differentiation. J. Bone Metab. 2018, 25, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.J.; Berk, M.; Hodge, J.M.; Kotowicz, M.A.; Stuart, A.L.; Chandrasekaran, V.; Cleminson, J.; Pasco, J.A. Selective Serotonin Reuptake Inhibitors (SSRIs) and Markers of Bone Turnover in Men. Calcif. Tissue Int. 2018, 103, 125–130. [Google Scholar] [CrossRef]
- Rauma, P.H.; Honkanen, R.J.; Williams, L.J.; Tuppurainen, M.T.; Kröger, H.P.; Koivumaa-Honkanen, H. Effects of antidepressants on postmenopausal bone loss-A 5-year longitudinal study from the OSTPRE cohort. Bone 2016, 89, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.; de Filippis, R.; Spina, G.; De Fazio, P.; Segura-Garcia, C.; Galasso, O.; Gasparini, G. The use of antidepressants is linked to bone loss: A systematic review and metanalysis. Orthop. Rev. 2022, 14, 38564. [Google Scholar] [CrossRef] [PubMed]
- Hafizi, S.; Lix, L.M.; Hans, D.; Bolton, J.M.; Leslie, W.D. Association of mental disorders and psychotropic medications with bone texture as measured with trabecular bone score. Bone 2022, 165, 116565. [Google Scholar] [CrossRef]
- Bolton, J.M.; Morin, S.N.; Majumdar, S.R.; Sareen, J.; Lix, L.M.; Johansson, H.; Odén, A.; McCloskey, E.V.; Kanis, J.A.; Leslie, W.D. Association of Mental Disorders and Related Medication Use with Risk for Major Osteoporotic Fractures. JAMA Psychiatry 2017, 74, 641–648. [Google Scholar] [CrossRef]
- Rabenda, V.; Nicolet, D.; Beaudart, C.; Bruyère, O.; Reginster, J.Y. Relationship between use of antidepressants and risk of fractures: A meta-analysis. Osteoporos. Int. 2013, 24, 121–137. [Google Scholar] [CrossRef]
- Mortensen, S.J.; Mohamadi, A.; Wright, C.L.; Chan, J.J.; Weaver, M.J.; von Keudell, A.; Nazarian, A. Medications as a Risk Factor for Fragility Hip Fractures: A Systematic Review and Meta-analysis. Calcif. Tissue Int. 2020, 107, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; Doga, M.; Resmini, E.; Giustina, A. Hyperprolactinemia and bone. Pituitary 2020, 23, 314–321. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, A.; Labad, J.; Seeman, M.V. Antipsychotic-induced Hyperprolactinemia in aging populations: Prevalence, implications, prevention and management. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 101, 109941. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, Y.; Liu, X.; Zhou, Z.; Wang, J.; Zhou, H.; Zheng, L.; Yang, L. Atypical antipsychotics induce human osteoblasts apoptosis via Wnt/β-catenin signaling. BMC Pharmacol. Toxicol. 2019, 20, 10. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, L.; Wu, H.; Lu, X.; Peng, L.; Wu, R.; Guo, W.; Chen, J.; Li, L.; Zhao, J. Relationship between long-term use of a typical antipsychotic medication by Chinese schizophrenia patients and the bone turnover markers serum osteocalcin and β-CrossLaps. Schizophr. Res. 2016, 176, 259–263. [Google Scholar] [CrossRef]
- Azimi Manavi, B.; Stuart, A.L.; Pasco, J.A.; Hodge, J.M.; Samarasinghe, R.M.; Weerasinghe, D.K.; Williams, L.J. Use of antipsychotic medication and its relationship with bone mineral density: A population-based study of men and women. Front. Psychiatry 2023, 13, 1004366. [Google Scholar] [CrossRef]
- Azimi Manavi, B.; Mohebbi, M.; Stuart, A.L.; Pasco, J.A.; Hodge, J.M.; Weerasinghe, D.K.; Samarasinghe, R.M.; Williams, L.J. Antipsychotic medication use in association with quantitative heel ultrasound (QUS). Bone Rep. 2023, 18, 101694. [Google Scholar] [CrossRef]
- Wu, C.S.; Chang, C.M.; Tsai, Y.T.; Huang, Y.W.; Tsai, H.J. Antipsychotic treatment and the risk of hip fracture in subjects with schizophrenia: A 10-year population-based case-control study. J. Clin. Psychiatry 2015, 76, 1216–1223. [Google Scholar] [CrossRef]
- Lee, S.H.; Hsu, W.T.; Lai, C.C.; Esmaily-Fard, A.; Tsai, Y.W.; Chiu, C.C.; Wang, J.; Chang, S.S.; Lee, C.C. Use of antipsychotics increases the risk of fracture: A systematic review and meta-analysis. Osteoporos. Int. 2017, 28, 1167–1178. [Google Scholar] [CrossRef]
- Papola, D.; Ostuzzi, G.; Thabane, L.; Guyatt, G.; Barbui, C. Antipsychotic drug exposure and risk of fracture: A systematic review and meta-analysis of observational studies. Int. Clin. Psychopharmacol. 2018, 33, 181–196. [Google Scholar] [CrossRef]
- Tang, L.; Chen, Y.; Pei, F.; Zhang, H. Lithium Chloride Modulates Adipogenesis and Osteogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells. Cell Physiol. Biochem. 2015, 37, 143–152. [Google Scholar] [CrossRef]
- Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. The Skeletal-Protecting Action and Mechanisms of Action for Mood-Stabilizing Drug Lithium Chloride: Current Evidence and Future Potential Research Areas. Front. Pharmacol. 2020, 11, 430. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Rohde, C.; Nierenberg, A.A.; Østergaard, S.D. Association of Lithium Treatment With the Risk of Osteoporosis in Patients With Bipolar Disorder. JAMA Psychiatry 2022, 79, 454–463. [Google Scholar] [CrossRef]
- Liu, B.; Wu, Q.; Zhang, S.; Del Rosario, A. Lithium use and risk of fracture: A systematic review and meta-analysis of observational studies. Osteoporos. Int. 2019, 30, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Sellmeyer, D.E. Thiazolidinedione therapy gets complicated: Is bone loss the price of improved insulin resistance? Diabetes Care 2007, 30, 1670–1671. [Google Scholar] [CrossRef] [PubMed]
- Shockley, K.R.; Lazarenko, O.P.; Czernik, P.J.; Rosen, C.J.; Churchill, G.A.; Lecka-Czernik, B. PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J. Cell Biochem. 2009, 106, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B. Safety of Anti-Diabetic Therapies on Bone. Clin. Rev. Bone Miner. Metab. 2013, 11, 49–58. [Google Scholar] [CrossRef]
- Kahn, S.E.; Zinman, B.; Lachin, J.M.; Haffner, S.M.; Herman, W.H.; Holman, R.R.; Kravitz, B.G.; Yu, D.; Heise, M.A.; Aftring, R.P.; et al. Rosiglitazone-associated fractures in type 2 diabetes: An Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 2008, 31, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Colhoun, H.M.; Livingstone, S.J.; Looker, H.C.; Morris, A.D.; Wild, S.H.; Lindsay, R.S.; Reed, C.; Donnan, P.T.; Guthrie, B.; Leese, G.P.; et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 2012, 55, 2929–2937. [Google Scholar] [CrossRef]
- Zhu, Z.N.; Jiang, Y.F.; Ding, T. Risk of fracture with thiazolidinediones: An updated meta-analysis of randomized clinical trials. Bone 2014, 68, 115–123. [Google Scholar] [CrossRef]
- Billington, E.O.; Grey, A.; Bolland, M.J. The effect of thiazolidinediones on bone mineral density and bone turnover: Systematic review and meta-analysis. Diabetologia 2015, 58, 2238–2246. [Google Scholar] [CrossRef]
- Smieszek, A.; Tomaszewski, K.A.; Kornicka, K.; Marycz, K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J. Clin. Med. 2018, 7, 482. [Google Scholar] [CrossRef]
- Salari-Moghaddam, A.; Sadeghi, O.; Keshteli, A.H.; Larijani, B.; Esmaillzadeh, A. Metformin use and risk of fracture: A systematic review and meta-analysis of observational studies. Osteoporos. Int. 2019, 30, 1167–1173. [Google Scholar] [CrossRef]
- Tseng, C.H. Metformin use is associated with a lower risk of osteoporosis/vertebral fracture in Taiwanese patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 2021, 184, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Zhai, S.; Liu, D. DPP4 Activities Are Associated with Osteopenia/Osteoporosis and Fracture Risk in Newly Diagnosed Type 2 Diabetes. Int. J. Endocrinol. 2020, 2020, 8874272. [Google Scholar] [CrossRef] [PubMed]
- Glorie, L.; Behets, G.J.; Baerts, L.; De Meester, I.; D’Haese, P.C.; Verhulst, A. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E447–E455. [Google Scholar] [CrossRef]
- Monami, M.; Dicembrini, I.; Antenore, A.; Mannucci, E. Dipeptidyl peptidase-4 inhibitors and bone fractures: A meta-analysis of randomized clinical trials. Diabetes Care 2011, 34, 2474–2476, Erratum in Diabetes Care 2014, 37, 312. [Google Scholar] [CrossRef]
- Mabilleau, G.; Pereira, M.; Chenu, C. Novel skeletal effects of glucagon-like peptide-1 (GLP-1) receptor agonists. J. Endocrinol. 2018, 236, R29–R42. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, S.; Tang, Q. Effect of GLP-1 receptor agonists on bone mineral density, bone metabolism markers, and fracture risk in type 2 diabetes: A systematic review and meta-analysis. Acta Diabetol. 2025, 62, 589–606. [Google Scholar] [CrossRef]
- Chen, M.; Lyu, Y.; Zhao, J.; Han, X.; Huang, T.; Yang, T.; Zhou, Y. Use of GLP-1 receptor agonist and risk of osteoporosis among patients with type 2 diabetes: A real-world study. Front. Endocrinol. 2025, 16, 1586589. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.I.; Blau, J.E.; Rother, K.I. SGLT2 Inhibitors May Predispose to Ketoacidosis. J. Clin. Endocrinol. Metab. 2015, 100, 2849–2852. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Zhang, Y.; Zhang, J.; Sheng, Y.; Wang, W.; Li, Y. Effect of SGLT2 inhibitors on fractures, BMD, and bone metabolism markers in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Osteoporos. Int. 2023, 34, 2013–2025. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Hawley, C.E.; Paik, J.M.; Bessette, L.G.; Wexler, D.J.; Kim, D.H.; Tong, A.Y.; Kim, S.C.; Patorno, E. Association of Sodium-Glucose Cotransporter-2 Inhibitors with Fracture Risk in Older Adults with Type 2 Diabetes. JAMA Netw. Open 2021, 4, e2130762. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V. Diabetes, bone and glucose-lowering agents: Clinical outcomes. Diabetologia 2017, 60, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Lapane, K.L.; Yang, S.; Brown, M.J.; Jawahar, R.; Pagliasotti, C.; Rajpathak, S. Sulfonylureas and risk of falls and fractures: A systematic review. Drugs Aging 2013, 30, 527–547. [Google Scholar] [CrossRef]
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005, 48, 1292–1299. [Google Scholar] [CrossRef]
- Ferron, M.; Wei, J.; Yoshizawa, T.; Del Fattore, A.; DePinho, R.A.; Teti, A.; Ducy, P.; Karsenty, G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010, 142, 296–308. [Google Scholar] [CrossRef]
| Drug Class (Examples) | Key Mechanism (s) | Main Skeletal Outcome | Fracture Risk Relevance |
|---|---|---|---|
| Glucocorticoids | ↓ bone formation, ↑ resorption; impaired Ca/vitamin D metabolism | Rapid BMD loss; ↑ vertebral & hip fractures | Strong |
| Aromatase inhibitors | Estrogen depletion → ↑ resorption | Marked BMD loss; ↑ fractures | Strong |
| Androgen deprivation therapy | Hypogonadism → high bone turnover | Marked BMD loss; ↑ fractures | Strong |
| Thiazolidinediones | PPARγ activation → ↓ osteoblastogenesis | BMD loss; ↑ fractures (esp. women) | Relevant |
| Antipsychotics/neuroleptics | Hyperprolactinemia; sedation/falls | BMD loss; ↑ fractures | Relevant |
| Heparin (UFH > LMWH) | ↓ formation (UFH pronounced) | BMD loss; ↑ fractures (UFH) | Relevant (UFH)/Moderate (LMWH) |
| Antidepressants (SSRIs/SNRIs) | Falls; possible direct bone effects | ↑ fractures (often > BMD effect) | Moderate–relevant |
| Thyroxine (overtreatment) | Increased turnover (TSH suppression) | BMD loss; ↑ fractures (modest) | Moderate |
| Vitamin K antagonists | Impaired γ-carboxylation of bone proteins | Possible bone quality effects | Moderate |
| Proton pump inhibitors | ↓ calcium absorption; possible fall risk | Modest fracture association | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gasser, R.W.; Kocijan, R.; Zendeli, A.; Resch, H. Drug-Induced Osteoporosis. J. Clin. Med. 2026, 15, 993. https://doi.org/10.3390/jcm15030993
Gasser RW, Kocijan R, Zendeli A, Resch H. Drug-Induced Osteoporosis. Journal of Clinical Medicine. 2026; 15(3):993. https://doi.org/10.3390/jcm15030993
Chicago/Turabian StyleGasser, Rudolf Wolfgang, Roland Kocijan, Afrodite Zendeli, and Heinrich Resch. 2026. "Drug-Induced Osteoporosis" Journal of Clinical Medicine 15, no. 3: 993. https://doi.org/10.3390/jcm15030993
APA StyleGasser, R. W., Kocijan, R., Zendeli, A., & Resch, H. (2026). Drug-Induced Osteoporosis. Journal of Clinical Medicine, 15(3), 993. https://doi.org/10.3390/jcm15030993

