Anifrolumab—A Potential New Systemic Sclerosis Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Type I Interferons in Systemic Sclerosis Pathogenesis
4. Mechanism of Action of Anifrolumab
5. Preclinical and Clinical Evidence in Systemic Sclerosis
6. Comparison with Other Biologics or Targeted Agents in Systemic Sclerosis
7. Future Directions and Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRISS | Composite Response Index in Systemic Sclerosis |
| EBV | Epstein–Barr virus |
| FVC | forced vital capacity |
| IFN | interferon |
| IFN-I | type I interferons |
| IFNAR | interferon α/β receptor |
| IFNAR1 | interferon α/β receptor subunit 1 |
| IL | interleukin |
| ILD | interstitial lung disease |
| IRFs | interferon regulatory factors |
| ISG | interferon-stimulated gene |
| ISGF3 | interferon-stimulated gene factor 3 |
| JAK/STAT | Janus kinase–signal transducer and activator of transcription |
| mRSS | modified Rodnan skin score |
| mtDNA | mitochondrial DNA |
| MxA | myxovirus-resistance protein A |
| pDCs | plasmacytoid dendritic cells |
| SLE | systemic lupus erythematosus |
| SSc | systemic sclerosis |
| TGF-β | transforming growth factor beta |
| TLRs | Toll-like receptors |
References
- Brown, M.; O’Reilly, S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol. 2019, 195, 310–321. [Google Scholar] [CrossRef]
- Sieiro Santos, C.; Del Galdo, F. New Horizons in Systemic Sclerosis Treatment: Advances and Emerging Therapies in 2025. RMD Open 2025, 11, e005776. [Google Scholar] [CrossRef]
- Pope, J.E.; Denton, C.P.; Johnson, S.R.; Fernandez-Codina, A.; Hudson, M.; Nevskaya, T. State-of-the-Art Evidence in the Treatment of Systemic Sclerosis. Nat. Rev. Rheumatol. 2023, 19, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, E.R.; Andréasson, K.; Smith, V. Systemic sclerosis. Lancet 2023, 401, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, S.A.; Mendoza, F.A.; Piera-Velazquez, S. A review of recent studies on the pathogenesis of systemic sclerosis: Focus on fibrosis pathways. Front. Immunol. 2025, 16, 1551911. [Google Scholar] [CrossRef]
- Kakkar, V.; Assassi, S.; Allanore, Y.; Kuwana, M.; Denton, C.P.; Khanna, D.; Del Galdo, F. Type I Interferon Activation in Systemic Sclerosis: A Biomarker, a Target or the Culprit. Curr. Opin. Rheumatol. 2022, 34, 357–364. [Google Scholar] [CrossRef]
- Gerges, E.; Cauvet, A.; Schwarz, M.; Avouac, J.; Allanore, Y. Association of serum interferon α-2a levels with disease severity and prognosis in systemic sclerosis. Rheumatology 2025, 64, 2792–2801. [Google Scholar] [CrossRef]
- Miceli, I.; Morand, E.F.; Jones, S.A. Progress in the use of type I interferon blockade in systemic lupus erythematosus. Expert Opin. Biol. Ther. 2025, 25, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Kalunian, K.C.; Furie, R.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Tanaka, Y.; Winthrop, K.; Hupka, I.; Zhang, L.J.; Werther, S.; et al. A randomized, placebo-controlled phase III extension trial of the long-term safety and tolerability of anifrolumab in active systemic lupus erythematosus. Arthritis Rheumatol. 2023, 75, 253–265. [Google Scholar] [CrossRef]
- Khanna, D.; Denton, C.P.; Assassi, S.; Kuwana, M.; Allanore, Y.; Domsic, R.T.; Kleoudis, C.; Xu, J.; Csomor, E.; Seo, C.; et al. A randomised, parallel-group, double-blind, placebo-controlled phase 3 study to determine the effectiveness of the type I interferon receptor antibody, anifrolumab, in systemic sclerosis: DAISY study design and rationale. Clin. Exp. Rheumatol. 2024, 42, 1635–1644. [Google Scholar] [CrossRef]
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar] [CrossRef] [PubMed]
- Hervas-Stubbs, S.; Perez-Gracia, J.L.; Rouzaut, A.; Sanmamed, M.F.; Le Bon, A.; Melero, I. Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res. 2011, 17, 2619–2627. [Google Scholar] [CrossRef]
- Trinchieri, G. Type I interferon: Friend or foe? J. Exp. Med. 2010, 207, 2053–2063. [Google Scholar] [CrossRef]
- Tan, F.K.; Zhou, X.; Mayes, M.D.; Gourh, P.; Guo, X.; Marcum, C.; Jin, L.; Arnett, F.C., Jr. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology 2006, 45, 694–702. [Google Scholar] [CrossRef]
- York, M.R.; Nagai, T.; Mangini, A.J.; Lemaire, R.; van Seventer, J.M.; Lafyatis, R. A Macrophage Marker, Siglec-1, Is Increased on Circulating Monocytes in Patients with Systemic Sclerosis and Induced by Type I Interferons and Toll-Like Receptor Agonists. Arthritis Rheum. 2007, 56, 1010–1020. [Google Scholar] [CrossRef]
- Higgs, B.W.; Liu, Z.; White, B.; Zhu, W.; White, W.I.; Morehouse, C.; Brohawn, P.; Kiener, P.A.; Richman, L.; Fiorentino, D.; et al. Patients with Systemic Lupus Erythematosus, Myositis, Rheumatoid Arthritis and Scleroderma Share Activation of a Common Type I Interferon Pathway. Ann. Rheum. Dis. 2011, 70, 2029–2036. [Google Scholar] [CrossRef]
- Guo, X.; Higgs, B.W.; Bay-Jensen, A.C.; Karsdal, M.A.; Yao, Y.; Roskos, L.K.; White, W.I. Suppression of T Cell Activation and Collagen Accumulation by an Anti-IFNAR1 mAb, Anifrolumab, in Adult Patients with Systemic Sclerosis. J. Investig. Dermatol. 2015, 135, 2402–2409. [Google Scholar] [CrossRef] [PubMed]
- Brkić, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; van den Berg, W.; Dalm, V.A.; van Daele, P.L.; Severino, A.; et al. The Interferon Type I Signature Is Present in Systemic Sclerosis before Overt Fibrosis and Might Contribute to Its Pathogenesis through High BAFF Gene Expression and High Collagen Synthesis. Ann. Rheum. Dis. 2016, 75, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Assassi, S.; Mayes, M.D.; Arnett, F.C.; Gourh, P.; Agarwal, S.K.; McNearney, T.A.; Chaussabel, D.; Oommen, N.; Fischbach, M.; Shah, K.R.; et al. Systemic Sclerosis and Lupus: Points in an Interferon-Mediated Continuum. Arthritis Rheum. 2010, 62, 589–598. [Google Scholar] [CrossRef]
- Liu, X.; Mayes, M.D.; Tan, F.K.; Wu, M.; Reveille, J.D.; Harper, B.E.; Draeger, H.T.; Gonzalez, E.B.; Assassi, S. Correlation of Interferon-Inducible Chemokine Plasma Levels with Disease Severity in Systemic Sclerosis. Arthritis Rheum. 2013, 65, 226–235. [Google Scholar] [CrossRef]
- Cossu, M.; van Bon, L.; Preti, C.; Rossato, M.; Beretta, L.; Radstake, T.R.D.J. Earliest Phase of Systemic Sclerosis Typified by Increased Levels of Inflammatory Proteins in the Serum. Arthritis Rheumatol. 2017, 69, 2359–2369. [Google Scholar] [CrossRef] [PubMed]
- Assassi, S.; Swindell, W.R.; Wu, M.; Tan, F.D.; Khanna, D.; Furst, D.E.; Tashkin, D.P.; Jahan-Tigh, R.R.; Mayes, M.D.; Gudjonsson, J.E.; et al. Dissecting the Heterogeneity of Skin Gene Expression Patterns in Systemic Sclerosis. Arthritis Rheumatol. 2015, 67, 3016–3026. [Google Scholar] [CrossRef] [PubMed]
- Christmann, R.B.; Sampaio-Barros, P.; Stifano, G.; Borges, C.L.; de Carvalho, C.R.; Kairalla, R.; Parra, E.R.; Spira, A.; Simms, R.; Capellozzi, V.L.; et al. Association of Interferon- and Transforming Growth Factor β-Regulated Genes and Macrophage Activation with Systemic Sclerosis-Related Progressive Lung Fibrosis. Arthritis Rheumatol. 2014, 66, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, G.E.; Stock, C.J.; Shi-Wen, X.; Leoni, P.; Sestini, P.; Howat, S.L.; Bou-Gharios, G.; Nicholson, A.G.; Denton, C.P.; Grutters, J.C.; et al. Microarray Profiling Reveals Suppressed Interferon-Stimulated Gene Program in Fibroblasts from Scleroderma-Associated Interstitial Lung Disease. Respir. Res. 2013, 14, 80. [Google Scholar] [CrossRef]
- Frasca, L.; Lande, R. Toll-Like Receptors in Mediating Pathogenesis in Systemic Sclerosis. Clin. Exp. Immunol. 2020, 201, 14–24. [Google Scholar] [CrossRef]
- Bencze, D.; Fekete, T.; Pázmándi, K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int. J. Mol. Sci. 2021, 22, 4190. [Google Scholar] [CrossRef]
- van Bon, L.; Affandi, A.J.; Broen, J.; Christmann, R.B.; Marijnissen, R.J.; Stawski, L.; Farina, G.A.; Stifano, G.; Mathes, A.L.; Cossu, M.; et al. Proteome-Wide Analysis and CXCL4 as a Biomarker in Systemic Sclerosis. N. Engl. J. Med. 2014, 370, 433–443. [Google Scholar] [CrossRef]
- Lande, R.; Mennella, A.; Palazzo, R.; Pietraforte, I.; Stefanantoni, K.; Iannace, N.; Butera, A.; Boirivant, M.; Pica, R.; Conrad, C.; et al. Anti-CXCL4 antibody reactivity is present in systemic sclerosis (SSc) and correlates with the SSc type I interferon signature. Int. J. Mol. Sci. 2020, 21, 5102. [Google Scholar] [CrossRef]
- Farina, A.; Rosato, E.; York, M.; Gewurz, B.E.; Trojanowska, M.; Farina, G.A. Innate immune modulation induced by EBV lytic infection promotes endothelial cell inflammation and vascular injury in scleroderma. Front. Immunol. 2021, 12, 651013. [Google Scholar] [CrossRef]
- Bueno, M.; Papazoglou, A.; Valenzi, E.; Rojas, M.; Lafyatis, R.; Mora, A.L. Mitochondria, aging, and cellular senescence: Implications for scleroderma. Curr. Rheumatol. Rep. 2020, 22, 37. [Google Scholar] [CrossRef]
- Ryu, C.; Walia, A.; Ortiz, V.; Perry, C.; Woo, S.; Reeves, B.C.; Sun, H.; Winkler, J.; Kanyo, J.E.; Wang, W.; et al. Bioactive plasma mitochondrial DNA is associated with disease progression in scleroderma-associated interstitial lung disease. Arthritis Rheumatol. 2020, 72, 1905–1915. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bhattacharyya, S.; Goncalves Marangoni, R.; Carns, M.; Dennis-Aren, K.; Yeldandi, A.; Wei, J.; Varga, J. The JAK/STAT Pathway Is Activated in Systemic Sclerosis and Is Effectively Targeted by Tofacitinib. J. Scleroderma Relat. Disord. 2020, 5, 40–50. [Google Scholar] [CrossRef]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Akamata, K.; Asano, Y.; Taniguchi, T.; Yamashita, T.; Saigusa, R.; Nakamura, K.; Noda, S.; Aozasa, N.; Toyama, T.; Takahashi, T.; et al. Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology 2015, 54, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Assassi, S.; Li, N.; Volkmann, E.R.; Mayes, M.D.; Rünger, D.; Ying, J.; Roth, M.D.; Hinchcliff, M.; Khanna, D.; Frech, T.; et al. Predictive significance of serum interferon-inducible protein score for response to treatment in systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol. 2021, 73, 1005–1013. [Google Scholar] [CrossRef]
- Assassi, S.; Wang, X.; Chen, G.; Goldmuntz, E.; Keyes-Elstein, L.; Ying, J.; Wallace, P.K.; Turner, J.; Zheng, W.J.; Pascual, V.; et al. Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures. Ann. Rheum. Dis. 2019, 78, 1371–1378. [Google Scholar] [CrossRef]
- Manetti, M.; Romano, E.; Rosa, I.; Guiducci, S.; Bellando-Randone, S.; De Paulis, A.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Endothelial-to-Mesenchymal Transition Contributes to Endothelial Dysfunction and Dermal Fibrosis in Systemic Sclerosis. Ann. Rheum. Dis. 2017, 76, 924–934. [Google Scholar] [CrossRef]
- Tang, W.; Tummala, R.; Almquist, J.; Hwang, M.; White, W.I.; Boulton, D.W.; MacDonald, A. Clinical Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Anifrolumab. Clin. Pharmacokinet. 2023, 62, 655–671. [Google Scholar] [CrossRef]
- Jones, S.A.; Morand, E.F. Targeting interferon signalling in systemic lupus erythematosus: Lessons learned. Drugs 2024, 84, 625–635. [Google Scholar] [CrossRef]
- Ramaswamy, M.; Tummala, R.; Streicher, K.; Nogueira da Costa, A.; Brohawn, P. The pathogenesis, molecular mechanisms, and therapeutic potential of the interferon pathway in systemic lupus erythematosus and other autoimmune diseases. Int. J. Mol. Sci. 2021, 22, 11286. [Google Scholar] [CrossRef]
- Peng, L.; Oganesyan, V.; Wu, H.; Dall’Acqua, W.F.; Damschroder, M.M. Molecular Basis for Antagonistic Activity of Anifrolumab, an Anti-Interferon-α Receptor 1 Antibody. MAbs 2015, 7, 428–439. [Google Scholar] [CrossRef]
- Riggs, J.M.; Hanna, R.N.; Rajan, B.; Zerrouki, K.; Karnell, J.L.; Sagar, D.; Vainshtein, I.; Farmer, E.; Rosenthal, K.; Morehouse, C.; et al. Characterisation of Anifrolumab, a Fully Human Anti-Interferon Receptor Antagonist Antibody for the Treatment of Systemic Lupus Erythematosus. Lupus Sci. Med. 2018, 5, e000261. [Google Scholar] [CrossRef]
- Almquist, J.; Kuruvilla, D.; Mai, T.; Tummala, R.; White, W.I.; Tang, W.; Roskos, L.; Chia, Y.L. Nonlinear population pharmacokinetics of anifrolumab in healthy volunteers and patients with systemic lupus erythematosus. J. Clin. Pharmacol. 2022, 62, 1106–1120. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.; Rovin, B.; Mysler, E.F.; Furie, R.A.; Houssiau, F.A.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Chia, Y.L.; Tummala, R.; et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 2022, 81, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Vital, E.M.; Merrill, J.T.; Morand, E.F.; Furie, R.A.; Bruce, I.N.; Tanaka, Y.; Manzi, S.; Kalunian, K.C.; Kalyani, R.N.; Streicher, K.; et al. Anifrolumab efficacy and safety by type I interferon gene signature and clinical subgroups in patients with SLE: Post hoc analysis of pooled data from two phase III trials. Ann. Rheum. Dis. 2022, 81, 951–961. [Google Scholar] [CrossRef]
- Chia, Y.L.; Tummala, R.; Mai, T.H.; Rouse, T.; Streicher, K.; White, W.I.; Morand, E.F.; Furie, R.A. Relationship between anifrolumab pharmacokinetics, pharmacodynamics, and efficacy in patients with moderate to severe systemic lupus erythematosus. J. Clin. Pharmacol. 2022, 62, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Furie, R.; Khamashta, M.; Merrill, J.T.; Werth, V.P.; Kalunian, K.; Brohawn, P.; Illei, G.G.; Drappa, J.; Wang, L.; Yoo, S. Anifrolumab, an Anti-Interferon-α Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017, 69, 376–386. [Google Scholar] [CrossRef]
- Furie, R.A.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Ford, T.L.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I Interferon Inhibitor Anifrolumab in Active Systemic Lupus Erythematosus (TULIP-1): A Randomised, Controlled, Phase 3 Trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Kalunian, K.C.; Hiepe, F.; Sanchez-Guerrero, J.; Merrill, J.T.; et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef]
- Wu, M.; Skaug, B.; Bi, X.; Mills, T.; Salazar, G.; Zhou, X.; Reveille, J.; Agarwal, S.K.; Blackburn, M.R.; Mayes, M.D.; et al. Interferon regulatory factor 7 (IRF7) represents a link between inflammation and fibrosis in the pathogenesis of systemic sclerosis. Ann. Rheum. Dis. 2019, 78, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Ah Kioon, M.D.; Tripodo, C.; Fernandez, D.; Kirou, K.A.; Spiera, R.F.; Crow, M.K.; Gordon, J.K.; Barrat, F.J. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 2018, 10, eaam8458. [Google Scholar] [CrossRef]
- Affandi, A.J.; Carvalheiro, T.; Ottria, A.; de Haan, J.J.; Brans, M.A.D.; Brandt, M.M.; Tieland, R.G.; Lopes, A.P.; Fernández, B.M.; Bekker, C.P.J.; et al. CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell Rep. 2022, 38, 110189. [Google Scholar] [CrossRef]
- Skaug, B.; Khanna, D.; Swindell, W.R.; Hinchcliff, M.E.; Frech, T.M.; Steen, V.D.; Hant, F.N.; Gordon, J.K.; Shah, A.A.; Zhu, L.; et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann. Rheum. Dis. 2020, 79, 379–386. [Google Scholar] [CrossRef]
- Goldberg, A.; Geppert, T.; Schiopu, E.; Frech, T.; Hsu, V.; Simms, R.W.; Peng, S.L.; Yao, Y.; Elgeioushi, N.; Chang, L.; et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: A phase 1, multicenter, open-label study. Arthritis Res. Ther. 2014, 16, R57. [Google Scholar] [CrossRef] [PubMed]
- Ladislau, L.; Paik, J.J.; Lubin, G.; Gromatzky, A.; Mudd, P.N., Jr.; Ponda, M.P.; Christopher-Stine, L. Use of Janus kinase inhibitors in dermatomyositis: A systematic literature review. Clin. Exp. Rheumatol. 2023, 41, 348–358. [Google Scholar] [CrossRef]
- Kuster, S.; Jordan, S.; Elhai, M.; Held, U.; Steigmiller, K.; Bruni, C.; Cacciapaglia, F.; Vettori, S.; Siegert, E.; Rednic, S.; et al. Effectiveness and Safety of Tocilizumab in Patients with Systemic Sclerosis: A Propensity Score Matched Controlled Observational Study of the EUSTAR Cohort. RMD Open 2022, 8, e002477. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Denton, C.P.; Jahreis, A.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S.; et al. Safety and Efficacy of Subcutaneous Tocilizumab in Adults with Systemic Sclerosis (faSScinate): A Phase 2, Randomised, Controlled Trial. Lancet 2016, 387, 2630–2640. [Google Scholar] [CrossRef]
- Jordan, S.; Distler, J.H.W.; Maurer, B.; Huscher, D.; van Laar, J.M.; Allanore, Y.; Distler, O. EUSTAR Rituximab Study Group. Effects and Safety of Rituximab in Systemic Sclerosis: An Analysis from the European Scleroderma Trial and Research (EUSTAR) Group. Ann. Rheum. Dis. 2015, 74, 1188–1194. [Google Scholar] [CrossRef]
- Ebata, S.; Yoshizaki, A.; Oba, K.; Kashiwabara, K.; Ueda, K.; Uemura, Y.; Watadani, T.; Fukasawa, T.; Miura, S.; Yoshizaki-Ogawa, A.; et al. Safety and Efficacy of Rituximab in Systemic Sclerosis (DESIRES): A Double-Blind, Investigator-Initiated, Randomised, Placebo-Controlled Trial. Lancet Rheumatol. 2021, 3, e489–e497. [Google Scholar] [CrossRef]
- Allanore, Y.; Wung, P.; Soubrane, C.; Esperet, C.; Marrache, F.; Bejuit, R.; Lahmar, A.; Khanna, D.; Denton, C.P. On behalf of the Investigators. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 2020, 79, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Spiera, R.; Khanna, D.; Kuwana, M.; Furst, D.E.; Frech, T.M.; Hummers, L.; Stevens, W.; Matucci-Cerinic, M.; Baron, M.; Distler, O.; et al. A randomised, double-blind, placebo-controlled phase 3 study of lenabasum in diffuse cutaneous systemic sclerosis: RESOLVE-1 design and rationale. Clin. Exp. Rheumatol. 2021, 39, 124–133. [Google Scholar] [CrossRef]
- Allanore, O.; Highland, K.B.; Gahlemann, M.; Azuma, A.; Fischer, A.; Mayes, M.D.; Raghu, G.; Sauter, W.; Girard, M.; Alves, M.; et al. Nintedanib for systemic-sclerosis–associated interstitial lung disease. N. Engl. J. Med. 2019, 380, 2518–2528. [Google Scholar] [CrossRef]
- Allanore, Y.; Vonk, M.C.; Distler, O.; Azuma, A.; Mayes, M.D.; James, A.; Kohlbrenner, V.; Alves, M.; Khanna, D.; Highland, K.B.; et al. Continued nintedanib in patients with systemic sclerosis-associated interstitial lung disease: 3-year data from SENSCIS-ON. RMD Open 2025, 11, e005086. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. A Study to Evaluate Belimumab in Participants with Systemic Sclerosis–Associated Interstitial Lung Disease (SSc-ILD). Identifier Romilkimab (SAR156597). 2023. Available online: https://clinicaltrials.gov/study/NCT05878717 (accessed on 8 March 2025).
- ClinicalTrials.gov. A Study to Assess the Efficacy and Safety of MT-7117 in Subjects with Diffuse Cutaneous Systemic Sclerosis. Identifier NCT04440592. 2021. Available online: https://clinicaltrials.gov/study/NCT04440592 (accessed on 8 March 2025).
- ClinicalTrials.gov. A Study of Tulisokibart (MK-7240) in Participants with Systemic Sclerosis–Associated Interstitial Lung Disease (SSc-ILD). Identifier NCT05270668. 2022. Available online: https://clinicaltrials.gov/study/NCT05270668 (accessed on 8 March 2025).
- ClinicalTrials.gov. A Study of Guselkumab in Participants with Systemic Sclerosis. Identifier NCT04683029. 2020. Available online: https://clinicaltrials.gov/study/NCT04683029 (accessed on 8 March 2025).
- ClinicalTrials.gov. A Study of Ianalumab (VAY736) in Participants with Diffuse Cutaneous Systemic Sclerosis. Identifier NCT06470048. 2024. Available online: https://clinicaltrials.gov/study/NCT06470048 (accessed on 8 March 2025).
- Khanna, D.; Evnin, L.B.; Assassi, S.; Benton, W.W.; Gordon, G.; Maslova, K.; Steffgen, J.; Maher, T.M. Design of CONQUEST, a Novel, Randomized, Placebo-Controlled, Phase 2b Platform Clinical Trial to Investigate New Treatments for Patients with Early Active Systemic Sclerosis with Interstitial Lung Disease. J. Scleroderma Relat. Disord. 2024, 10, 121–132. [Google Scholar] [CrossRef]
- Khanna, D.; de Vries-Bouwstra, J.; Hoffmann-Vold, A.-M.; Kuwana, M.; Low, A.H.L.; Proudman, S.; Flack, M.; Kukreja, A.; Fagan, N.; Distler, O. A Phase II Study of Avenciguat, a Novel Soluble Guanylate Cyclase Activator, in Patients with Systemic Sclerosis: Study Design and Rationale of the VITALISScE™ Study. J. Scleroderma Relat. Disord. 2025, 10, 27–35. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Efficacy and Safety of Telitacicept in the Treatment of Systemic Sclerosis. Identifier NCT06375005. 2024. Available online: https://clinicaltrials.gov/study/NCT06375005 (accessed on 8 March 2025).
- Auth, J.; Müller, F.; Völkl, S.; Bayerl, N.; Distler, J.H.W.; Tur, C.; Raimondo, M.G.; Chenguiti Fakhouri, S.; Atzinger, A.; Coppers, B.; et al. CD19-Targeting CAR T-Cell Therapy in Patients with Diffuse Systemic Sclerosis: A Case Series. Lancet Rheumatol. 2025, 7, e83–e93. [Google Scholar] [CrossRef]
- Benfaremo, D.; Agarbati, S.; Mozzicafreddo, M.; Paolini, C.; Svegliati, S.; Moroncini, G. Skin Gene Expression Profiles in Systemic Sclerosis: From Clinical Stratification to Precision Medicine. Int. J. Mol. Sci. 2023, 24, 12548. [Google Scholar] [CrossRef] [PubMed]
- Tummala, R.; Rouse, T.; Berglind, A.; Santiago, L. Safety, Tolerability and Pharmacokinetics of Subcutaneous and Intravenous Anifrolumab in Healthy Volunteers. Lupus Sci. Med. 2018, 5, e000252. [Google Scholar] [CrossRef]
- Truchetet, M.E.; Brembilla, N.C.; Chizzolini, C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin. Rev. Allergy Immunol. 2023, 64, 262–283. [Google Scholar] [CrossRef]
- Nadel, A.; Nadel, M.; Taborska, N.; Stępień, B.; Gajdecki, J.; Brzezińska, O.; Opinc-Rosiak, A.; Makowska, J.; Lewandowska-Polak, A. Heart involvement in patients with systemic sclerosis—What have we learned about it in the last 5 years. Rheumatol. Int. 2024, 44, 1823–1836. [Google Scholar] [CrossRef]
- Xie, S.; Yan, J.; Jiang, B.; Liu, J.; Song, J. Immune Evasion Strategies of Seneca Valley Virus: Mechanisms of Host Innate Immune Suppression. Agric. Commun. 2025, 3, 100100. [Google Scholar] [CrossRef]
- Song, J.; Guo, Y.; Wang, D.; Quan, R.; Wang, J.; Liu, J. Seneca Valley virus 3C protease cleaves OPTN (optineurin) to impair selective autophagy and type I interferon signaling. Autophagy 2024, 20, 614–628. [Google Scholar] [CrossRef]
- Rokni, M.; Farhadi, E.; Kavosi, H.; Akhtari, M.; Madreseh, E.; Enayati, S.; Sadeghi Shaker, M.; Mostafaei, S.; Gharibdoost, F.; Mahmoudi, M.; et al. Interferon-γ Induces Interleukin-6 Production and Alpha-Smooth Muscle Actin Expression in Systemic Sclerosis Fibroblasts. Iran J. Allergy Asthma Immunol. 2024, 23, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Mehta, B.K.; Espinoza, M.E.; Hinchcliff, M.; Whitfield, M.L. Molecular “omic” signatures in systemic sclerosis. Eur. J. Rheumatol. 2020, 7, S173–S180. [Google Scholar] [CrossRef] [PubMed]

| Trial/Study | Population (n) | Study Design | Regimen | Estimated Effect/Key Findings | Safety Observations |
|---|---|---|---|---|---|
| MEDI-546 Phase I [54] | Systemic sclerosis (n = 34) | Phase I, multicenter, open-label, dose-escalation | Intravenous MEDI-546 (single and multiple ascending doses) | Dose-dependent suppression of interferon-regulated gene expression; confirmed pharmacodynamic target engagement | Generally well tolerated; upper respiratory tract infections were most frequently reported |
| DAISY (NCT05925803) [10] | Diffuse cutaneous SSc (planned n ≈ 300) | Phase III, randomized, double-blind, placebo-controlled | Subcutaneous anifrolumab vs. placebo | Primary endpoint: rCRISS25 at Week 52; secondary endpoints include mRSS, FVC, and organ-specific outcomes | Ongoing; safety monitoring with focus on infection risk |
| Drug | Target/Pathway | Mechanism of Action | Ref. | Main Clinical Outcomes | Status | Key Safety Considerations |
|---|---|---|---|---|---|---|
| Anifrolumab | Type I interferon receptor (IFNAR1) | Monoclonal antibody blocking type I interferon signaling | [10] | CRISS-based composite outcome; lung function, skin and PROs | Phase III, ongoing | Viral infections, particularly herpes zoster, reported with IFNAR blockade; SSc-specific safety outcomes pending. |
| Tocilizumab | IL-6 receptor | Monoclonal antibody inhibiting IL-6–mediated inflammation and fibrosis | [57] | Preservation of FVC in SSc-ILD; inconsistent skin benefit | Approved for SSc-ILD (selected regions) | Increased risk of infections; laboratory abnormalities including neutropenia and elevated liver enzymes. |
| Rituximab | CD20 | Anti-CD20 monoclonal antibody inducing B-cell depletion | [59] | Improved mRSS and lung function stabilization | Off label; supported by RCTs | Infusion reactions and infections; risk of hypogammaglobulinemia with repeated treatment. |
| Belimumab | BAFF (BLyS) | Monoclonal antibody inhibiting soluble BAFF and B-cell survival | [64] | Pulmonary function and safety outcomes in SSc-ILD with mRSS evaluation | Phase II/III, ongoing | Safety outcomes not yet reported for SSc-ILD trials (ongoing). |
| Romilkimab (SAR156597) | IL-4/IL-13 | Bispecific monoclonal antibody neutralizing IL-4 and IL-13 | [60] | Significant improvement in mRSS vs. placebo | Phase II completed | Generally acceptable safety profile; infections and injection-related reactions reported. |
| Lenabasum | CB2 receptor | Oral cannabinoid receptor type-2 agonist with pro-resolving effects | [61] | Failed to meet primary CRISS endpoint | Development discontinued | Generally well tolerated with predominantly mild to moderate adverse events. |
| Nintedanib | PDGFR/FGFR/VEGFR | Tyrosine kinase inhibitor with antifibrotic activity | [63] | Reduced annual rate of FVC decline in SSc-ILD | Approved for SSc-ILD | Gastrointestinal adverse events, particularly diarrhea; liver enzyme elevations requiring monitoring. |
| Guselkumab | IL-23 (p19) | Monoclonal antibody inhibiting IL-23 signaling | [67] | Change from baseline in mRSS | Phase II completed | Safety outcomes not yet reported for SSc trials referenced. |
| Ianalumab (VAY736) | BAFF-R | Anti-BAFF receptor monoclonal antibody causing B-cell depletion | [68] | Achieving 3/5 rCRISS25 | Phase II, ongoing | Safety outcomes not yet reported; trial ongoing. |
| Amlitelimab (KY1005) | OX40–OX40L axis | Non-depleting anti-OX40L monoclonal antibody reducing T-cell activation | [69] | Changes in FVC and overall treatment response (rCRISS) | Phase IIb, ongoing | Safety outcomes not yet reported in the SSc platform trial context. |
| Nerandomilast (BI 1015550) | PDE4B | Selective phosphodiesterase-4B inhibitor with anti-fibrotic effects | [69] | Changes in FVC and overall treatment response (rCRISS) | Phase IIb, ongoing | Safety outcomes not yet reported in the SSc platform trial context. |
| Avenciguat (BI 685509) | sGC | Oral soluble guanylate cyclase modulator enhancing NO–cGMP signaling | [70] | Changes in FVC, mRSS, CRISS, HAQ-DI and vascular outcomes | Phase II, ongoing | Safety outcomes not yet reported; phase II trial ongoing. |
| Telitacicept | BLyS/BAFF and APRIL | Recombinant fusion protein comprising TACI receptor and human IgG Fc | [71] | Changes in mRSS and lung function; efficacy and safety in dcSSc | Phase II, recruiting | Safety outcomes not yet reported; clinical trial currently recruiting. |
| CAR-T19 | CD19 (CAR-T) | Autologous CAR-T cell therapy inducing B-cell depletion | [72] | Effects on fibrotic and vascular organ manifestations in dcSSc | Early exploratory clinical experience | Cytokine release syndrome and cytopenias; increased infection risk during immune reconstitution. |
| MT-7117 | Melanocortin receptor modulation | Anti-inflammatory and anti-fibrotic effects | [65] | Efficacy using ACR CRISS | Phase II completed | Safety outcomes not yet reported for the referenced phase II study. |
| Tulisokibart (MK-7240/PRA023) | TL1A | Humanized monoclonal antibody directed against TL1A | [66] | Efficacy and safety in SSc-ILD | Phase II, active | Safety outcomes not yet reported; phase II study ongoing. |
| Bispecific antibodies (bsAbs) | Dual immune/fibrotic targets | Simultaneous targeting of two immune or fibrotic pathways | [2] | No mature SSc-specific efficacy data | Preclinical | No mature SSc-specific clinical safety data; safety expected to be target-dependent. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Radić, M.; Prižmić, P.Š.; Bečić, T.; Đogaš, H.; Perković, D.; Radić, J.; Fabijanić, D. Anifrolumab—A Potential New Systemic Sclerosis Treatment. J. Clin. Med. 2026, 15, 1104. https://doi.org/10.3390/jcm15031104
Radić M, Prižmić PŠ, Bečić T, Đogaš H, Perković D, Radić J, Fabijanić D. Anifrolumab—A Potential New Systemic Sclerosis Treatment. Journal of Clinical Medicine. 2026; 15(3):1104. https://doi.org/10.3390/jcm15031104
Chicago/Turabian StyleRadić, Mislav, Petra Šimac Prižmić, Tina Bečić, Hana Đogaš, Dijana Perković, Josipa Radić, and Damir Fabijanić. 2026. "Anifrolumab—A Potential New Systemic Sclerosis Treatment" Journal of Clinical Medicine 15, no. 3: 1104. https://doi.org/10.3390/jcm15031104
APA StyleRadić, M., Prižmić, P. Š., Bečić, T., Đogaš, H., Perković, D., Radić, J., & Fabijanić, D. (2026). Anifrolumab—A Potential New Systemic Sclerosis Treatment. Journal of Clinical Medicine, 15(3), 1104. https://doi.org/10.3390/jcm15031104

