Effects of the Sequence of Empiric Beta-Lactam and Vancomycin Administration on Clinical Outcomes in Patients with Bloodstream Infection: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Standard Protocol and Registrations
2.2. Sources, Searches, and Study Selection
2.3. Data Extraction, Risk of Bias Assessment, and Data Synthesis
3. Results
3.1. Study Selection and Characteristics
3.2. Summary of the Included Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDanel, J.S.; Perencevich, E.N.; Diekema, D.J.; Herwaldt, L.A.; Smith, T.C.; Chrischilles, E.A.; Dawson, J.D.; Jiang, L.; Goto, M.; Schweizer, M.L. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin. Infect. Dis. 2015, 61, 361–367. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef]
- Chambers, H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 2001, 7, 178–182. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 51, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- McConeghy, K.W.; Bleasdale, S.C.; Rodvold, K.A. The empirical combination of vancomycin and a β-lactam for Staphylococcus bacteremia. Clin. Infect. Dis. 2013, 57, 1760–1765. [Google Scholar] [CrossRef]
- Dilworth, T.J.; Ibrahim, O.; Hall, P.; Sliwinski, J.; Walraven, C.; Mercier, R.C. β-Lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone. Antimicrob. Agents Chemother. 2014, 58, 102–109. [Google Scholar] [CrossRef]
- Tran, N.; Rybak, M.J. β-Lactam combinations with vancomycin show synergistic activity against vancomycin-susceptible Staphylococcus aureus, vancomycin-intermediate S. aureus (VISA), and heterogeneous VISA. Antimicrob. Agents Chemother. 2018, 62, e00157-18. [Google Scholar] [CrossRef]
- Filippone, E.J.; Kraft, W.K.; Farber, J.L. The nephrotoxicity of vancomycin. Clin. Pharmacol. Ther. 2017, 102, 459–469. [Google Scholar] [CrossRef]
- Alshehri, A.M.; Al Yami, M.S.; Aldairem, A.; Alfehaid, L.; Almutairi, A.R.; Almohammed, O.A.; Badawoud, A.M. Evaluating the risk of acute kidney injury and mortality associated with concomitant use of vancomycin with piperacillin/tazobactam or meropenem in critically ill and non-critically ill patients: A systematic review and meta-analysis. BMC Infect. Dis. 2025, 25, 36. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Amoah, J.; Klein, E.Y.; Chiotos, K.; Cosgrove, S.E.; Tamma, P.D. Administration of a β-lactam prior to vancomycin as the first dose of antibiotic therapy improves survival in patients with bloodstream infections. Clin. Infect. Dis. 2022, 75, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Klompas, M.; McKenna, C.S.; Pak, T.R.; Shappell, C.N.; DelloStritto, L.; Rhee, C. Association between the sequence of β-lactam and vancomycin administration and mortality in patients with suspected sepsis. Clin. Infect. Dis. 2025, 80, 761–769. [Google Scholar] [CrossRef]
- Cravero, J.C.; Telchik, C.; Yakubik, T.; Woods, L.; Park, S.; Sisco, L. A single-institution retrospective analysis on the administration of β-lactam antibiotics prior to vancomycin in bacteremic patients. Bayl. Univ. Med. Cent. Proc. 2025, 38, 421–426. [Google Scholar] [CrossRef]
- Page, M.J.; E McKenzie, J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Pereson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2000; Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 31 December 2025).
- Thaden, J.T.; Park, L.P.; Maskarinec, S.A.; Ruffin, F.; Fowler, V.G., Jr.; van Duin, D. Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria. Antimicrob. Agents Chemother. 2017, 61, e02671-16. [Google Scholar] [CrossRef]
- Eng, R.H.; Smith, S.M.; Fan-Havard, P.; Ogbara, T. Effect of antibiotics on endotoxin release from gram-negative bacteria. Diagn. Microbiol. Infect. Dis. 1993, 16, 185–189. [Google Scholar] [CrossRef]
- Austin, J.P.; Foster, B.A.; Empey, A. Replace Red Man Syndrome with vancomycin flushing reaction. Hosp. Pediatr. 2020, 10, 623–624. [Google Scholar] [CrossRef]
- Cutrell, J.B.; Sanders, J.M. “The early beta-lactam catches the germ”: Empiric antimicrobial sequence in bloodstream infections. Clin. Infect. Dis. 2022, 75, 105–106. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]

| First Author | Country | Year | Type | Number of Hospitals | BLF | VF | Population | Bacterial Organisms | Illness or Mortality Score | Age, in yrs: Mean (SD) Median (IQR) | Gender, in Number and %: | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BLF | VF | BLF | VF | BLF | VF | |||||||||
| Amoah [13] | USA | 2021 | Multicenter retrospective | 5 | 2685 (79.5%) | 691 (20.5%) | Patients ≥ 13 years with BSIs who received both agents within 6 h of blood culture | Gram-negative organisms 66.3% Gram-positive organisms 44.9% MRSA 9.5% | PBS 2 (1–3) Charlson comorbidity index 7 (3–10) | PBS 2 (1–3) Charlson comorbidity index 7 (3–10) | 65 (53–76) | 64 (54–76) | Female, n = 1159 (55.3%) | Female, n = 296 (54.9%) |
| Kondo [14] | USA | 2024 | Multicenter retrospective | 5 | 21,449 (84.4%) | 3942 (15.6%) | Adults with suspected sepsis who received both agents within 24 h and acute organ dysfunction within 12 h | More MRSA (4.5% vs. 3.2%; p < 0.001) in the VF | AHRQ Elixhauser mortality score 15 (1–30) | AHRQ Elixhauser mortality score 14 (1–28) | 67 (56–78) | 65 (53–73) | Female, n = 12,323 (57.5%) | Female, n = 2275 (57.7%) |
| Cravero [15] | USA | 2025 | Single-institution Retrospective | 1 | 222 (93.3%) | 16 (6.7%) | Patients > 18 years with confirmed bacteremia who received both agents within 6 h of admission | Escherichia coli 25.21% MRSA 13.45% MSSA 11.34% | NR | NR | 66.7 ± 16.7 years | Female, n = 83 (37.39%) | Female, n = 6 (37.5%) | |
| First Author, Year, Country | Definition of Mortality | Incidence of Mortality | Crude Odds Ratio with 95% Confidence Interval (Cl) | Adjusted Odds Ratio (aOR) with 95% Confidence Interval (CI) | |
|---|---|---|---|---|---|
| BLF | VF | ||||
| Amoah 2021 USA [13] | Mortality within 7 days from blood culture collection | 6.9% (186/2685) | 10.7% (74/691) | ||
| OR: 0.68 [95% Cl, 0.50 –0.92] | aOR: 0.48 [95% Cl, 0.33–0.83] | ||||
| p = 0.001 | |||||
| MRSA Subgroup | |||||
| NR | aOR: 0.93 [95% CI, 0.33–2.63] | ||||
| Mortality within 48 h from the time of blood culture collection | NR | NR | NR | aOR: 0.45 [95% Cl, 0.24–0.83] | |
| Kondo 2024 USA [14] | In-hospital mortality | 13.4% (2874/21,449) | 13.6% (538/3942) | ||
| OR: 0.98 [95% Cl, 0.89 –1.08] | aOR: 0.89 [95% CI: 0.80–0.99] | ||||
| MRSA Subgroup | |||||
| NR | aOR: 0.91 [95% CI, 0.81–1.03] | ||||
| Cravero 2025 USA [15] | 30-day mortality | 26.1% (58/222) | 12.5% (2/16) | OR: 0.40 [95% CI: 0.089–1.831] | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alsuwaylihi, A.; Alshehri, A.M.; Al Yami, M.S. Effects of the Sequence of Empiric Beta-Lactam and Vancomycin Administration on Clinical Outcomes in Patients with Bloodstream Infection: A Systematic Review. J. Clin. Med. 2026, 15, 1024. https://doi.org/10.3390/jcm15031024
Alsuwaylihi A, Alshehri AM, Al Yami MS. Effects of the Sequence of Empiric Beta-Lactam and Vancomycin Administration on Clinical Outcomes in Patients with Bloodstream Infection: A Systematic Review. Journal of Clinical Medicine. 2026; 15(3):1024. https://doi.org/10.3390/jcm15031024
Chicago/Turabian StyleAlsuwaylihi, Abdulmajeed, Abdulmajeed M. Alshehri, and Majed S. Al Yami. 2026. "Effects of the Sequence of Empiric Beta-Lactam and Vancomycin Administration on Clinical Outcomes in Patients with Bloodstream Infection: A Systematic Review" Journal of Clinical Medicine 15, no. 3: 1024. https://doi.org/10.3390/jcm15031024
APA StyleAlsuwaylihi, A., Alshehri, A. M., & Al Yami, M. S. (2026). Effects of the Sequence of Empiric Beta-Lactam and Vancomycin Administration on Clinical Outcomes in Patients with Bloodstream Infection: A Systematic Review. Journal of Clinical Medicine, 15(3), 1024. https://doi.org/10.3390/jcm15031024

