Threshold Effect of Time to Admission on Long-Term Mortality in Geriatric Hip Fractures: A 24-H Critical Window Identified
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Hospital Treatment
2.4. Variables
2.5. Follow-Up
2.6. Statistics Analysis
3. Results
3.1. Patient Characteristics
3.2. Univariate Analysis of the Association Between Variables and Long-Term Mortality
3.3. Multivariate Analysis Between Preoperative TTA and Long-Term Mortality
3.4. Curve Fitting and Analysis of the Threshold or Saturation Effect
3.5. The Kaplan–Meier Survival Curves
3.6. Stratification Analysis
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nikhil, A.; Tony, F.; Alasdair, M.; Andrew, D.; Nicholas, C. Early mobilisation after hip fracture surgery is associated with improved patient outcomes: A systematic review and meta-analysis. Musculoskelet. Care 2024, 22, e1863. [Google Scholar]
- Walter, N.; Szymski, D.; Kurtz, S.M.; Lowenberg, D.W.; Alt, V.; Lau, E.C.; Rupp, M. Epidemiology and treatment of proximal femoral fractures in the elderly U.S. population. Sci. Rep. 2023, 13, 12734. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.C.; Cameron, I.D.; March, L.M.; National Health and Medical Research Council. Evidence-based guidelines for the management of hip fractures in older persons: An update. Med. J. Aust. 2010, 192, 37–41. [Google Scholar]
- Sheehan, K.J.; Guerrero, E.M.; Tainter, D.; Dial, B.; Milton-Cole, R.; Blair, J.A.; Alexander, J.; Swamy, P.; Kuramoto, L.; Guy, P.; et al. Prognostic factors of in-hospital complications after hip fracture surgery: A scoping review. Osteoporos. Int. 2019, 30, 1339–1351. [Google Scholar] [CrossRef]
- Uzoigwe, C.; Burnand, H.; Cheesman, C.; Aghedo, D.; Faizi, M.; Middleton, R.J.I. Early and ultra-early surgery in hip fracture patients improves survival. Injury 2013, 44, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, K.; Planchard, J.; You, J.; Sakr, W.A.; George, J.; Higuera-Rueda, C.A.; Saager, L.; Turan, A.; Kurz, A. Early Surgery Confers 1-Year Mortality Benefit in Hip-Fracture Patients. J. Orthop. Trauma 2018, 32, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.F.; Xu, S.L.; Yang, Z.; Xu, P. Early admission is better-the time to admission (TTA) is associated with one-year mortality in hip fracture. Int. J. Surg. 2024, 110, 7880–7888. [Google Scholar]
- He, W.; You, Y.Y.; Sun, K.; Xie, C.; Ming, Y.; Yu, L.N.; Zhang, F.J.; Yan, M. Admission delay is associated with worse surgical outcomes for elderly hip fracture patients: A retrospective observational study. World J. Emerg. Med. 2020, 11, 27–32. [Google Scholar] [CrossRef]
- Hughes, A.J.; Brent, L.; Biesma, R.; Kenny, P.J.; Hurson, C.J. The effect of indirect admission via hospital transfer on hip fracture patients in Ireland. Ir. J. Med. Sci. 2019, 188, 517–524. [Google Scholar]
- Ghosh, A.K.; Patel, S.; Chouhan, D.; Samra, T.; Kanojia, R.K.; Bhalla, A. Pre-Hospital Delays Represent Unnoticed Intervals That Affect Mortality Rates in Geriatric Hip Fractures: A Prospective Cohort Study. Cureus 2023, 15, e44773. [Google Scholar] [CrossRef]
- Vidal, E.; Moreira-Filho, D.; Pinheiro, R.; Souza, R.C.; Almeida, L.; Camargo, K., Jr.; Boas, P.; Fukushima, F.; Coeli, C. Delay from fracture to hospital admission: A new risk factor for hip fracture mortality? Osteoporos. Int. 2012, 23, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Mathew, G.; Agha, R.; Albrecht, J.; Goel, P.; Mukherjee, I.; Pai, P.; D’Cruz, A.K.; Nixon, I.J.; Roberto, K.; Enam, S.A.; et al. STROCSS 2021: Strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int. J. Surg. 2021, 96, 106165. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.; Hughes, K.; Barakat, A.; Edres, K.; da Assuncao, R.; Page, P.; Dawe, E. Inter- and intra-observer reliability of the new AO/OTA classification of proximal femur fractures. Injury 2021, 52, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Coviello, M.; Ippolito, F.; Abate, A.; Zavattini, G.; Zaccari, D.; Leone, A.; Noia, G.; Caiaffa, V.; Maccagnano, G. Computer-assisted navigation for intramedullary nailing of intertrochanteric femur fractures: A preliminary result. Med. Glas. 2023, 20, 1. [Google Scholar] [CrossRef]
- Lewis, D.P.; Waever, D.; Thorninger, R.; Donnelly, W.J. Hemiarthroplasty vs. Total Hip Arthroplasty for the Management of Displaced Neck of Femur Fractures: A Systematic Review and Meta-Analysis. J. Arthroplast. 2019, 34, 1837–1843.e2. [Google Scholar] [CrossRef]
- Goh, E.L.; Png, M.E.; Metcalfe, D.; Achten, J.; Appelbe, D.; Griffin, X.L.; Cook, J.A.; Costa, M.L.; Investigators, W.H.; Investigators, W.H.; et al. Risk factors associated with the development of complications after a hip fracture. Bone Jt. J. 2025, 107-B, 950–956. [Google Scholar] [CrossRef]
- Barcelo, M.; Torres, O.H.; Mascaro, J.; Casademont, J. Hip fracture and mortality: Study of specific causes of death and risk factors. Arch. Osteoporos. 2021, 16, 15. [Google Scholar] [CrossRef]
- Nahm, N.J.; Como, J.J.; Wilber, J.H.; Vallier, H.A. Early appropriate care: Definitive stabilization of femoral fractures within 24 hours of injury is safe in most patients with multiple injuries. J. Trauma 2011, 71, 175–185. [Google Scholar] [CrossRef]
- Torres, C.M.; Kenzik, K.M.; Saillant, N.N.; Scantling, D.R.; Sanchez, S.E.; Brahmbhatt, T.S.; Dechert, T.A.; Sakran, J.V. Timing to First Whole Blood Transfusion and Survival Following Severe Hemorrhage in Trauma Patients. JAMA Surg. 2024, 159, 374–381. [Google Scholar] [CrossRef]
- Hampton, D.A.; Lee, T.H.; Diggs, B.S.; McCully, S.P.; Schreiber, M.A. A predictive model of early mortality in trauma patients. Am. J. Surg. 2014, 207, 642–647. [Google Scholar] [CrossRef]
- Galvagno, S.M., Jr.; Nahmias, J.T.; Young, D.A. Advanced Trauma Life Support((R)) Update 2019: Management and Applications for Adults and Special Populations. Anesth. Clin. 2019, 37, 13–32. [Google Scholar] [CrossRef]
- Shen, Y.; Tan, B.; Zhang, J.; Zhang, N.; Wang, Z. Epidemiology and disease burden of fractures in Asia, 1990-2021: An analysis for the Global Burden of Disease Study 2021. J. Orthop. Transl. 2025, 52, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, G.; Liu, J. The incidence, prevalence, and health burden of hip fractures in China: Data from the global burden of disease study 2019. Prev. Med. Rep. 2024, 38, 102622. [Google Scholar] [CrossRef] [PubMed]
- Grundy, E. Family Support for Older People: Determinants and Consequences. In Ageing in Advanced Industrial States: Riding the Age Waves; Tuljapurkar, S., Ogawa, N., Gauthier, A.H., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 3, pp. 197–222. [Google Scholar]
- Zhang, Y.; Kolam, I.; Tumin, D. Preinjury functional status is associated with functional status after hip fracture in older adults without preinjury perceived social support. Int. J. Rehabil. Res. 2025, 48, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, B.Y.; Low, S.G.; Low, L.L. Association of Social Support with Rehabilitation Outcome among Older Adults with Hip Fracture Surgery: A Prospective Cohort Study at Post-Acute Care Facility in Asia. J. Am. Med. Dir. Assoc. 2023, 24, 1490–1496. [Google Scholar] [CrossRef]
- Tseng, M.Y.; Liang, J.; Yang, C.T.; Wang, J.S.; Wu, C.C.; Cheng, H.S.; Chen, C.Y.; Lin, Y.E.; Shyu, Y.L. Trajectories of social support are associated with health outcomes and depressive symptoms among older Taiwanese adults with diabetes following hip-fracture surgery. Int. J. Geriatr. Psychiatry 2022, 37. [Google Scholar] [CrossRef]
- Omar, A.; Cumal, A.; Vellani, S.; Krassikova, A.; Lapenskie, J.; Bayly, M.; Welch, V.A.; Ghogomu, E.; Iaboni, A.; McGilton, K.S. Health and social interventions to restore physical function of older adults post-hip fracture: A scoping review. BMJ Open 2021, 11, e053992. [Google Scholar] [CrossRef]


| TTA Subgroups | TTA ≤ 6 h | 6 h < TTA ≤ 12 h | 12 h < TTA ≤ 24 h | TTA > 24 h | p-Value † | p-Value * |
|---|---|---|---|---|---|---|
| No. of patients | 995 | 264 | 390 | 712 | ||
| TTA (h) | 3 (1–6) | 9 (7–12) | 24 (13–24) | 144 (26–5040) | <0.001 | <0.001 |
| Age (y) | 79.10 ± 6.52 | 78.94 ± 6.59 | 80.07 ± 7.12 | 79.76 ± 6.76 | 0.028 | 0.033 |
| Sex | 0.449 | - | ||||
| Male | 300 (30.15%) | 78 (29.55%) | 129 (33.08%) | 236 (33.15%) | ||
| Female | 695 (69.85%) | 186 (70.45%) | 261 (66.92%) | 476 (66.85%) | ||
| Injury mechanism | 0.001 | - | ||||
| Falling | 961 (96.58%) | 250 (94.70%) | 384 (98.46%) | 691 (97.05%) | ||
| Accident | 30 (3.02%) | 14 (5.30%) | 5 (1.28%) | 12 (1.69%) | ||
| Other | 4 (0.40%) | 0 (0.00%) | 1 (0.26%) | 9 (1.26%) | ||
| Fracture classification | <0.001 | - | ||||
| Intertrochanteric fracture | 789 (79.30%) | 204 (77.27%) | 281 (72.05%) | 471 (66.15%) | ||
| Femoral neck fracture | 206 (20.70%) | 60 (22.73%) | 109 (27.95%) | 241 (33.85%) | ||
| Hypertension | 0.02 | - | ||||
| No | 520 (52.26%) | 135 (51.14%) | 219 (56.15%) | 333 (46.77%) | ||
| Yes | 475 (47.74%) | 129 (48.86%) | 171 (43.85%) | 379 (53.23%) | ||
| Diabetes | 0.184 | - | ||||
| No | 808 (81.21%) | 206 (78.03%) | 326 (83.59%) | 562 (78.93%) | ||
| Yes | 187 (18.79%) | 58 (21.97%) | 64 (16.41%) | 150 (21.07%) | ||
| CHD | 0.965 | - | ||||
| No | 481 (48.34%) | 125 (47.35%) | 192 (49.23%) | 348 (48.88%) | ||
| Yes | 514 (51.66%) | 139 (52.65%) | 198 (50.77%) | 364 (51.12%) | ||
| Arrhythmia | 0.025 | - | ||||
| No | 702 (70.55%) | 177 (67.05%) | 271 (69.49%) | 454 (63.76%) | ||
| Yes | 293 (29.45%) | 87 (32.95%) | 119 (30.51%) | 258 (36.24%) | ||
| Hemorrhagic stroke | 0.002 | - | ||||
| No | 984 (98.89%) | 255 (96.59%) | 386 (98.97%) | 688 (96.63%) | ||
| Yes | 11 (1.11%) | 9 (3.41%) | 4 (1.03%) | 24 (3.37%) | ||
| Ischemic stroke | <0.001 | - | ||||
| No | 757 (76.08%) | 194 (73.48%) | 287 (73.59%) | 458 (64.33%) | ||
| Yes | 238 (23.92%) | 70 (26.52%) | 103 (26.41%) | 254 (35.67%) | ||
| Cancer | 0.598 | - | ||||
| No | 967 (97.19%) | 255 (96.59%) | 383 (98.21%) | 691 (97.05%) | ||
| Yes | 28 (2.81%) | 9 (3.41%) | 7 (1.79%) | 21 (2.95%) | ||
| Associated injuries | 0.417 | - | ||||
| No | 931 (93.57%) | 244 (92.42%) | 368 (94.36%) | 655 (91.99%) | ||
| Yes | 64 (6.43%) | 20 (7.58%) | 22 (5.64%) | 57 (8.01%) | ||
| Dementia | <0.001 | - | ||||
| No | 982 (98.69%) | 248 (93.94%) | 377 (96.67%) | 665 (93.40%) | ||
| Yes | 13 (1.31%) | 16 (6.06%) | 13 (3.33%) | 47 (6.60%) | ||
| COPD | 0.201 | - | ||||
| No | 942 (94.67%) | 254 (96.21%) | 361 (92.56%) | 667 (93.68%) | ||
| Yes | 53 (5.33%) | 10 (3.79%) | 29 (7.44%) | 45 (6.32%) | ||
| Hepatitis | 0.775 | - | ||||
| No | 969 (97.39%) | 257 (97.35%) | 377 (96.67%) | 688 (96.63%) | ||
| Yes | 26 (2.61%) | 7 (2.65%) | 13 (3.33%) | 24 (3.37%) | ||
| Gastritis | 0.352 | - | ||||
| No | 973 (97.79%) | 258 (97.73%) | 386 (98.97%) | 702 (98.60%) | ||
| Yes | 22 (2.21%) | 6 (2.27%) | 4 (1.03%) | 10 (1.40%) | ||
| Treatment strategy | <0.001 | - | ||||
| CRIF/ORIF | 784 (78.79%) | 199 (75.38%) | 278 (71.28%) | 463 (65.03%) | ||
| HA | 196 (19.70%) | 60 (22.73%) | 104 (26.67%) | 242 (33.99%) | ||
| THA | 15 (1.51%) | 5 (1.89%) | 8 (2.05%) | 7 (0.98%) | ||
| Time to operation (d) | 4.24 ± 2.32 | 4.62 ± 2.49 | 4.38 ± 2.08 | 4.18 ± 3.10 | 0.094 | <0.001 |
| Operation time (m) | 94.08 ± 35.93 | 93.28 ± 39.33 | 92.82 ± 35.30 | 91.70 ± 35.04 | 0.606 | 0.448 |
| Blood loss (mL) | 200 (50–1600) | 200 (50–1500) | 200 (50–1000) | 200 (20–1200) | 0.424 | 0.867 |
| Stay in hospital (d) | 8.52 ± 3.33 | 8.78 ± 2.99 | 8.49 ± 2.86 | 8.99 ± 3.81 | 0.021 | 0.044 |
| Follow up (m) | 41.94 ± 18.65 | 40.96 ± 19.57 | 38.40 ± 19.03 | 37.44 ± 19.04 | <0.001 | <0.001 |
| 2-Year Mortality | <0.001 | - | ||||
| Survival | 867 (87.14%) | 222 (84.09%) | 313 (80.26%) | 564 (79.21%) | ||
| Deceased | 128 (12.86%) | 42 (15.91%) | 77 (19.74%) | 148 (20.79%) | ||
| Long-term Mortality | <0.001 | - | ||||
| Survival | 741 (74.47%) | 179 (67.80%) | 263 (67.44%) | 445 (62.50%) | ||
| Deceased | 254 (25.53%) | 85 (32.20%) | 127 (32.56%) | 267 (37.50%) |
| Non-Adjusted | Adjust I | Adjust II | |
|---|---|---|---|
| TTA (h) | 1.000 (1.000, 1.001) 0.009 | 1.000 (1.000, 1.000) 0.0147 | 1.000 (1.000, 1.000) 0.040 |
| TTA (h) categorical | |||
| TTA ≤ 6 h | 1 | 1 | 1 |
| 6 h < TTA ≤ 12 h | 1.292 (1.011, 1.652) 0.041 | 1.298 (1.015, 1.660) 0.037 | 1.223 (0.955, 1.568) 0.111 |
| 12 h < TTA ≤ 24 h | 1.392 (1.125, 1.723) 0.002 | 1.266 (1.022, 1.567) 0.031 | 1.250 (1.008, 1.550) 0.042 |
| TTA > 24 h | 1.649 (1.389, 1.958) <0.001 | 1.575 (1.326, 1.871) <0.001 | 1.489 (1.249, 1.776) <0.001 |
| p for trend | <0.001 | <0.001 | <0.001 |
| Outcome: | Mortality |
|---|---|
| Model | |
| Cox proportional hazards regression model | 1.000 (1.000, 1.000) 0.040 |
| The two-piecewise Cox proportional hazards regression model | |
| Inflection point (K) | 24 |
| <K | 1.016 (1.008, 1.024) < 0.001 |
| >K | 1.000 (1.000, 1.000) 0.531 |
| p-value for log-likelihood ratio test | <0.001 |
| 95% CI of the Inflection point | 21, 28 |
| Subgroups | No. of Patients | Inflection Point (h) | HR (95% CI) p-Value < Inflection Point | HR (95% CI) p-Value > Inflection Point | p for Log-Likelihood Ratio Test |
|---|---|---|---|---|---|
| Age (y) | |||||
| 65 ≤ age < 80 | 1130 | 312 | 1.003 (1.001, 1.004) < 0.001 | 0.999 (0.998, 1.001) 0.369 | <0.001 |
| age ≥ 80 | 1229 | 48 | 1.008 (1.003, 1.013) 0.002 | 1.000 (0.999, 1.001) 0.945 | 0.002 |
| Fracture classification | |||||
| Intertrochanteric fracture | 1745 | 11 | 1.037 (1.013, 1.062) 0.003 | 1.000 (1.000, 1.001) 0.067 | 0.003 |
| Femoral neck fracture | 616 | 48 | 1.017 (1.008, 1.027) < 0.001 | 0.999 (0.999, 1.000) 0.243 | <0.001 |
| CHD | |||||
| Yes | 1215 | 11 | 1.048 (1.018, 1.079) 0.002 | 1.000 (1.000, 1.001) 0.097 | 0.001 |
| No | 1144 | 36 | 1.012 (1.004, 1.021) 0.005 | 1.000 (0.999, 1.000) 0.296 | 0.004 |
| Arrhythmia | |||||
| Yes | 757 | 12 | 1.039 (1.007, 1.073) 0.018 | 1.000 (0.999, 1.001) 0.999 | 0.017 |
| No | 1602 | 72 | 1.007 (1.004, 1.011) < 0.001 | 1.000 (0.999, 1.001) 0.713 | <0.001 |
| Ischemic stroke | |||||
| Yes | 665 | 48 | 1.007 (1.000, 1.014) 0.054 | 1.001 (1.000, 1.001) 0.022 | 0.085 |
| No | 1694 | 264 | 1.002 (1.001, 1.003) < 0.001 | 0.999 (0.999, 1.000) 0.130 | <0.001 |
| Cancer | |||||
| Yes | 65 | 12 | 1.138 (1.019, 1.271) 0.021 | 0.999 (0.997, 1.001) 0.157 | 0.015 |
| No | 2294 | 72 | 1.005 (1.002, 1.008) 0.002 | 1.000 (0.999, 1.000) 0.638 | <0.001 |
| Dementia | |||||
| Yes | 89 | 4 | 1.971 (0.670, 5.799) 0.218 | 1.002 (1.000, 1.004) 0.032 | 0.139 |
| No | 2270 | 17 | 1.026 (1.013, 1.038) < 0.001 | 1.000 (0.999, 1.000) 0.868 | <0.001 |
| COPD | |||||
| Yes | 137 | 2 | 0.793 (0.104, 6.069) 0.824 | 1.000 (0.998, 1.002) 0.750 | 0.829 |
| No | 2222 | 72 | 1.006 (1.003, 1.009) < 0.001 | 1.000 (0.999, 1.000) 0.920 | <0.001 |
| Hepatitis | |||||
| Yes | 70 | 6 | 1.406 (1.056, 1.871) 0.020 | 0.999 (0.997, 1.001) 0.503 | 0.011 |
| No | 2289 | 72 | 1.006 (1.003, 1.009) < 0.001 | 1.000 (0.999, 1.000) 0.936 | <0.001 |
| Time to operation (d) | |||||
| <3 | 556 | 312 | 1.002 (1.001, 1.004) 0.003 | 1.000 (0.999, 1.001) 0.793 | 0.009 |
| ≥3 | 1803 | 20 | 1.021 (1.001, 1.032) < 0.001 | 1.000 (0.999, 1.000) 0.624 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, B.-F.; Wang, M.-X. Threshold Effect of Time to Admission on Long-Term Mortality in Geriatric Hip Fractures: A 24-H Critical Window Identified. J. Clin. Med. 2026, 15, 752. https://doi.org/10.3390/jcm15020752
Zhang B-F, Wang M-X. Threshold Effect of Time to Admission on Long-Term Mortality in Geriatric Hip Fractures: A 24-H Critical Window Identified. Journal of Clinical Medicine. 2026; 15(2):752. https://doi.org/10.3390/jcm15020752
Chicago/Turabian StyleZhang, Bin-Fei, and Ming-Xu Wang. 2026. "Threshold Effect of Time to Admission on Long-Term Mortality in Geriatric Hip Fractures: A 24-H Critical Window Identified" Journal of Clinical Medicine 15, no. 2: 752. https://doi.org/10.3390/jcm15020752
APA StyleZhang, B.-F., & Wang, M.-X. (2026). Threshold Effect of Time to Admission on Long-Term Mortality in Geriatric Hip Fractures: A 24-H Critical Window Identified. Journal of Clinical Medicine, 15(2), 752. https://doi.org/10.3390/jcm15020752

