Early Post-STEMI Cardiac Rehabilitation in the CSC-Infarct Program: Real-World Safety and Effectiveness of Individualized Training Protocols
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Inclusion and Exclusion Criteria
2.3. Rehabilitation Protocol
Clinical Rationale for Training Assignment
2.4. Clinical Parameter Assessment
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Study Group Characteristics
3.2. Rehabilitation Outcomes by Training Protocol
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| KOS | Poland’s Coordinated Specialist Care Program |
| HRR | heart rate recovery |
| MMPs | matrix metalloproteinases |
| LVEF | left ventricular ejection fraction |
| NFZ | National Health Fund |
| ACS | acute coronary syndrome |
| 6MWT | 6 min walk test |
| PCI | percutaneous coronary intervention |
| DPr | double product |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021, Erratum in J. Am. Coll. Cardiol. 2021, 77, 1958–1959. https://doi.org/10.1016/j.jacc.2021.02.039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Health Fund. National Health Fund on Health. In Ischemic Heart Disease; National Health Fund Headquarters: Warsaw, Poland, 2020. Available online: https://ezdrowie.gov.pl/portal/home/badania-i-dane/zdrowe-dane/raporty/nfz-o-zdrowiu-choroba-niedokrwienna-serca (accessed on 15 December 2025).
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed]
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799, Erratum in Eur. Heart J. 2022, 43, 799. https://doi.org/10.1093/eurheartj/ehac064. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014, 11, 255–265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laurent, E.; Godillon, L.; Tassi, M.-F.; Marcollet, P.; Chassaing, S.; Decomis, M.; Bezin, J.; Laure, C.; Angoulvant, D.; Range, G.; et al. Impact of Cardiac Rehabilitation on Prognosis After ST-Segment Elevation Myocardial Infarction: A Nationwide Analysis. Front. Cardiovasc. Med. 2025, 12, 1484401. [Google Scholar] [CrossRef]
- Grochulska, A.; Bryndal, A.; Glowinski, S. The impact of early rehabilitation program on exercise tolerance in post-myocardial infarction patients: A 5-week intervention study. BMC Cardiovasc. Disord. 2025, 25, 542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lindsey, M.L.; Zamilpa, R. Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc. Ther. 2012, 30, 31–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iyer, R.P.; Patterson, N.L.; Fields, G.B.; Lindsey, M.L. The history of matrix metalloproteinases: Milestones, myths, and misperceptions. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H919–H930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, X.M.; Xu, Q.; Kiriazis, H.; Dart, A.M.; Du, X.J. Mouse model of post-infarct ventricular rupture: Time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovasc. Res. 2005, 65, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Heymans, S.; Luttun, A.; Nuyens, D.; Theilmeier, G.; Creemers, E.; Moons, L.; Dyspersin, G.D.; Cleutjens, J.P.; Shipley, M.; Angellilo, A.; et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat. Med. 1999, 5, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- DeLeon-Pennell, K.Y.; Meschiar, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [CrossRef]
- Spinale, F.G. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol. Rev. 2007, 87, 1285–1342. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.L.; Iyer, R.P.; Jung, M.; DeLeon-Pennell, K.Y.; Ma, Y. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J. Mol. Cell Cardiol. 2016, 91, 134–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, M.; Wang, L.; Ren, Y.L. Effect of exercise training on left ventricular remodeling in patients with myocardial infarction and possible mechanisms. World J. Clin. Cases 2021, 9, 6308–6318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahmoud, S.Y.; Zaki, M.A.; Alamin, A.M.; Yassin, I.A.F.; Hassaan, A.M. Effect of Cardiac Rehabilitation on Left Ventricular Remodeling After Acute Anterior Wall ST Segment Elevation Myocardial Infarction Treated by Late PCI Using 3D Echocardiography: A Randomized Study. Al-Azhar Int. Med. J. 2024, 5, 33. [Google Scholar] [CrossRef]
- Webb, C.S.; Bonnema, D.D.; Ahmed, S.H.; Leonardi, A.H.; McClure, C.D.; Clark, L.L.; Stroud, R.E.; Corn, W.C.; Finklea, L.; Zile, M.R.; et al. Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: Relation to left ventricular remodeling. Circulation 2006, 114, 1020–1027. [Google Scholar] [CrossRef]
- Vanhoutte, D.; Schellings, M.; Pinto, Y.; Heymans, S. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: A temporal and spatial window. Cardiovasc. Res. 2006, 69, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chiao, Y.A.; Clark, R.; Flynn, E.R.; Yabluchanskiy, A.; Ghasemi, O.; Zouein, F.; Lindsey, M.L.; Jin, Y.F. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc. Res. 2015, 106, 421–431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halade, G.V.; Jin, Y.F.; Lindsey, M.L. Matrix metalloproteinase (MMP)-9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol. Ther. 2013, 139, 32–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’erasmo, L.; Bini, S.; Casula, M.; Gazzotti, M.; Bertolini, S.; Calandra, S.; Tarugi, P.; Averna, M.; Iannuzzo, G.; Fortunato, G.; et al. Mandatory criteria for cardiac rehabilitation programs: 2024 guidelines from the Secondary Prevention and Cardiac Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2024, 31, 1345–1366. [Google Scholar] [CrossRef]
- Brown, T.M.; Pack, Q.R.; Aberegg, E.; Brewer, L.C.; Ford, Y.R.; Forman, D.E.; Gathright, E.C.; Khadanga, S.; Ozemek, C.; Thomas, R.J. Core components of cardiac rehabilitation programs: 2024 update: A scientific statement from the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2024, 150, e328–e347. [Google Scholar] [CrossRef]
- Aleksova, A.; Fluca, A.L.; Beltrami, A.P.; Dozio, E.; Sinagra, G.; Marketou, M.; Janjusevic, M. Part 1—Cardiac Rehabilitation After an Acute Myocardial Infarction: Four Phases of the Programme—Where Do We Stand? J. Clin. Med. 2025, 14, 1117. [Google Scholar] [CrossRef]
- Schon, C.; Felismino, A.; de Sá, J.; Corte, R.; Ribeiro, T.; Bruno, S. Efficacy of early cardiac rehabilitation after acute myocardial infarction: Randomized clinical trial protocol. PLoS ONE 2024, 19, e0296345, Erratum in PLoS ONE 2024, 19, e0300855. https://doi.org/10.1371/journal.pone.0300855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients with Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 151, e771–e862, Erratum in Circulation 2025, 151, e865. https://doi.org/10.1161/CIR.0000000000001328. Erratum in Circulation 2025, 151, e1098. https://doi.org/10.1161/CIR.0000000000001346. Erratum in Circulation 2025, 152, e402. https://doi.org/10.1161/CIR.0000000000001397. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, T.C.; Begot, I.; Bolzan, D.W.; Machado, L.; Reis, M.S.; Papa, V.; Carvalho, A.C.; Arena, R.; Gomes, W.J.; Guizilini, S. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: A randomized controlled trial. Can. J. Cardiol. 2015, 31, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Dubach, P.; Myers, J.; Dziekan, G.; Goebbels, U.; Reinhart, W.; Muller, P.; Buser, P.; Stulz, P.; Vogt, P.; Ratti, R. Effect of high intensity exercise training on central hemodynamic responses to exercise in men with reduced left ventricular function. J. Am. Coll. Cardiol. 1997, 29, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Cannistra, L.B.; Balady, G.J.; O’Malley, C.J.; Weiner, D.A.; Ryan, T.J. Comparison of the clinical profile and outcome of women and men in cardiac rehabilitation. Am. J. Cardiol. 1992, 69, 1274–1279. [Google Scholar] [CrossRef]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Naka, K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc. Dis. 2019, 8, 2048004019843047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koller, L.; Hohensinner, P.; Sulzgruber, P.; Blum, S.; Maurer, G.; Wojta, J.; Hülsmann, M.; Niessner, A. Prognostic relevance of circulating endothelial progenitor cells in patients with chronic heart failure. Thromb. Haemost. 2016, 116, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Jankowiak, M.; Rój, J. Regional Variability in the Access to Cardiac Rehabilitation in Poland. Healthcare 2020, 8, 468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Departament Analiz i Innowacji; NFZ o Zdrowiu. Choroba Niedokrwienna Serca; Centralny Narodowy Fundusz Zdrowia: Warszawa, Polska, 2020. (In Polish)
- Wita, K.; Kułach, A.; Wita, M.; Wybraniec, M.T.; Wilkosz, K.; Polak, M.; Matla, M.; Maciejewski, Ł.; Fluder, J.; Kalańska-Łukasik, B.; et al. Managed Care after Acute Myocardial Infarction (KOS-zawał) reduces major adverse cardiovascular events by 45% in 3-month follow-up – single-center results of Poland’s National Health Fund program of comprehensive post-myocardial infarction care. Arch. Med. Sci. 2020, 16, 551–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jankowski, P.; Czarnecka, D.; Badacz, L.; Bogacki, P.; Dubiel, J.S.; Grodecki, J.; Grodzicki, T.; Maciejewicz, J.; Mirek-Bryniarska, E.; Nessler, J.; et al. Practice setting and secondary prevention of coronary artery disease. Arch. Med. Sci. 2018, 14, 979–987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dibben, G.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2021, 11, CD001800. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salzwedel, A.; Jensen, K.; Rauch, B.; Doherty, P.; Metzendorf, M.I.; Hackbusch, M.; Völler, H.; Schmid, J.P.; Davos, C.H. Effectiveness of comprehensive cardiac rehabilitation in coronary artery disease patients treated according to contemporary evidence based medicine: Update of the Cardiac Rehabilitation Outcome Study (CROS-II). Eur. J. Prev. Cardiol. 2020, 27, 1756–1774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hannan, A.L.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.S.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonçalves, C.; Raimundo, A.; Abreu, A.; Pais, J.; Bravo, J. Effects of High-Intensity Interval Training vs Moderate-Intensity Continuous Training on Body Composition and Blood Biomarkers in Coronary Artery Disease Patients: A Randomized Controlled Trial. Rev. Cardiovasc. Med. 2024, 25, 102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costache, A.D.; Maștaleru, A.; Leon, M.M.; Roca, M.; Gavril, R.S.; Cosău, D.E.; Rotundu, A.; Amagdalinei, A.I.; Mitu, O.; Costache Enache, I.I.; et al. High-Intensity Interval Training vs. Medium-Intensity Continuous Training in Cardiac Rehabilitation Programs: A Narrative Review. Medicina 2024, 60, 1875. [Google Scholar] [CrossRef]
- Rognmo, Ø.; Moholdt, T.; Bakken, H.; Hole, T.; Mølstad, P.; Myhr, N.E.; Grimsmo, J.; Wisløff, U. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 2012, 126, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A.; Lee, S.J.; et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Jegier, A.; Szalewska, D.; Mawlichanów, A.; Bednarczyk, T.; Eysymontt, Z.; Gałaszek, M.; Mamcarz, A.; Mierzyńska, A.; Piotrowicz, E.; Piotrowicz, R.; et al. Comprehensive cardiac rehabilitation as the keystone in the secondary prevention of cardiovascular disease. Kardiol. Pol. 2021, 79, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Smolis-Bąk, E.; Dąbrowski, R. Nowoczesna Rehabilitacja Kardiologiczna; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2023. (In Polish) [Google Scholar]
- Price, K.J.; Gordon, B.A.; Bird, S.R.; Benson, A.C. A review of guidelines for cardiac rehabilitation exercise programmes: Is there an international consensus? Eur. J. Prev. Cardiol. 2016, 23, 1715–1733. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Scherr, J.; Wolfarth, B.; Christle, J.W.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 2013, 113, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Bryndal, A.; Glowinski, S.; Grochulska, A. Influence of Risk Factors on Exercise Tolerance in Patients after Myocardial Infarction-Early Cardiac Rehabilitation in Poland. J. Clin. Med. 2022, 11, 5597. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grochulska, A.; Glowinski, S.; Bryndal, A. Cardiac Rehabilitation and Physical Performance in Patients after Myocardial Infarction: Preliminary Research. J. Clin. Med. 2021, 10, 2253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Jouven, X.; Empana, J.P.; Schwartz, P.J.; Desnos, M.; Courbon, D.; Ducimetière, P. Heart-rate profile during exercise as a predictor of sudden death. N. Engl. J. Med. 2005, 352, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Cai, X.; Sun, Z.; Li, L.; Zuegel, M.; Steinacker, J.M.; Schumann, U. Heart Rate Recovery and Risk of Cardiovascular Events and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2017, 6, e005505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carter, J.B.; Banister, E.W.; Blaber, A.P. Effect of endurance exercise on autonomic control of heart rate. Sports Med. 2003, 33, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Routledge, F.S.; Campbell, T.S.; McFetridge-Durdle, J.A.; Bacon, S.L. Improvements in heart rate variability with exercise therapy. Can. J. Cardiol. 2010, 26, 303–312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aleksova, A.; Fluca, A.L.; Beltrami, A.P.; Dozio, E.; Sinagra, G.; Marketou, M.; Janjusevic, M. Part 2-Cardiac Rehabilitation After an Acute Myocardial Infarction: Timing and Gender Differences in Adherence; Where Do We Stand? J. Clin. Med. 2025, 14, 1189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cowie, A.; Buckley, J.; Doherty, P.; Furze, G.; Hayward, J.; Hinton, S.; Jones, J.; Speck, L.; Dalal, H.; Mills, J. British Association for Cardiovascular Prevention and Rehabilitation (BACPR). Standards and core components for cardiovascular disease prevention and rehabilitation. Heart 2019, 105, 510–515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolarczyk-Haczyk, A.; Konopko, M.; Mazur, M.; Żurakowski, A.; Gąsior, M.; Rogala, M.; Jankowski, P.; Kaźmierczak, P.; Milewski, K.P.; Buszman, P.E.; et al. Long-term outcomes of the Coordinated Care Program in Patients after Myocardial Infarction (KOS-MI). Kardiol. Pol. 2023, 81, 587–596. [Google Scholar] [CrossRef] [PubMed]
- La Rovere, M.T.; Bigger, J.T., Jr.; Marcus, F.I.; Mortara, A.; Schwartz, P.J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998, 351, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E. Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: Effect of endurance exercise training. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1171–H1193. [Google Scholar] [CrossRef] [PubMed]
- Florea, V.G.; Cohn, J.N. The autonomic nervous system and heart failure. Circ. Res. 2014, 114, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Bellet, R.N.; Adams, L.; Morris, N.R. The 6-minute walk test in outpatient cardiac rehabilitation: Validity, reliability and responsiveness—A systematic review. Physiotherapy 2012, 98, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Pollentier, B.; Irons, S.L.; Benedetto, C.M.; Dibenedetto, A.M.; Loton, D.; Seyler, R.D.; Tych, M.; Newton, R.A. Examination of the six minute walk test to determine functional capacity in people with chronic heart failure: A systematic review. Cardiopulm. Phys. Ther. J. 2010, 21, 13–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gremeaux, V.; Troisgros, O.; Benaïm, S.; Hannequin, A.; Laurent, Y.; Casillas, J.M.; Benaïm, C. Determining the minimal clinically important difference for the six-minute walk test and the 200-meter fast-walk test during cardiac rehabilitation program in coronary artery disease patients after acute coronary syndrome. Arch. Phys. Med. Rehabil. 2011, 92, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, A.; Longo Elia, R.; Condello, F.; Colombo, F.; Pierucci, N.; Arabia, G.; Matteucci, A.; Metra, M.; Adamo, M.; Vizzardi, E.; et al. Cardiac rehabilitation in patients with atrial fibrosis. Monaldi Arch. Chest Dis. 2025. epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Gobel, F.L.; Norstrom, L.A.; Nelson, R.R.; Jorgensen, C.R.; Wang, Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 1978, 57, 549–556. [Google Scholar] [CrossRef] [PubMed]






| Parameter | All Group (N = 288) | Interval Training (n = 127) | Continuous Training (n = 161) | p-Value |
|---|---|---|---|---|
| Age (years) | 61.5 ± 10.7 | 65.8 ± 9.2 | 58.1 ± 10.6 | <0.001 1 |
| Sex (F/M), n (%) | Female: 135 (46.9%) | Female: 66 (52.0%) | Female: 69 (42.9%) | 0.156 2 |
| Male: 153 (53.1%) | Male: 61 (48.0%) | Male: 92 (57.1%) | ||
| BMI (kg/m2) | 27.9 ± 4.6 | 28.3 ± 4.7 | 27.6 ± 4.6 | 0.260 1 |
| BMI-classification | 0.550 3 | |||
| underweight | 2 (0.7%) | 0 (0.00%) | 2 (1.2%) | |
| normal weight | 98 (34.0%) | 41 (32.3%) | 57 (35.4%) | |
| overweight | 92 (31.9%) | 41 (32.3%) | 51 (31.7%) | |
| class I obesity | 71 (24.7%) | 31 (24.4%) | 40 (24.8%) | |
| class II obesity | 23 (8.0) | 13 (10.2%) | 10 (6.2%) | |
| class III obesity | 2 (0.7%) | 1 (0.8%) | 1 (0.6%) | |
| WHR | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 0.789 1 |
| LVEF (%) | 52.3 ± 9.4 | 51.0 ± 10.2 | 53.3 ± 8.6 | 0.060 1 |
| Time from infarction (days) | 16.8 ± 3.4 | 16.9 ± 3.6 | 16.7 ± 3.3 | 0.763 1 |
| Parameter | All Group (N = 288) | Interval Training (n = 127) | Continuous Training (n = 161) | p-Value |
|---|---|---|---|---|
| Overweight/obesity | Yes—185 (64.2%) | Yes—85 (66.9%) | Yes—100 (62.1%) | 0.470 1 |
| No—103 (35.8%) | No—42 (33.1%) | No—61 (37.9%) | ||
| Hypertriglyceridemia | Yes—188 (65.8%) | Yes—79 (62.2%) | Yes—109 (67.7%) | 0.396 1 |
| No—100 (34.7%) | No—48 (37.8%) | No—52 (32.3%) | ||
| Smoking | Yes—110 (39.2%) | Yes—44 (34.7%) | Yes—66 (41.0%) | 0.328 1 |
| No—178 (61.8%) | No—83 (65.4%) | No—95 (59.0%) | ||
| Hypertension | Yes—219 (76.0%) | Yes—110 (86.6%) | Yes—109 (67.7%) | <0.001 1 |
| No—69 (24.0%) | No—17 (13.4%) | No—52 (32.3%) | ||
| Diabetes | Yes—109 (37.9%) | Yes—48 (37.8%) | Yes—61 (37.9%) | 0.915 1 |
| No—179 (62.2%) | No—79 (62.2%) | No—100 (62.1%) |
| Baseline Data | ||||
|---|---|---|---|---|
| Parameter | All Group (N = 288) | Interval Training (n = 127) | Continuous Training (n = 161) | p-Value Interval vs. Continuous |
| HR rest | 73.5 ± 12.0 | 73.9 ± 11.6 | 73.2 ± 12.3 | 0.516 1 |
| HR max | 112.1 ± 15.8 | 108.4 ± 16.2 | 115.0 ± 14.9 | <0.001 1 |
| HRR | 89.0 ± 13.4 | 87.4 ± 13.0 | 90.3 ± 13.7 | 0.134 1 |
| BP rest systolic | 121.8 ± 15.3 | 123.4 ± 16.9 | 120.6 ± 13.7 | 0.155 1 |
| BP rest diastolic | 77.3 ± 7.5 | 76.9 ± 6.8 | 77.6 ± 8.0 | 0.271 1 |
| BP max systolic | 154.1 ± 19.0 | 153.9 ± 21.2 | 154.1 ± 17.1 | 0.810 1 |
| BP max diastolic | 80.6 ± 7.0 | 80.9 ± 6.4 | 80.4 ± 7.5 | 0.871 1 |
| MET | 6.1 ± 1.9 | 4.9 ± 1.6 | 7.0 ± 1.5 | <0.001 1 |
| Predicted exercise capacity for age (MET) | 7.8 ± 1.9 | 7.1 ± 1.8 | 8.4 ± 1.8 | <0.001 1 |
| % of age-appropriate exercise capacity (MET) | 80.0 ± 24.7 | 70.8 ± 21.8 | 87.2 ± 24.5 | <0.001 1 |
| VO2max | 21.3 ± 6.6 | 17.2 ± 5.6 | 24.6 ± 5.4 | <0.001 1 |
| Saturation | 97.3 ± 0.7 | 97.3 ± 0.8 | 97.4 ± 0.7 | 0.133 1 |
| DPr | 17,222 ± 3601 | 16,695 ± 3944 | 17,638 ± 3259 | 0.027 1 |
| 6MWT | 453.4 ± 110.3 | 407.7 ± 103.0 | 489.4 ± 102.5 | <0.001 1 |
| Borg rating of perceived exertion | 14.1 ± 1.8 | 14.4 ± 1.5 | 13.9 ± 1.9 | 0.008 1 |
| Final data | ||||
| HR rest | 73.2 ± 11.1 | 72.0 ± 9.5 | 74.2 ± 12.2 | 0.200 1 |
| HR max | 117.3 ± 16.9 | 114.5 ± 16.4 | 119.4 ± 17.0 | 0.025 1 |
| HRR | 87.2 ± 17.1 | 87.9 ± 15.1 | 86.7 ± 18.5 | 0.538 2 |
| BP rest systolic | 121.6 ± 15.2 | 123.6 ± 16.0 | 120.0 ± 14.4 | 0.089 1 |
| BP rest diastolic | 76.6 ± 7.3 | 77.2 ± 7.0 | 76.2 ± 7.4 | 0.470 1 |
| BP max systolic | 155.4 ± 18.6 | 155.7 ± 19.7 | 155.3 ± 17.8 | 0.943 1 |
| BP max diastolic | 78.6 ± 7.1 | 79.1 ± 7.4 | 78.3 ± 6.8 | 0.613 1 |
| MET | 7.8 ± 2.5 | 6.5 ± 1.9 | 8.9 ± 2.5 | <0.001 1 |
| % of age-appropriate exercise capacity (MET) | 102.0 ± 27.4 | 94.6 ± 25.3 | 107.8 ± 27.7 | <0.001 1 |
| VO2max | 27.4 ± 8.8 | 22.9 ± 6.5 | 31.0 ± 8.8 | <0.001 1 |
| Saturation | 97.7 ± 0.9 | 97.5 ± 0.9 | 97.8 ± 1.0 | 0.133 1 |
| DPr | 18,233 ± 3953 | 17,916 ± 4036 | 18,483 ± 3880 | 0.337 1 |
| 6MWT | 497.7 ± 113.1 | 455.6 ± 104.3 | 530.9 ± 108.9 | <0.001 1 |
| Borg rating of perceived exertion | 13.1 ± 0.9 | 13.5 ± 0.9 | 12.8 ± 0.9 | <0.001 1 |
| Parameter | All Group (N = 288) | Interval Training (n = 127) | Continuous Training (n = 161) |
|---|---|---|---|
| HR rest | 0.281 1 | 0.039 1 | 0.719 1 |
| HR max | <0.001 1 | <0.001 2 | <0.001 1 |
| HRR | 0.252 1 | 0.290 1 | 0.026 1 |
| BP rest systolic | 0.834 1 | 0.805 1 | 0.551 1 |
| BP rest diastolic | 0.150 1 | 0.893 1 | 0.047 1 |
| BP max systolic | 0.420 1 | 0.548 1 | 0.593 1 |
| BP max diastolic | 0.001 1 | 0.014 1 | 0.002 1 |
| MET | <0.001 1 | <0.001 1 | <0.001 1 |
| % of age-appropriate exercise capacity (MET) | <0.001 1 | <0.001 1 | <0.001 1 |
| VO2max | <0.001 1 | <0.001 1 | <0.001 1 |
| Saturation | <0.001 1 | <0.001 1 | <0.001 1 |
| DPr | <0.001 1 | <0.001 1 | <0.001 1 |
| 6MWT | <0.001 1 | <0.001 1 | <0.001 1 |
| Borg rating of perceived exertion | <0.001 1 | <0.001 1 | <0.001 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Grochulska, A.; Glowinski, S.; Bryndal, A. Early Post-STEMI Cardiac Rehabilitation in the CSC-Infarct Program: Real-World Safety and Effectiveness of Individualized Training Protocols. J. Clin. Med. 2026, 15, 746. https://doi.org/10.3390/jcm15020746
Grochulska A, Glowinski S, Bryndal A. Early Post-STEMI Cardiac Rehabilitation in the CSC-Infarct Program: Real-World Safety and Effectiveness of Individualized Training Protocols. Journal of Clinical Medicine. 2026; 15(2):746. https://doi.org/10.3390/jcm15020746
Chicago/Turabian StyleGrochulska, Agnieszka, Sebastian Glowinski, and Aleksandra Bryndal. 2026. "Early Post-STEMI Cardiac Rehabilitation in the CSC-Infarct Program: Real-World Safety and Effectiveness of Individualized Training Protocols" Journal of Clinical Medicine 15, no. 2: 746. https://doi.org/10.3390/jcm15020746
APA StyleGrochulska, A., Glowinski, S., & Bryndal, A. (2026). Early Post-STEMI Cardiac Rehabilitation in the CSC-Infarct Program: Real-World Safety and Effectiveness of Individualized Training Protocols. Journal of Clinical Medicine, 15(2), 746. https://doi.org/10.3390/jcm15020746

