Hyperglycemia—A Driver of Cutaneous Severity in Dermatomyositis: A Narrative Review
Abstract
1. Introduction
2. Methods
3. Pathophysiological Background
4. Hyperglycemia and Cutaneous Manifestations
5. Dietary and Lifestyle Contributions
6. Connections with Other Autoimmune Conditions
7. Prognostic Considerations and Clinical Relevance
8. Future Considerations for Dermatologic Research and Care
8.1. Screening and Evaluation
8.2. Treatment Considerations
8.3. Coordinated Care
8.4. Patient Counseling and Lifestyle Considerations
8.5. Identification of Worsened Hyperglycemia-Linked Cutaneous Breakdown
8.6. Summary of Hypothesis-Generating Concepts
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassard, L.; Rigolet, A.; Allenbach, Y.; Meyer, A.; Benveniste, O. Dermatomyositis: Practical Guidance and Unmet Needs. ImmunoTargets Ther. 2024, 66, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Inflammatory muscle diseases. N. Engl. J. Med. 2015, 372, 1734–1747. [Google Scholar] [CrossRef] [PubMed]
- Muro, Y.; Sugiura, K.; Akiyama, M. Cutaneous Manifestations in Dermatomyositis: Key Clinical and Serological Features-a Comprehensive Review. Clin. Rev. Allergy Immunol. 2016, 51, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Raaphorst, J.; van der Kooi, A.J.; Mecoli, C.A.; Weihl, C.C.; Tas, S.W.; Schmidt, J.; de Visser, M. Advances in the classification and management of idiopathic inflammatory myopathies. Lancet Neurol. 2025, 24, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, W.; Sun, K.; Hu, F.; Huang, J.; Liu, C.; Wang, X.; Ge, J.; Yang, J. scRNA-seq and proteomics uncover glycolytic dysregulation linking skin and systemic inflammation in dermatomyositis. Br. J. Dermatol. 2025. epub ahead of print. [Google Scholar] [CrossRef]
- Thiem, K.; Keating, S.T.; Netea, M.G.; Riksen, N.P.; Tack, C.J.; van Diepen, J.; Stienstra, R. Hyperglycemic Memory of Innate Immune Cells Promotes In Vitro Proinflammatory Responses of Human Monocytes and Murine Macrophages. J. Immunol. 2021, 206, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.Q.; Bangert, C.A.; Costner, M.; Connolly, M.K.; Foster, C.S.; Werth, V.P. Comparison of the reliability and validity of outcome instruments for cutaneous dermatomyositis. Br. J. Dermatol. 2008, 159, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, C.O.; Fiorentino, D.F.; Chung, L.; Dzuong, C.; Wang, Y.; Okawa, J.; Carr, K.; Propert, K.J.; Werth, V.P. Validation of the Cutaneous Dermatomyositis Disease Area and Severity Index: Characterizing disease severity and assessing responsiveness to clinical change. Br. J. Dermatol. 2015, 173, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Tartar, D.M.; Chung, L.; Fiorentino, D.F. Clinical significance of autoantibodies in dermatomyositis and systemic sclerosis. Clin. Dermatol. 2018, 36, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; On, A.; Xing, E.; Shen, C. Dermatomyositis: Focus on cutaneous features, etiopathogenetic mechanisms and their implications for treatment. Semin. Immunopathol. 2025, 47, 32. [Google Scholar] [CrossRef] [PubMed]
- DeWane, M.E.; Waldman, R.; Lu, J. Dermatomyositis: Clinical features and pathogenesis. J. Am. Acad. Dermatol. 2020, 82, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Arshanapalli, A.; Shah, M.; Veerula, V.; Somani, A.-K. The role of type I interferons and other cytokines in dermatomyositis. Cytokine 2015, 73, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Selva-O’Callaghan, A.; Pinal-Fernandez, I.; Trallero-Araguas, E.; Milisenda, J.C.; Grau-Junyent, J.M.; Mammen, A.L. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018, 17, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, Y.; Shi, L.; Li, L.; Zhang, D.; Gong, Z.; Wu, Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions—A review. Pharmacol. Res. 2024, 206, 107282. [Google Scholar] [CrossRef] [PubMed]
- Medina, G.; Vera-Lastra, O.; Peralta-Amaro, A.L.; Jimenez-Arellano, M.P.; Saavedra, M.A.; Cruz-Dominguez, M.P.; Jara, L.J. Metabolic syndrome, autoimmunity and rheumatic diseases. Pharmacol. Res. 2018, 133, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Yongpisarn, T.; Thadanipon, K.; Suchonwanit, P.; Rattanakaemakorn, P. Hyperglycemia Is a Potential Prognostic Factor for Exacerbation in Severe Psoriasis with Diabetes or Prediabetes. Clin. Cosmet. Investig. Dermatol. 2025, 18, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Vural, S.; Baskurt, D.; Yildirici, S.; Rasulova, G.; Danaci, S.; Botsali, A. Evaluating dietary considerations in hidradenitis suppurativa: A critical examination of existing knowledge. Int. J. Dermatol. 2024, 63, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Zacay, G.; Sikron, F.H.; Heymann, A.D. Glycemic Control and Risk of Cellulitis. Diabetes Care 2021, 44, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Romero Noboa, M.E.; Tskhakaia, I.; Andrews, J.S. Comorbidities in idiopathic inflammatory myopathies: Population-based evidence on risk subgroups and implications for delivery of care. Curr. Opin. Rheumatol. 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Nie, Q.; Qin, L.; Yan, W.; Luo, Q.; Ying, T.; Wang, H.; Wu, J. Predictive model of diabetes mellitus in patients with idiopathic inflammatory myopathies. Front. Endocrinol. 2023, 14, 1118620. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Valdes, A.M.; Ordovas, J.M.; Hall, W.L.; Pujol, J.C.; Wolf, J.; Hadjigeorgiou, G.; Segata, N.; Sattar, N.; Koivula, R.; et al. Meal-induced inflammation: Postprandial insights from the Personalised REsponses to DIetary Composition Trial (PREDICT) study in 1000 participants. Am. J. Clin. Nutr. 2021, 114, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Milajerdi, A.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. The effect of dietary glycemic index and glycemic load on inflammatory biomarkers: A systematic review and meta-analysis of randomized clinical trials. Am. J. Clin. Nutr. 2018, 107, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Burr, A.H.P.; Bhattacharjee, A.; Hand, T.W. Nutritional Modulation of the Microbiome and Immune Response. J. Immunol. 2020, 205, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Horst, R.T.; Nielen, S.; Bloemendaal, M.; Jaeger, M.; Joosten, I.; Koenen, H.; Joosten, L.A.B.; Schweren, L.J.S.; Vasquez, A.A.; et al. The gut microbiome as mediator between diet and its impact on immune function. Sci. Rep. 2022, 12, 5149. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Food, immunity, and the microbiome. Gastroenterology 2015, 148, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Aznar, M.D.G.; Guerrero, M.D.V.; Garcia, M.B.; Cruz, B.H. Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood-Could the Comparison Between Diets Be Improved? Nutrients 2025, 17, 493. [Google Scholar] [CrossRef] [PubMed]
- Julia, A.; Martínez-Mateu, S.H.; Domenech, E.; Canete, J.D.; Ferrandiz, C.; Tornero, J.; Gisbert, J.P.; Fernandez-Nebro, A.; Dauden, E.; Barreiro-de Acosta, M.; et al. Food groups associated with immune-mediated inflammatory diseases: A Mendelian randomization and disease severity study. Eur. J. Clin. Nutr. 2021, 75, 1368–1382. [Google Scholar] [CrossRef] [PubMed]
- Alexandropoulou, I.; Grammatikopoulou, M.G.; Gkouskou, K.K.; Prista, A.A.; Vassilakou, T.; Rigopoulou, E.; Lindqvist, H.M.; Bogdanos, D.P. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients 2023, 15, 229. [Google Scholar] [CrossRef] [PubMed]
- Kupczyk, D.; Bilski, R.; Szeleszczuk, L.; Madra-Gackowska, K.; Studzinska, R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025, 17, 1603. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hebert, J.R.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 2015, 113, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Liang, G.; Yang, F. Meta-analysis of the association between dietary inflammation index and C-reactive protein level. Medicine 2024, 103, e38196. [Google Scholar] [CrossRef] [PubMed]
- Bahr, L.S.; Franz, K.; Mahler, A. Assessing the (anti)-inflammatory potential of diets. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 402–410. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, M.T.; de Souza, F.H.; de Barros, T.B.; Shinjo, S.K. Analysis of metabolic syndrome in adult dermatomyositis with a focus on cardiovascular disease. Arthritis Care Res. 2013, 65, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.G.; Borba, E.F.; Mello, S.B.; Shinjo, S.K. Serum adipocytokine profile and metabolic syndrome in young adult female dermatomyositis patients. Clinics 2016, 71, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Marstein, H.S.; Witczak, B.N.; Godang, K.; Schwartz, T.; Flato, B.; Bollerslev, J.; Sjaastad, I.; Sanner, H. Adipose tissue distribution is associated with cardio-metabolic alterations in adult patients with juvenile-onset dermatomyositis. Rheumatology 2023, 62, SI196–SI204. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Li, X.; He, Y.; Xia, W.; Shao, J.; Ye, Z.; Song, P. Associations of dietary inflammatory index with metabolic syndrome and its components: A systematic review and meta-analysis. Public Health Nutr. 2021, 24, 5463–5470. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Shang, L.; Liang, Z.; Feng, M.; Wang, Y.; Gao, C.; Luo, J. Altered metabolic profiles of dermatomyositis with different myositis-specific autoantibodies associated with clinical phenotype. Front. Immunol. 2024, 15, 1429010. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Bullo, M.; Salas-Salvado, J. Mediterranean diet and metabolic syndrome: The evidence. Public Health Nutr. 2009, 12, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Yannakoulia, M.; Scarmeas, N. Diets. N. Engl. J. Med. 2024, 390, 2098–2106. [Google Scholar] [CrossRef] [PubMed]
- Koelman, L.; Rodrigues, C.E.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Reyneke, G.L.; Lambert, K.; Beck, E.J. Dietary Patterns Associated With Anti-inflammatory Effects: An Umbrella Review of Systematic Reviews and Meta-analyses. Nutr. Rev. 2025, 14, nuaf104. [Google Scholar] [CrossRef] [PubMed]
- Bruna-Mejias, A.; San Martin, J.; Arciniegas-Diaz, D.; Meneses-Caroca, T.; Salamanca-Cerda, A.; Beas-Gambi, A.; Paola-Loaiza-Giraldo, J.; Ortiz-Ahumada, C.; Nova-Baeza, P.; Oyanedel-Amaro, G.; et al. Comparison of the Mediterranean Diet and Other Therapeutic Strategies in Metabolic Syndrome: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 5887. [Google Scholar] [CrossRef] [PubMed]
- Korytkowski, M.T.; Muniyappa, R.; Antinori-Lent, K.; Donihi, A.C.; Drincic, A.T.; Hirsch, I.B.; Luger, A.; McDonnell, M.E.; Murad, M.H.; Nielsen, C.; et al. Management of Hyperglycemia in Hospitalized Adult Patients in Non-Critical Care Settings: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2022, 107, 2101–2128. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 16. Diabetes Care in the Hospital: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S321–S334. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.-Q.; Qu, J.; Vaccaro, C.; Chang, X.; Mentch, F.; Li, J.; Mafra, F.; Nguyen, K.; Gonzalez, M.; March, M.; et al. Genetic analysis for type 1 diabetes genes in juvenile dermatomyositis unveils genetic disease overlap. Rheumatology 2022, 61, 3497–3501. [Google Scholar] [CrossRef] [PubMed]
- Charalabopoulos, K.; Charalabopoulos, A.; Papaioannides, D. Diabetes mellitus type I associated with dermatomyositis: An extraordinary rare case with a brief literature review. BMJ Case Rep. 2009, 2009, bcr10.2008.1158. [Google Scholar] [CrossRef] [PubMed]
- Kleinhans, M.; Albrecht, L.J.; Benson, S.; Fuhrer, D.; Dissemond, J.; Tan, S. Continuous Glucose Monitoring of Steroid-Induced Hyperglycemia in Patients with Dermatologic Diseases. J. Diabetes Sci. Technol. 2024, 18, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Z.; Yan, S.; Yang, C.; Wang, B.; Shen, M.; Wang, Z.; Xu, D. Risk, risk factors, and screening of malignancies in dermatomyositis: Current status and future perspectives. Front. Oncol. 2025, 15, 1503140. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wu, W.; Wu, H.; Xia, C.; Ye, M.; He, K.; Teng, J.; Zhao, X.; Li, H.; Zhao, Q.; et al. A Novel Tool for Predicting Malignant Disease in Adult Patients with Dermatomyositis. JAMA Dermatol. 2025, e254824. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Oddis, C.V. Paraneoplastic myalgias and myositis. Rheumatol. Dis. Clin. N. Am. 2011, 37, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Mainetti, C.; Beretta-Piccoli, B.T.; Selmi, C. Cutaneous Manifestations of Dermatomyositis: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2017, 53, 337–356. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, S.A.; Shields, B.E. Cutaneous Manifestations of Nutritional Excess: Pathophysiologic Effects of Hyperglycemia and Hyperinsulinemia on the Skin. Cutis 2021, 107, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.; Katta, R. Sugar Sag: Glycation and the Role of Diet in Aging Skin. Skin Ther. Lett. 2015, 20, 1–5. [Google Scholar] [PubMed]
- Swoboda, L.; Held, J. Impaired wound healing in diabetes. J. Wound Care 2022, 31, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Okano, J.; Kojima, H.; Katagi, M.; Nakagawa, T.; Nakae, Y.; Terashima, T.; Kurakane, T.; Kubota, M.; Maegawa, H.; Udagawa, J. Hyperglycemia Induces Skin Barrier Dysfunctions with Impairment of Epidermal Integrity in Non-Wounded Skin of Type 1 Diabetic Mice. PLoS ONE 2016, 11, e0166215. [Google Scholar] [CrossRef] [PubMed]
- Nombel, A.; Fabien, N.; Coutant, F. Dermatomyositis with Anti-MDA5 Antibodies: Bioclinical Features, Pathogenesis and Emerging Therapies. Front. Immunol. 2021, 12, 773352. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Ha, K.H.; Kim, D.J.; Choi, Y.H. Diabetes and the Risk of Infection: A National Cohort Study. Diabetes Metab. J. 2019, 43, 804. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.; Tompkins, R.G.; Finnerty, C.C.; Sidossis, L.S.; Suman, O.E.; Herndon, D.N. The metabolic stress response to burn trauma: Current understanding and therapies. Lancet 2016, 388, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.R.; Singh, M.; Sorensen, J.A.; Eriksson, E.; Nuutila, K. The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. J. Surg. Res. 2016, 206, 418–426. [Google Scholar] [CrossRef] [PubMed]


| Pathophysiologic Domain | Glycemic/Metabolic Driver | Effect on Skin Biology | Clinical Implication in Cutaneous DM |
|---|---|---|---|
| Inflammatory signaling | Chronic hyperglycemia | Oxidative stress and NF-κB activation leading to sustained cytokine and chemokine production | Increased rash severity and inflammatory flares |
| Endothelial and microvascular integrity | Advanced glycation end-product (AGE) accumulation and RAGE activation | Endothelial dysfunction, impaired perfusion, and microangiopathy | Vasculopathic changes, ulceration, and delayed lesion resolution |
| Cellular repair mechanisms | Insulin resistance | Impaired keratinocyte and fibroblast proliferation and migration | Impaired wound healing and reduced response to standard therapies |
| Immune regulation | Dysglycemia-associated immune imbalance | Persistent pro-inflammatory milieu and altered immune cell function | Chronic cutaneous inflammatory activity and refractory disease |
| Wound healing and infection defense | Hyperglycemia and metabolic syndrome | Delayed re-epithelialization and increased susceptibility to infection | Chronic ulcerative lesions and secondary skin infection risk |
| Context of treatment | Corticosteroid-induced hyperglycemia | Secondary metabolic stress compounding inflammatory and vascular injury | Exacerbation of cutaneous disease burden during treatment |
| Factor | Primary Metabolic Effect | Pathophysiologic Mechanism | Potential Impact on Cutaneous DM |
|---|---|---|---|
| Chronic hyperglycemia | Sustained elevation of blood glucose | Oxidative stress, AGE accumulation, RAGE activation, endothelial dysfunction | Increased rash severity, vasculopathic changes, and impaired wound healing |
| Insulin resistance | Reduced cellular glucose uptake | Chronic low-grade inflammation, impaired keratinocyte and fibroblast function | Delayed re-epithelialization and reduced treatment responsiveness |
| Metabolic syndrome | Combined dysglycemia, dyslipidemia, central adiposity | Microvascular dysfunction, impaired angiogenesis, inflammatory amplification | Chronic ulceration, poor healing, increased infection risk |
| High-glycemic index diet | Postprandial glucose and insulin spikes | Increased insulin/IGF-1 signaling, oxidative stress, inflammatory mediator release | Exacerbation of cutaneous inflammatory activity and disease flares |
| Corticosteroid exposure | Steroid-induced hyperglycemia and insulin resistance | Secondary metabolic stress compounding inflammatory and vascular injury | Worsening cutaneous disease burden during treatment |
| Obesity | Adipokine imbalance and insulin resistance | Pro-inflammatory adipokine signaling and endothelial dysfunction | Amplified cutaneous inflammatory activity and delayed lesion resolution |
| Anti-inflammatory dietary patterns (e.g., Mediterranean-style diet) | Improved insulin sensitivity and glycemic control | Reduction in systemic inflammatory markers and oxidative stress | Enhanced skin barrier function and improved healing capacity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dombrower, R.; McKenzie, A.; Gomeniouk, O.; Kidd, S.; Saed, S.; Saed, S.; Onken, E.; Mohammad, J. Hyperglycemia—A Driver of Cutaneous Severity in Dermatomyositis: A Narrative Review. J. Clin. Med. 2026, 15, 734. https://doi.org/10.3390/jcm15020734
Dombrower R, McKenzie A, Gomeniouk O, Kidd S, Saed S, Saed S, Onken E, Mohammad J. Hyperglycemia—A Driver of Cutaneous Severity in Dermatomyositis: A Narrative Review. Journal of Clinical Medicine. 2026; 15(2):734. https://doi.org/10.3390/jcm15020734
Chicago/Turabian StyleDombrower, Rachel, Alyssa McKenzie, Olga Gomeniouk, Savannah Kidd, Shannon Saed, Sophia Saed, Erin Onken, and Juwairiah Mohammad. 2026. "Hyperglycemia—A Driver of Cutaneous Severity in Dermatomyositis: A Narrative Review" Journal of Clinical Medicine 15, no. 2: 734. https://doi.org/10.3390/jcm15020734
APA StyleDombrower, R., McKenzie, A., Gomeniouk, O., Kidd, S., Saed, S., Saed, S., Onken, E., & Mohammad, J. (2026). Hyperglycemia—A Driver of Cutaneous Severity in Dermatomyositis: A Narrative Review. Journal of Clinical Medicine, 15(2), 734. https://doi.org/10.3390/jcm15020734

