Perioperative Blood Biomarkers of Infectious and Non-Infectious Postoperative Pulmonary Complications: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Definition and Microbiology of Postoperative Pulmonary Complications
4. Pathophysiology of Postoperative Pulmonary Complications
4.1. Systemic Inflammation and the Surgical Stress Response
4.2. Immune Dysregulation and Postoperative Immune Suppression
4.3. Endothelial Dysfunction and Vascular Permeability
4.4. Oxidative Stress and Mitochondrial Dysfunction
4.5. Coagulation Abnormalities and Microthrombosis
4.6. Atelectasis, Impaired Lung Mechanics, and Ventilator Interactions
4.7. Metabolic Stress and Respiratory Muscle Fatigue
5. Current Clinical Predictors and Their Limitations
5.1. Clinical Risk Scores
5.2. Blood Biomarkers in Perioperative Care
6. Biomarkers and Risk Prediction in PPCs
6.1. Inflammatory Biomarkers
6.2. Immune Cell-Derived Biomarkers
6.3. Endothelial Injury Biomarkers
6.4. Oxidative Stress Biomarkers
6.5. Coagulation and Fibrinolysis Biomarkers
6.6. Metabolic and Nutritional Biomarkers
6.7. Emerging Omics-Based Biomarkers
7. The Integration of Biomarkers into Predictive Models and Artificial Intelligence Systems
8. Limitations of Current Research and Future Directions for Perioperative Precision Medicine
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Ang- | Angiopoietins- |
| ARDS | Acute Respiratory Distress Syndrome |
| CARS | Compensatory Anti-Inflammatory Response |
| CRP | C-Reactive Protein |
| IG | Immature Granulocytes |
| IL-6 | Interleukin-6 |
| IL-8 | Interleukin-8 |
| IL-10 | Interleukin-10 |
| MDA | Malondialdehyde |
| miRNA | microRNA |
| ML | Machine Learning |
| MDR | Multidrug-Resistant |
| MDW | Monocyte Distribution Width |
| mtDNA | Mitochondrial DNA |
| NLR | Neutrophil-To-Lymphocyte Ratio |
| NO | Nitric Oxide |
| PCT | Procalcitonin |
| PPCs | Postoperative Pulmonary Complications |
| ROS | Reactive Oxygen Species |
| TAT | Thrombin-Antithrombin |
| Tie2 | Tyrosine Kinase-2 |
| TNF-α | Tumour Necrosis Factor-α |
| vWF | von Willebrand Factor |
| WBC | white blood cell |
References
- Chandler, D.; Mosieri, C.; Kallurkar, A.; Pham, A.D.; Okada, L.K.; Kaye, R.J.; Cornett, E.M.; Fox, C.J.; Urman, R.D.; Kaye, A.D. Perioperative strategies for the reduction of postoperative pulmonary complications. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 153–166. [Google Scholar] [CrossRef]
- Warner, D.O. Preventing postoperative pulmonary complications: The role of the anesthesiologist. Anesthesiology 2000, 92, 1467–1472. [Google Scholar] [CrossRef]
- Rauseo, M.; Spadaro, S.; Mirabella, L.; Cotoia, A.; Laforgia, D.; Gaudino, G.; Vinella, F.; Ferrara, G.; Gattullo, A.; Tullo, L.; et al. Electrical impedance tomography during abdominal laparoscopic surgery: A physiological pilot study. J. Clin. Med. 2023, 12, 7467. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Simonte, R.; Longhini, F.; Spadaro, S.; Vetrugno, L.; De Robertis, E. Advanced point-of-care bedside monitoring for acute respiratory failure. Anesthesiology 2023, 138, 317–334. [Google Scholar] [CrossRef]
- Fogagnolo, A.; Montanaro, F.; Al-Husinat, L.; Turrini, C.; Rauseo, M.; Mirabella, L.; Ragazzi, R.; Ottaviani, I.; Cinnella, G.; Volta, C.A.; et al. Management of intraoperative mechanical ventilation to prevent postoperative complications after general anesthesia: A narrative review. J. Clin. Med. 2021, 10, 2656. [Google Scholar] [CrossRef]
- Kehlet, H.; Dahl, J.B. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet 2003, 362, 1921–1928. [Google Scholar] [CrossRef]
- Kehlet, H.; Wilmore, D.W. Multimodal strategies to improve surgical outcome. Am. J. Surg. 2002, 183, 630–641. [Google Scholar] [CrossRef]
- Wilmore, D.W.; Kehlet, H. Management of patients in fast track surgery. BMJ 2001, 322, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Piccioni, F.; Spagnesi, L.; Pelosi, P.; Bignami, E.; Guarnieri, M.; Fumagalli, L.; Polati, E.; Schweiger, V.; Comi, D.; D’Andrea, R.; et al. Postoperative pulmonary complications and mortality after major abdominal surgery. An observational multicenter prospective study. Minerva Anestesiol. 2023, 89, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Kroell, W.; Metzler, H.; Struber, G.; Wegscheider, T.; Gombotz, H.; Hiesmayr, M.; Schmid, W.; Urbanek, B.; Leva, B.; Damster, S.; et al. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: Las vegas—An observational study in 29 countries. Eur. J. Anaesthesiol. 2017, 34, 492–507. [Google Scholar]
- Benitez-Cano, A.; Bermejo, S.; Luque, S.; Sorli, L.; Carazo, J.; Zaragoza, I.; Ramos, I.; Valles, J.; Horcajada, J.P.; Adalia, R. Clinical, microbiological and treatment characteristics of severe postoperative respiratory infections: An observational cohort study. J. Pers. Med. 2023, 13, 1482. [Google Scholar] [CrossRef]
- Miskovic, A.; Lumb, A.B. Postoperative pulmonary complications. Br. J. Anaesth. 2017, 118, 317–334. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and evaluation of the universal acs nsqip surgical risk calculator: A decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 2013, 217, 833–842.e3. [Google Scholar] [CrossRef]
- Canet, J.; Gallart, L.; Gomar, C.; Paluzie, G.; Valles, J.; Castillo, J.; Sabate, S.; Mazo, V.; Briones, Z.; Sanchis, J. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010, 113, 1338–1350. [Google Scholar] [CrossRef]
- Carlos, A.F.; Josephs, K.A. The role of clinical assessment in the era of biomarkers. Neurotherapeutics 2023, 20, 1001–1018. [Google Scholar] [CrossRef]
- Ufuk, F.; Ocak, I.; Chelala, L.; Landeras, L. Postoperative pulmonary complications: Clinical and imaging insights. Balk. Med. J. 2025, 42, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.N.; Brandao, V.G.A.; Perez, M.V.; Blum, K.; Lewandrowski, K.U.; Fiorelli, R.K.A. Neuroinflammatory approach to surgical trauma: Biomarkers and mechanisms of immune and neuroendocrine responses. J. Pers. Med. 2024, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schochl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Dobson, G.P. Trauma of major surgery: A global problem that is not going away. Int. J. Surg. 2020, 81, 47–54. [Google Scholar] [CrossRef]
- Landis, R.C. 20 years on: Is it time to redefine the systemic inflammatory response to cardiothoracic surgery? J. Extra Corpor. Technol. 2015, 47, 5–9. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Mabvuure, N.T.; Ali, A.; Kozar, R.A.; Herndon, D.N. The surgically induced stress response. JPEN J. Parenter. Enteral Nutr. 2013, 37, 21S–29S. [Google Scholar] [CrossRef]
- Ni Choileain, N.; Redmond, H.P. Cell response to surgery. Arch. Surg. 2006, 141, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Lucas, R.; Fulton, D.J.R.; Verin, A.D. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. Chin. Med. J. Pulm. Crit. Care Med. 2024, 2, 80–87. [Google Scholar] [CrossRef]
- Pahal, P.; Rajasurya, V.; Nguyen, A.D. Typical bacterial pneumonia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Jain, V.; Vashisht, R.; Yilmaz, G.; Bhardwaj, A. Pneumonia pathology. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Joelsson, J.P.; Asbjarnarson, A.; Sigurdsson, S.; Kricker, J.; Valdimarsdottir, B.; Thorarinsdottir, H.; Starradottir, E.; Gudjonsson, T.; Ingthorsson, S.; Karason, S. Ventilator-induced lung injury results in oxidative stress response and mitochondrial swelling in a mouse model. Lab. Anim. Res. 2022, 38, 23. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Chan, K.C.; Chien, C.T.; Sun, W.Z.; Lin, C.J. Oxidative stress during 1-lung ventilation. J. Thorac. Cardiovasc. Surg. 2006, 132, 513–518. [Google Scholar] [CrossRef]
- Bowler, R.P.; Velsor, L.W.; Duda, B.; Chan, E.D.; Abraham, E.; Ware, L.B.; Matthay, M.A.; Day, B.J. Pulmonary edema fluid antioxidants are depressed in acute lung injury. Crit. Care Med. 2003, 31, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Umemura, Y.; Wada, H.; Levy, J.H. Roles of coagulation abnormalities and microthrombosis in sepsis: Pathophysiology, diagnosis, and treatment. Arch. Med. Res. 2021, 52, 788–797. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Iyer, P.; Phua, G.C.; Lee, J.H. The interplay between coagulation and inflammation pathways in COVID-19-associated respiratory failure: A narrative review. Pulm. Ther. 2020, 6, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, S.; Manno, M.; Divenuto, F.; Pavia, G.; Peronace, C.; Trimboli, F.; Zangari, C.; Tancre, V.; Greco, F.; Colosimo, M.; et al. Calprotectin, azurocidin, and interleukin-8: Neutrophil signatures with diagnostic and prognostic value in sepsis. Biomedicines 2025, 13, 2673. [Google Scholar] [CrossRef]
- De Almeida, A.; de Almeida Rezende, M.S.; Dantas, S.H.; de Lima Silva, S.; de Oliveira, J.; de Lourdes Assuncao Araujo de Azevedo, F.; Alves, R.; de Menezes, G.M.S.; Dos Santos, P.F.; Goncalves, T.A.F.; et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxid. Med. Cell. Longev. 2020, 2020, 1954398. [Google Scholar] [CrossRef]
- Goncharov, N.V.; Nadeev, A.D.; Jenkins, R.O.; Avdonin, P.V. Markers and biomarkers of endothelium: When something is rotten in the state. Oxid. Med. Cell. Longev. 2017, 2017, 9759735. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, J.; Guo, F.; Longhini, F.; Gao, Z.; Huang, Y.; Qiu, H. Combination of c-reactive protein, procalcitonin and sepsis-related organ failure score for the diagnosis of sepsis in critical patients. Ann. Intensive Care 2016, 6, 51. [Google Scholar] [CrossRef]
- Montcusi, B.; Madrid-Gambin, F.; Pozo, O.J.; Marco, S.; Marin, S.; Mayol, X.; Pascual, M.; Alonso, S.; Salvans, S.; Jimenez-Toscano, M.; et al. Circulating metabolic markers after surgery identify patients at risk for severe postoperative complications: A prospective cohort study in colorectal cancer. Int. J. Surg. 2024, 110, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Heywood, W.E.; Bliss, E.; Bahelil, F.; Cyrus, T.; Crescente, M.; Jones, T.; Iqbal, S.; Paredes, L.G.; Toner, A.J.; Del Arroyo, A.G.; et al. Proteomic signatures for perioperative oxygen delivery in skin after major elective surgery: Mechanistic sub-study of a randomised controlled trial. Br. J. Anaesth. 2021, 127, 511–520. [Google Scholar] [CrossRef]
- Correia, C.N.; Nalpas, N.C.; McLoughlin, K.E.; Browne, J.A.; Gordon, S.V.; MacHugh, D.E.; Shaughnessy, R.G. Circulating micrornas as potential biomarkers of infectious disease. Front. Immunol. 2017, 8, 118. [Google Scholar] [CrossRef]
- Maltesen, R.G.; Rasmussen, B.S.; Pedersen, S.; Hanifa, M.A.; Kucheryavskiy, S.; Kristensen, S.R.; Wimmer, R. Metabotyping patients’ journeys reveals early predisposition to lung injury after cardiac surgery. Sci. Rep. 2017, 7, 40275. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Cheng, X.; Yu, W.; Yang, L.; Zhu, H. Plasma microrna-21 predicts postoperative pulmonary complications in patients undergoing pneumoresection. Mediat. Inflamm. 2016, 2016, 3591934. [Google Scholar] [CrossRef] [PubMed]
- El-Hussuna, A.; Hussain, M.I.; Cuk, P.; Ellebaek, M.B. A systematic review on biomarkers implemented to measure surgical stress response in patients undergoing colorectal surgery. Int. J. Colorectal Dis. 2025, 40, 168. [Google Scholar] [CrossRef] [PubMed]
- Reniers, T.; Noordzij, P.G.; Veen, E.J.; Hofman, E.F.N.; Taselaar, A.M.; Visser, W.A.; van der Heiden, P.; Boeckx, S.; Emmen, J.M.A.; Dijkstra, I.M.; et al. Does postoperative plasma il-6 improve early prediction of infection after pulmonary cancer surgery? A two-centre prospective study. PLoS ONE 2025, 20, e0326537. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.X.; Wang, L.Y.; Chen, W.S.; Zhao, S.; Shao, Y.F.; Guan, Y.Z.; Lu, Z.; Zang, F. Procalcitonin as a biomarker for postoperative pneumonia: A study on dynamics following cardiopulmonary bypass in adults. BMC Cardiovasc. Disord. 2025, 25, 338. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, K.H.; Song, Y.G.; Han, S.H. Discrepancy of c-reactive protein, procalcitonin and interleukin-6 at hospitalization: Infection in patients with normal c-reactive protein, procalcitonin and high interleukin-6 values. J. Clin. Med. 2022, 11, 7324. [Google Scholar] [CrossRef]
- Abu Elyazed, M.M.; El Sayed Zaki, M. Value of procalcitonin as a biomarker for postoperative hospital-acquired pneumonia after abdominal surgery. Korean J. Anesthesiol. 2017, 70, 177–183. [Google Scholar] [CrossRef]
- Uchida, T.; Ito, H.; Yamamoto, H.; Ohno, N.; Asahara, M.; Yamada, Y.; Yamaguchi, O.; Tomita, M.; Makita, K. Elevated levels of angiopoietin-2 as a biomarker for respiratory failure after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1293–1301. [Google Scholar] [CrossRef]
- Serpa Neto, A.; Bos, L.D.; Campos, P.; Hemmes, S.N.T.; Bluth, T.; Calfee, C.S.; Ferner, M.; Guldner, A.; Hollmann, M.W.; India, I.; et al. Association between pre-operative biological phenotypes and postoperative pulmonary complications: An unbiased cluster analysis. Eur. J. Anaesthesiol. 2018, 35, 702–709. [Google Scholar] [CrossRef]
- Nijbroek, S.G.; Schultz, M.J.; Hemmes, S.N.T. Prediction of postoperative pulmonary complications. Curr. Opin. Anaesthesiol. 2019, 32, 443–451. [Google Scholar] [CrossRef]
- Slieker, J.C.; Aellen, S.; Eggimann, P.; Guarnero, V.; Schafer, M.; Demartines, N. Procalcitonin-guided antibiotics after surgery for peritonitis: A randomized controlled study. Gastroenterol. Res. Pract. 2017, 2017, 3457614. [Google Scholar] [CrossRef]
- Guzzi, G.; Ricciuti, R.A.; Della Torre, A.; Lo Turco, E.; Lavano, A.; Longhini, F.; La Torre, D. Intraoperative neurophysiological monitoring in neurosurgery. J. Clin. Med. 2024, 13, 2966. [Google Scholar] [CrossRef]
- Rock, P.; Rich, P.B. Postoperative pulmonary complications. Curr. Opin. Anaesthesiol. 2003, 16, 123–131. [Google Scholar] [CrossRef]
- Abbott, T.E.F.; Fowler, A.J.; Pelosi, P.; Gama de Abreu, M.; Moller, A.M.; Canet, J.; Creagh-Brown, B.; Mythen, M.; Gin, T.; Lalu, M.M.; et al. A systematic review and consensus definitions for standardised end-points in perioperative medicine: Pulmonary complications. Br. J. Anaesth. 2018, 120, 1066–1079. [Google Scholar] [CrossRef]
- Jammer, I.; Wickboldt, N.; Sander, M.; Smith, A.; Schultz, M.J.; Pelosi, P.; Leva, B.; Rhodes, A.; Hoeft, A.; Walder, B.; et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European perioperative clinical outcome (epco) definitions: A statement from the esa-esicm joint taskforce on perioperative outcome measures. Eur. J. Anaesthesiol. 2015, 32, 88–105. [Google Scholar]
- Li, R.; Li, J.; Zhou, X. Lung microbiome: New insights into the pathogenesis of respiratory diseases. Signal Transduct. Target. Ther. 2024, 9, 19. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ers/esicm/escmid/alat guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (hap)/ventilator-associated pneumonia (vap) of the european respiratory society (ers), european society of intensive care medicine (esicm), european society of clinical microbiology and infectious diseases (escmid) and asociacion latinoamericana del torax (alat). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [PubMed]
- Chughtai, M.; Gwam, C.U.; Mohamed, N.; Khlopas, A.; Newman, J.M.; Khan, R.; Nadhim, A.; Shaffiy, S.; Mont, M.A. The epidemiology and risk factors for postoperative pneumonia. J. Clin. Med. Res. 2017, 9, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratala, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of america and the american thoracic society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Thery, M.; Lemaignen, A.; Flament, T.; Remerand, F.; Langouet, Q.; Lipan, B.; Bourguignon, T.; Legras, A. Infectious morbi-mortality in thoracic surgery after major resections. J. Thorac. Dis. 2025, 17, 4524–4535. [Google Scholar] [CrossRef]
- Yamada, Y.; Sekine, Y.; Suzuki, H.; Iwata, T.; Chiyo, M.; Nakajima, T.; Yasufuku, K.; Yoshida, S. Trends of bacterial colonisation and the risk of postoperative pneumonia in lung cancer patients with chronic obstructive pulmonary disease. Eur. J. Cardiothorac. Surg. 2010, 37, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Marascio, N.; Pavia, G.; Brescia, B.; Riillo, C.; Barreca, G.S.; Gallo, L.; Peronace, C.; Gigliotti, S.; Pantanella, M.; Lamberti, A.G.; et al. Prevalence of enteric pathogens and antibiotic resistance: Results of a six-year active surveillance study on patients admitted to a teaching hospital. Antibiotics 2024, 13, 726. [Google Scholar] [CrossRef]
- Xiang, B.; Jiao, S.; Si, Y.; Yao, Y.; Yuan, F.; Chen, R. Risk factors for postoperative pneumonia: A case-control study. Front. Public Health 2022, 10, 913897. [Google Scholar] [CrossRef]
- Chen, P.Y.; Luo, C.W.; Chen, M.H.; Yang, M.L.; Kuan, Y.H. Epidemiological characteristics of postoperative sepsis. Open Med. 2019, 14, 928–938. [Google Scholar] [CrossRef]
- de la Varga-Martinez, O.; Gomez-Sanchez, E.; Munoz, M.F.; Lorenzo, M.; Gomez-Pesquera, E.; Poves-Alvarez, R.; Tamayo, E.; Heredia-Rodriguez, M. Impact of nosocomial infections on patient mortality following cardiac surgery. J. Clin. Anesth. 2021, 69, 110104. [Google Scholar] [CrossRef]
- Bardaji-Carrillo, M.; Martin-Fernandez, M.; Lopez-Herrero, R.; Priede-Vimbela, J.M.; Heredia-Rodriguez, M.; Gomez-Sanchez, E.; Gomez-Pesquera, E.; Lorenzo-Lopez, M.; Jorge-Monjas, P.; Poves-Alvarez, R.; et al. Post-operative sepsis-induced acute respiratory distress syndrome: Risk factors for a life-threatening complication. Front. Med. 2024, 11, 1338542. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, L.; Jiang, Y.; Jin, L. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: A retrospective cohort study. BMC Pulm. Med. 2023, 23, 78. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, Q.; Zhang, Y.; Zhou, S.; Chen, H. Decreased microrna 103 and microrna 107 predict increased risks of acute respiratory distress syndrome and 28-day mortality in sepsis patients. Medicine 2020, 99, e20729. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xia, J.; Huang, X.; Chen, S.; Zhan, Q. Using machine learning for the early prediction of sepsis-associated ards in the icu and identification of clinical phenotypes with differential responses to treatment. Front. Physiol. 2022, 13, 1050849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tan, Y.; Wang, L.; Shi, Y. Discriminatory ability and prognostic evaluation of presepsin for sepsis-related acute respiratory distress syndrome. Sci. Rep. 2020, 10, 9114. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Azamfirei, L.; Bandila, S.R.; Stoian, A.; Baba, D.F.; Banescu, C. Circulating micrornas and plasma gelsolin as biomarkers of sepsis: Molecular insights and prospects for precision medicine. Biomolecules 2025, 15, 1621. [Google Scholar] [CrossRef]
- Kohl, B.A.; Deutschman, C.S. The inflammatory response to surgery and trauma. Curr. Opin. Crit. Care 2006, 12, 325–332. [Google Scholar] [CrossRef]
- Hellenthal, K.E.M.; Brabenec, L.; Wagner, N.M. Regulation and dysregulation of endothelial permeability during systemic inflammation. Cells 2022, 11, 1935. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Maniatis, N.A.; Kotanidou, A.; Catravas, J.D.; Orfanos, S.E. Endothelial pathomechanisms in acute lung injury. Vasc. Pharmacol. 2008, 49, 119–133. [Google Scholar] [CrossRef]
- Ganter, M.T.; Roux, J.; Miyazawa, B.; Howard, M.; Frank, J.A.; Su, G.; Sheppard, D.; Violette, S.M.; Weinreb, P.H.; Horan, G.S.; et al. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ. Res. 2008, 102, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Zimmerman, G.A. Acute lung injury and the acute respiratory distress syndrome: Four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol. 2005, 33, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Goldblum, S.E.; Hennig, B.; Jay, M.; Yoneda, K.; McClain, C.J. Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infect. Immun. 1989, 57, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Davey, A.; McAuley, D.F.; O’Kane, C.M. Matrix metalloproteinases in acute lung injury: Mediators of injury and drivers of repair. Eur. Respir. J. 2011, 38, 959–970. [Google Scholar] [CrossRef]
- Boueiz, A.; Hassoun, P.M. Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc. Res. 2009, 77, 26–34. [Google Scholar] [CrossRef]
- Lee, W.L.; Downey, G.P. Neutrophil activation and acute lung injury. Curr. Opin. Crit. Care 2001, 7, 1–7. [Google Scholar] [CrossRef]
- Chabot, F.; Mitchell, J.A.; Gutteridge, J.M.; Evans, T.W. Reactive oxygen species in acute lung injury. Eur. Respir. J. 1998, 11, 745–757. [Google Scholar] [CrossRef]
- Margraf, A.; Ludwig, N.; Zarbock, A.; Rossaint, J. Systemic inflammatory response syndrome after surgery: Mechanisms and protection. Anesth. Analg. 2020, 131, 1693–1707. [Google Scholar] [CrossRef]
- Karin, M.; Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 2016, 529, 307–315. [Google Scholar] [CrossRef]
- Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, e23. [Google Scholar] [CrossRef]
- Huppert, L.A.; Matthay, M.A.; Ware, L.B. Pathogenesis of acute respiratory distress syndrome. Semin. Respir. Crit. Care Med. 2019, 40, 31–39. [Google Scholar] [CrossRef]
- Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Investig. 2012, 122, 2731–2740. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, A.G.; Kotanidou, A.; Dimopoulou, I.; Orfanos, S.E. Endothelial damage in acute respiratory distress syndrome. Int. J. Mol. Sci. 2020, 21, 8793. [Google Scholar] [CrossRef] [PubMed]
- Lagier, D.; Zeng, C.; Fernandez-Bustamante, A.; Vidal Melo, M.F. Perioperative pulmonary atelectasis: Part II. Clinical implications. Anesthesiology 2022, 136, 206–236. [Google Scholar] [CrossRef] [PubMed]
- Floh, A.A.; Nakada, M.; La Rotta, G.; Mah, K.; Herridge, J.E.; Van Arsdell, G.; Schwartz, S.M. Systemic inflammation increases energy expenditure following pediatric cardiopulmonary bypass. Pediatr. Crit. Care Med. 2015, 16, 343–351. [Google Scholar] [CrossRef]
- Moriyama, S.; Okamoto, K.; Tabira, Y.; Kikuta, K.; Kukita, I.; Hamaguchi, M.; Kitamura, N. Evaluation of oxygen consumption and resting energy expenditure in critically ill patients with systemic inflammatory response syndrome. Crit. Care Med. 1999, 27, 2133–2136. [Google Scholar] [CrossRef]
- Kaufmann, K.B.; Heinrich, S.; Staehle, H.F.; Bogatyreva, L.; Buerkle, H.; Goebel, U. Perioperative cytokine profile during lung surgery predicts patients at risk for postoperative complications—A prospective, clinical study. PLoS ONE 2018, 13, e0199807. [Google Scholar] [CrossRef] [PubMed]
- Jawa, R.S.; Anillo, S.; Huntoon, K.; Baumann, H.; Kulaylat, M. Interleukin-6 in surgery, trauma, and critical care part II: Clinical implications. J. Intensive Care Med. 2011, 26, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Amar, D.; Zhang, H.; Park, B.; Heerdt, P.M.; Fleisher, M.; Thaler, H.T. Inflammation and outcome after general thoracic surgery. Eur. J. Cardiothorac. Surg. 2007, 32, 431–434. [Google Scholar] [CrossRef]
- Wen, X.H.; Kong, H.Y.; Zhu, S.M.; Xu, J.H.; Huang, S.Q.; Chen, Q.L. Plasma levels of tumor necrotic factor-alpha and interleukin-6, -8 during orthotopic liver transplantation and their relations to postoperative pulmonary complications. Hepatobiliary Pancreat. Dis. Int. 2004, 3, 38–41. [Google Scholar]
- Ward, N.S.; Casserly, B.; Ayala, A. The compensatory anti-inflammatory response syndrome (cars) in critically ill patients. Clin. Chest Med. 2008, 29, 617–625. [Google Scholar] [CrossRef]
- Angele, M.K.; Faist, E. Clinical review: Immunodepression in the surgical patient and increased susceptibility to infection. Crit. Care 2002, 6, 298–305. [Google Scholar] [CrossRef]
- Dupont, G.; Flory, L.; Morel, J.; Lukaszewicz, A.C.; Patoir, A.; Presles, E.; Monneret, G.; Molliex, S. Postoperative lymphopenia: An independent risk factor for postoperative pneumonia after lung cancer surgery, results of a case-control study. PLoS ONE 2018, 13, e0205237. [Google Scholar] [CrossRef]
- Torrance, H.D.T.; Longbottom, E.R.; Vivian, M.E.; Lalabekyan, B.; Abbott, T.E.F.; Ackland, G.L.; Hinds, C.J.; Pearse, R.M.; O’Dwyer, M.J. Post-operative immune suppression is mediated via reversible, interleukin-10 dependent pathways in circulating monocytes following major abdominal surgery. PLoS ONE 2018, 13, e0203795. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Monsel, A.; Bertrand, M.; Coriat, P.; Cavaillon, J.M.; Adib-Conquy, M. Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation. Crit. Care 2010, 14, R61. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.H.; Storgaard, M.; Vedelsdal, R.; Obel, N. Impaired neutrophil chemotaxis after cardiac surgery. Scand. J. Thorac. Cardiovasc. Surg. 1995, 29, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, G.; Napolitano, L.M. Postoperative pulmonary complications: Pneumonia and acute respiratory failure. Surg. Clin. N. Am. 2012, 92, 321–344. [Google Scholar] [CrossRef]
- Braciale, T.J.; Sun, J.; Kim, T.S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 2012, 12, 295–305. [Google Scholar] [CrossRef]
- Chalk, K.; Meisel, C.; Spies, C.; Volk, T.; Thuenemann, K.; Linneweber, J.; Wernecke, K.D.; Sander, M. Dysfunction of alveolar macrophages after cardiac surgery and postoperative pneumonia?—An observational study. Crit. Care 2013, 17, R285. [Google Scholar] [CrossRef]
- Tusman, G.; Bohm, S.H.; Warner, D.O.; Sprung, J. Atelectasis and perioperative pulmonary complications in high-risk patients. Curr. Opin. Anaesthesiol. 2012, 25, 1–10. [Google Scholar] [CrossRef]
- Palermo, J.; Tingey, S.; Khanna, A.K.; Segal, S. Evaluation and prevention of perioperative respiratory failure. J. Clin. Med. 2024, 13, 5083. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Su, M.C.; Wang, Y.W.; Che, G.W. Postoperative elevations of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict postoperative pulmonary complications in non-small cell lung cancer patients: A retrospective cohort study. Curr. Med. Sci. 2020, 40, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, F.; Einhaus, J.; Tsai, A.S.; Hedou, J.; Choisy, B.; Gaudilliere, D.; Kin, C.; Aghaeepour, N.; Angst, M.S.; Gaudilliere, B. Measuring the human immune response to surgery: Multiomics for the prediction of postoperative outcomes. Curr. Opin. Crit. Care 2021, 27, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, A.M.; Slotwinski, R. The immune response to surgery and infection. Cent. Eur. J. Immunol. 2014, 39, 532–537. [Google Scholar] [CrossRef]
- Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012, 72, 1491–1501. [Google Scholar] [CrossRef]
- Wang, T.; Gross, C.; Desai, A.A.; Zemskov, E.; Wu, X.; Garcia, A.N.; Jacobson, J.R.; Yuan, J.X.; Garcia, J.G.; Black, S.M. Endothelial cell signaling and ventilator-induced lung injury: Molecular mechanisms, genomic analyses, and therapeutic targets. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2017, 312, L452–L476. [Google Scholar] [CrossRef] [PubMed]
- Hegeman, M.A.; Hennus, M.P.; Heijnen, C.J.; Specht, P.A.; Lachmann, B.; Jansen, N.J.; van Vught, A.J.; Cobelens, P.M. Ventilator-induced endothelial activation and inflammation in the lung and distal organs. Crit. Care 2009, 13, R182. [Google Scholar] [CrossRef]
- McQuaid, K.E.; Keenan, A.K. Endothelial barrier dysfunction and oxidative stress: Roles for nitric oxide? Exp. Physiol. 1997, 82, 369–376. [Google Scholar] [CrossRef]
- Ware, L.B.; Eisner, M.D.; Thompson, B.T.; Parsons, P.E.; Matthay, M.A. Significance of von willebrand factor in septic and nonseptic patients with acute lung injury. Am. J. Respir. Crit. Care Med. 2004, 170, 766–772. [Google Scholar] [CrossRef]
- Ware, L.B.; Conner, E.R.; Matthay, M.A. Von willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Crit. Care Med. 2001, 29, 2325–2331. [Google Scholar] [CrossRef]
- Wollborn, J.; Zhang, Z.; Gaa, J.; Gentner, M.; Hausmann, C.; Saenger, F.; Weise, K.; Justice, S.; Funk, J.L.; Staehle, H.F.; et al. Angiopoietin-2 is associated with capillary leak and predicts complications after cardiac surgery. Ann. Intensive Care 2023, 13, 70. [Google Scholar] [CrossRef]
- Koning, N.J.; Overmars, M.A.; van den Brom, C.E.; van Bezu, J.; Simon, L.E.; Vonk, A.B.; Girbes, A.R.; van Nieuw Amerongen, G.P.; Boer, C. Endothelial hyperpermeability after cardiac surgery with cardiopulmonary bypass as assessed using an in vitro bioassay for endothelial barrier function. Br. J. Anaesth. 2016, 116, 223–232. [Google Scholar] [CrossRef]
- Andresen, T.K.; Svennevig, J.L.; Videm, V. Soluble vcam-1 is a very early marker of endothelial cell activation in cardiopulmonary bypass. Perfusion 2002, 17, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Toro-Perez, J.; Rodrigo, R. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep. 2021, 26, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ottolenghi, S.; Sabbatini, G.; Brizzolari, A.; Samaja, M.; Chiumello, D. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol. 2020, 86, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Helmerhorst, H.J.F.; Schouten, L.R.A.; Wagenaar, G.T.M.; Juffermans, N.P.; Roelofs, J.; Schultz, M.J.; de Jonge, E.; van Westerloo, D.J. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med. Exp. 2017, 5, 27. [Google Scholar] [CrossRef]
- de Vries, D.K.; Kortekaas, K.A.; Tsikas, D.; Wijermars, L.G.; van Noorden, C.J.; Suchy, M.T.; Cobbaert, C.M.; Klautz, R.J.; Schaapherder, A.F.; Lindeman, J.H. Oxidative damage in clinical ischemia/reperfusion injury: A reappraisal. Antioxid. Redox Signal. 2013, 19, 535–545. [Google Scholar] [CrossRef]
- Wang, F.; Ge, R.; Cai, Y.; Zhao, M.; Fang, Z.; Li, J.; Xie, C.; Wang, M.; Li, W.; Wang, X. Oxidative stress in ards: Mechanisms and therapeutic potential. Front. Pharmacol. 2025, 16, 1603287. [Google Scholar] [CrossRef]
- Wang, X.X.; Sha, X.L.; Li, Y.L.; Li, C.L.; Chen, S.H.; Wang, J.J.; Xia, Z. Lung injury induced by short-term mechanical ventilation with hyperoxia and its mitigation by deferoxamine in rats. BMC Anesthesiol. 2020, 20, 188. [Google Scholar] [CrossRef]
- Klawitter, F.; Ehler, J.; Bajorat, R.; Patejdl, R. Mitochondrial dysfunction in intensive care unit-acquired weakness and critical illness myopathy: A narrative review. Int. J. Mol. Sci. 2023, 24, 5516. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, T.; Pan, C.; Longhini, F.; Liu, L.; Huang, Y.; Guo, F.; Qiu, H. Endotoxemia accelerates diaphragm dysfunction in ventilated rabbits. J. Surg. Res. 2016, 206, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Kavazis, A.N.; Talbert, E.E.; Smuder, A.J.; Hudson, M.B.; Nelson, W.B.; Powers, S.K. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic. Biol. Med. 2009, 46, 842–850. [Google Scholar] [CrossRef]
- Levine, S.; Nguyen, T.; Taylor, N.; Friscia, M.E.; Budak, M.T.; Rothenberg, P.; Zhu, J.; Sachdeva, R.; Sonnad, S.; Kaiser, L.R.; et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N. Engl. J. Med. 2008, 358, 1327–1335. [Google Scholar] [CrossRef]
- McClintock, C.R.; Mulholland, N.; Krasnodembskaya, A.D. Biomarkers of mitochondrial dysfunction in acute respiratory distress syndrome: A systematic review and meta-analysis. Front. Med. 2022, 9, 1011819. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T. Coagulation and sepsis. Thromb. Res. 2017, 149, 38–44. [Google Scholar] [CrossRef]
- van der Poll, T.; Levi, M. Crosstalk between inflammation and coagulation: The lessons of sepsis. Curr. Vasc. Pharmacol. 2012, 10, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T.; Buller, H.R. Bidirectional relation between inflammation and coagulation. Circulation 2004, 109, 2698–2704. [Google Scholar] [CrossRef]
- Slobod, D.; Damia, A.; Leali, M.; Spinelli, E.; Mauri, T. Pathophysiology and clinical meaning of ventilation-perfusion mismatch in the acute respiratory distress syndrome. Biology 2022, 12, 67. [Google Scholar] [CrossRef]
- Gierhardt, M.; Pak, O.; Walmrath, D.; Seeger, W.; Grimminger, F.; Ghofrani, H.A.; Weissmann, N.; Hecker, M.; Sommer, N. Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. Eur. Respir. Rev. 2021, 30, 210059. [Google Scholar] [CrossRef]
- Bull, T.M.; Clark, B.; McFann, K.; Moss, M. Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 2010, 182, 1123–1128. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, H.; Li, D.; Cai, Z.; Chen, M.; Zhang, W.; Liu, F.; Huang, Z.; Wang, Y.; Xu, J.; et al. Thrombin antithrombin complex concentration as an early predictor of deep vein thrombosis after total hip arthroplasty and total knee arthroplasty. BMC Musculoskelet. Disord. 2022, 23, 574. [Google Scholar] [CrossRef]
- Dindo, D.; Breitenstein, S.; Hahnloser, D.; Seifert, B.; Yakarisik, S.; Asmis, L.M.; Muller, M.K.; Clavien, P.A. Kinetics of D-dimer after general surgery. Blood Coagul. Fibrinolysis 2009, 20, 347–352. [Google Scholar] [CrossRef]
- Yu, H.Y.; Bai, Y.P.; Song, X.C.; Miao, F.; Guo, X.L.; Wang, X.; Su, W.L. Factors associated with acute pulmonary embolism in patients with hypoxia after off-pump coronary artery bypass grafting: A case-control study. J. Multidiscip. Healthc. 2024, 17, 573–583. [Google Scholar] [CrossRef]
- Franchini, M.; Focosi, D.; Pezzo, M.P.; Mannucci, P.M. How we manage a high d-dimer. Haematologica 2024, 109, 1035–1045. [Google Scholar] [CrossRef]
- Uzel, K.; Azboy, I.; Parvizi, J. Venous thromboembolism in orthopedic surgery: Global guidelines. Acta Orthop. Traumatol. Turc. 2023, 57, 192–203. [Google Scholar] [CrossRef]
- Anderson, D.R.; Morgano, G.P.; Bennett, C.; Dentali, F.; Francis, C.W.; Garcia, D.A.; Kahn, S.R.; Rahman, M.; Rajasekhar, A.; Rogers, F.B.; et al. American society of hematology 2019 guidelines for management of venous thromboembolism: Prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019, 3, 3898–3944. [Google Scholar] [CrossRef] [PubMed]
- Caine, G.J.; Stonelake, P.S.; Lip, G.Y.; Kehoe, S.T. The hypercoagulable state of malignancy: Pathogenesis and current debate. Neoplasia 2002, 4, 465–473. [Google Scholar] [CrossRef]
- Stoian, M.; Azamfirei, L.; Stingaciu, A.C.; Negulici, L.M.; Vasiesiu, A.M.; Manea, A.; Stoian, A. Early diagnostic markers and risk stratification in sepsis: Prognostic value of neutrophil-to-lymphocyte ratio, platelets, and the carmeli score. Biomedicines 2025, 13, 2658. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Lagier, D.; Lee, J.W.; Vidal Melo, M.F. Perioperative pulmonary atelectasis: Part I. Biology and mechanisms. Anesthesiology 2022, 136, 181–205. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, L.; Spahn, D.R. New concepts of atelectasis during general anaesthesia. Br. J. Anaesth. 2003, 91, 61–72. [Google Scholar] [CrossRef]
- Marini, J.J.; Slutsky, A.S. Atelectrauma: Promotion and prevention. Intensive Care Med. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H.T.; Smith, B.J. Ventilator-induced lung injury and lung mechanics. Ann. Transl. Med. 2018, 6, 378. [Google Scholar] [CrossRef] [PubMed]
- Ghadiali, S.; Huang, Y. Role of airway recruitment and derecruitment in lung injury. Crit. Rev. Biomed. Eng. 2011, 39, 297–318. [Google Scholar] [CrossRef] [PubMed]
- Simonte, R.; Cammarota, G.; Vetrugno, L.; De Robertis, E.; Longhini, F.; Spadaro, S. Advanced respiratory monitoring during extracorporeal membrane oxygenation. J. Clin. Med. 2024, 13, 2541. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Ranieri, V.M. Ventilator-induced lung injury. N. Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef]
- Tremblay, L.N.; Slutsky, A.S. Ventilator-induced lung injury: From the bench to the bedside. Intensive Care Med. 2006, 32, 24–33. [Google Scholar] [CrossRef]
- Tremblay, L.N.; Slutsky, A.S. Ventilator-induced injury: From barotrauma to biotrauma. Proc. Assoc. Am. Physicians 1998, 110, 482–488. [Google Scholar]
- Halbertsma, F.J.; Vaneker, M.; Scheffer, G.J.; van der Hoeven, J.G. Cytokines and biotrauma in ventilator-induced lung injury: A critical review of the literature. Neth. J. Med. 2005, 63, 382–392. [Google Scholar]
- Ranieri, V.M.; Suter, P.M.; Tortorella, C.; De Tullio, R.; Dayer, J.M.; Brienza, A.; Bruno, F.; Slutsky, A.S. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 1999, 282, 54–61. [Google Scholar] [CrossRef]
- Longhini, F.; Pasin, L.; Montagnini, C.; Konrad, P.; Bruni, A.; Garofalo, E.; Murabito, P.; Pelaia, C.; Rondi, V.; Dellapiazza, F.; et al. Intraoperative protective ventilation in patients undergoing major neurosurgical interventions: A randomized clinical trial. BMC Anesthesiol. 2021, 21, 184. [Google Scholar] [CrossRef]
- Neto, A.S.; Hemmes, S.N.; Barbas, C.S.; Beiderlinden, M.; Fernandez-Bustamante, A.; Futier, E.; Gajic, O.; El-Tahan, M.R.; Ghamdi, A.A.; Gunay, E.; et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: A meta-analysis of individual patient data. Lancet Respir. Med. 2016, 4, 272–280. [Google Scholar] [CrossRef]
- PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology; Hemmes, S.N.; Gama de Abreu, M.; Pelosi, P.; Schultz, M.J. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (provhilo trial): A multicentre randomised controlled trial. Lancet 2014, 384, 495–503. [Google Scholar] [CrossRef]
- Futier, E.; Constantin, J.M.; Paugam-Burtz, C.; Pascal, J.; Eurin, M.; Neuschwander, A.; Marret, E.; Beaussier, M.; Gutton, C.; Lefrant, J.Y.; et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N. Engl. J. Med. 2013, 369, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar]
- Prete, A.; Yan, Q.; Al-Tarrah, K.; Akturk, H.K.; Prokop, L.J.; Alahdab, F.; Foster, M.A.; Lord, J.M.; Karavitaki, N.; Wass, J.A.; et al. The cortisol stress response induced by surgery: A systematic review and meta-analysis. Clin. Endocrinol. 2018, 89, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, O.; Keough, E.; Lopez-Rodriguez, L.; Carriedo, D.; Goncalves, G.; Barreiro, E.; Lorente, J.A. Ventilator-induced diaphragm dysfunction: Translational mechanisms lead to therapeutical alternatives in the critically ill. Intensive Care Med. Exp. 2019, 7, 48. [Google Scholar] [CrossRef]
- Sasaki, N.; Meyer, M.J.; Eikermann, M. Postoperative respiratory muscle dysfunction: Pathophysiology and preventive strategies. Anesthesiology 2013, 118, 961–978. [Google Scholar] [CrossRef] [PubMed]
- Laghi, F.; Tobin, M.J. Disorders of the respiratory muscles. Am. J. Respir. Crit. Care Med. 2003, 168, 10–48. [Google Scholar] [CrossRef]
- Deulkar, P.; Singam, A.; Mudiganti, V.; Jain, A. Lactate monitoring in intensive care: A comprehensive review of its utility and interpretation. Cureus 2024, 16, e66356. [Google Scholar] [CrossRef]
- Fuller, B.M.; Dellinger, R.P. Lactate as a hemodynamic marker in the critically ill. Curr. Opin. Crit. Care 2012, 18, 267–272. [Google Scholar] [CrossRef]
- Jermihov, A.; Tsalatsanis, A.; Kulkarni, S.; Velez, F.O.; Moodie, C.C.; Garrett, J.R.; Fontaine, J.P.; Toloza, E.M. Effect of lowest postoperative pre-albumin on outcomes after robotic-assisted pulmonary lobectomy. JSLS J. Soc. Laparosc. Robot. Surg. 2021, 25, e2021.00043. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Lai, Y.; Wang, Y.; Wang, X.; Su, J.; Che, G. Perioperative changes of serum albumin are a predictor of postoperative pulmonary complications in lung cancer patients: A retrospective cohort study. J. Thorac. Dis. 2018, 10, 5755–5763. [Google Scholar] [CrossRef]
- Shu, X.; Song, Q.; Huang, X.; Tang, T.; Huang, L.; Zhao, Y.; Lin, T.; Xu, P.; Yu, P.; Yue, J. Sarcopenia and risk of postoperative pneumonia: A systematic review and meta-analysis. J. Nutr. Health Aging 2025, 29, 100457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Deng, C.; Wan, Q.; Zhao, R.; Han, L.; Wang, X. Impact of sarcopenia on postoperative pulmonary complications after gastric cancer surgery: A retrospective cohort study. Front. Surg. 2022, 9, 1013665. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Gupta, P.K.; Schuller, D.; Fang, X.; Miller, W.J.; Modrykamien, A.; Wichman, T.O.; Morrow, L.E. Development and validation of a risk calculator for predicting postoperative pneumonia. Mayo Clin. Proc. 2013, 88, 1241–1249. [Google Scholar] [CrossRef]
- Gupta, H.; Gupta, P.K.; Fang, X.; Miller, W.J.; Cemaj, S.; Forse, R.A.; Morrow, L.E. Development and validation of a risk calculator predicting postoperative respiratory failure. Chest 2011, 140, 1207–1215. [Google Scholar] [CrossRef]
- Arozullah, A.M.; Khuri, S.F.; Henderson, W.G.; Daley, J. Participants in the National Veterans Affairs Surgical Quality Improvement Program. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann. Intern. Med. 2001, 135, 847–857. [Google Scholar] [CrossRef]
- Arozullah, A.M.; Daley, J.; Henderson, W.G.; Khuri, S.F. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The national veterans administration surgical quality improvement program. Ann. Surg. 2000, 232, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Sabate, S.; Mazo, V.; Canet, J. Predicting postoperative pulmonary complications: Implications for outcomes and costs. Curr. Opin. Anaesthesiol. 2014, 27, 201–209. [Google Scholar] [CrossRef]
- Huang, Z.; Han, Y.; Zhuang, H.; Jiang, J.; Zhou, C.; Yu, H. Prediction models for postoperative pulmonary complications: A systematic review and meta-analysis. Br. J. Anaesth. 2025, 135, 1415–1427. [Google Scholar] [CrossRef]
- STARSurg Collaborative and TASMAN Collaborative. Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: A systematic review and international external validation cohort study. Lancet Digit. Health 2022, 4, e520–e531. [Google Scholar]
- Huang, Z.Y.; Huang, Q.; Wang, L.Y.; Lei, Y.T.; Xu, H.; Shen, B.; Pei, F.X. Normal trajectory of interleukin-6 and c-reactive protein in the perioperative period of total knee arthroplasty under an enhanced recovery after surgery scenario. BMC Musculoskelet. Disord. 2020, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Alazawi, W.; Pirmadjid, N.; Lahiri, R.; Bhattacharya, S. Inflammatory and immune responses to surgery and their clinical impact. Ann. Surg. 2016, 264, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Belani, K.G. Precision medicine and the expanding perioperative role by anaesthesiologists. Indian J. Anaesth. 2025, 69, 745–747. [Google Scholar] [CrossRef]
- Perticone, M.; Gigliotti, S.; Shehaj, E.; Maio, R.; Suraci, E.; Miceli, S.; Andreozzi, F.; Matera, G.; Perticone, F. Gut permeability and immune-mediated inflammation in heart failure. Biomedicines 2024, 12, 1217. [Google Scholar] [CrossRef]
- Perticone, M.; Maio, R.; Gigliotti, S.; Shehaj, E.; Toscani, A.F.; Capomolla, A.; Fabiani, G.; Sciacqua, A.; Perticone, F. Mutual effect modification between insulin resistance and endothelial dysfunction in predicting incident heart failure in hypertensives. Biomedicines 2023, 11, 2188. [Google Scholar] [CrossRef]
- Niemann, B.R.; Murthy, J.; Breinholt, C.; Swords, J.; Stevens, A.; Garland-Kledzik, M.; Mayers, K.; Groves, E.; Train, K.; Murken, D. Postoperative c-reactive protein trend is a more accurate predictor of anastomotic leak than absolute values alone. J. Clin. Med. 2025, 14, 2931. [Google Scholar] [CrossRef]
- Perticone, M.; Maio, R.; Gigliotti, S.; Arturi, F.; Succurro, E.; Sciacqua, A.; Andreozzi, F.; Sesti, G.; Perticone, F. Immuno-mediated inflammation in hypertensive patients with 1-h post-load hyperglycemia. Int. J. Mol. Sci. 2022, 23, 10891. [Google Scholar] [CrossRef]
- Perticone, M.; Zito, R.; Miceli, S.; Pinto, A.; Suraci, E.; Greco, M.; Gigliotti, S.; Hribal, M.L.; Corrao, S.; Sesti, G.; et al. Immunity, inflammation and heart failure: Their role on cardiac function and iron status. Front. Immunol. 2019, 10, 2315. [Google Scholar] [CrossRef]
- Schuetz, P.; Birkhahn, R.; Sherwin, R.; Jones, A.E.; Singer, A.; Kline, J.A.; Runyon, M.S.; Self, W.H.; Courtney, D.M.; Nowak, R.M.; et al. Serial procalcitonin predicts mortality in severe sepsis patients: Results from the multicenter procalcitonin monitoring sepsis (moses) study. Crit. Care Med. 2017, 45, 781–789. [Google Scholar] [CrossRef]
- Serpa Neto, A.; Campos, P.P.; Hemmes, S.N.; Bos, L.D.; Bluth, T.; Ferner, M.; Guldner, A.; Hollmann, M.W.; India, I.; Kiss, T.; et al. Kinetics of plasma biomarkers of inflammation and lung injury in surgical patients with or without postoperative pulmonary complications. Eur. J. Anaesthesiol. 2017, 34, 229–238. [Google Scholar] [CrossRef]
- Marik, P.E.; Flemmer, M. The immune response to surgery and trauma: Implications for treatment. J. Trauma Acute Care Surg. 2012, 73, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Riedel, B.; Schier, R. Endothelial dysfunction in the perioperative setting. Semin. Cardiothorac. Vasc. Anesth. 2010, 14, 41–43. [Google Scholar] [CrossRef]
- Fink-Neuboeck, N.; Lindenmann, J.; Bajric, S.; Maier, A.; Riedl, R.; Weinberg, A.M.; Smolle-Juettner, F.M. Clinical impact of interleukin 6 as a predictive biomarker in the early diagnosis of postoperative systemic inflammatory response syndrome after major thoracic surgery: A prospective clinical trial. Surgery 2016, 160, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci. 2011, 3, 118–127. [Google Scholar] [CrossRef]
- Larsson, S.; Thelander, U.; Friberg, S. C-reactive protein (crp) levels after elective orthopedic surgery. Clin. Orthop. Relat. Res. 1992, 275, 237–242. [Google Scholar] [CrossRef]
- Noone, D.P.; Isendoorn, M.M.E.; Hamers, S.; Keizer, M.E.; Wulffele, J.; van der Velden, T.T.; Dijkstra, D.J.; Trouw, L.A.; Filippov, D.V.; Sharp, T.H. Structural basis for surface activation of the classical complement cascade by the short pentraxin c-reactive protein. Proc. Natl. Acad. Sci. USA 2024, 121, e2404542121. [Google Scholar] [CrossRef]
- Volanakis, J.E. Human c-reactive protein: Expression, structure, and function. Mol. Immunol. 2001, 38, 189–197. [Google Scholar] [CrossRef]
- Mold, C.; Gewurz, H.; Du Clos, T.W. Regulation of complement activation by c-reactive protein. Immunopharmacology 1999, 42, 23–30. [Google Scholar] [CrossRef]
- Ackland, G.L.; Scollay, J.M.; Parks, R.W.; de Beaux, I.; Mythen, M.G. Pre-operative high sensitivity c-reactive protein and postoperative outcome in patients undergoing elective orthopaedic surgery. Anaesthesia 2007, 62, 888–894. [Google Scholar] [CrossRef]
- Gaudino, M.; Nasso, G.; Andreotti, F.; Minniti, G.; Iacoviello, L.; Donati, M.; Schiavello, R.; Possati, G. Preoperative c-reactive protein level and outcome following coronary surgery. Eur. J. Cardiothorac. Surg. 2002, 22, 521–526. [Google Scholar] [CrossRef]
- Hoeboer, S.H.; Groeneveld, A.B.; Engels, N.; van Genderen, M.; Wijnhoven, B.P.; van Bommel, J. Rising c-reactive protein and procalcitonin levels precede early complications after esophagectomy. J. Gastrointest. Surg. 2015, 19, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Fukutomi, T.; Taniyama, Y.; Sato, C.; Okamoto, H.; Ozawa, Y.; Ando, R.; Shinozaki, Y.; Unno, M.; Kamei, T. Serum c-reactive protein and procalcitonin levels in patients with pneumonia and anastomotic leakage in the postoperative period after esophagectomy. Gen. Thorac. Cardiovasc. Surg. 2024, 72, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, I.; Vasikaran, S.D. Clinical utility and measurement of procalcitonin. Clin. Biochem. Rev. 2017, 38, 59–68. [Google Scholar] [PubMed]
- Lee, H. Procalcitonin as a biomarker of infectious diseases. Korean J. Intern. Med. 2013, 28, 285–291. [Google Scholar] [CrossRef]
- Meisner, M.; Tschaikowsky, K.; Hutzler, A.; Schüttler, J.; Schick, C. Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med. 1998, 24, 680–684. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, L.; You, J.; Li, Y. The predictive value of postoperative C-reactive protein (CRP), procalcitonin (PCT) and triggering receptor expressed on myeloid cells 1 (TREM-1) for the early detection of pulmonary infection following laparoscopic general anesthesia for cervical cancer treatment. Ann. Palliat. Med. 2021, 10, 4502–4508. [Google Scholar] [CrossRef] [PubMed]
- Castell, J.V.; Gomez-Lechon, M.J.; David, M.; Andus, T.; Geiger, T.; Trullenque, R.; Fabra, R.; Heinrich, P.C. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989, 242, 237–239. [Google Scholar] [CrossRef] [PubMed]
- De la Gala, F.; Pineiro, P.; Reyes, A.; Vara, E.; Olmedilla, L.; Cruz, P.; Garutti, I. Postoperative pulmonary complications, pulmonary and systemic inflammatory responses after lung resection surgery with prolonged one-lung ventilation. Randomized controlled trial comparing intravenous and inhalational anaesthesia. Br. J. Anaesth. 2017, 119, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Rettig, T.C.; Verwijmeren, L.; Dijkstra, I.M.; Boerma, D.; van de Garde, E.M.; Noordzij, P.G. Postoperative interleukin-6 level and early detection of complications after elective major abdominal surgery. Ann. Surg. 2016, 263, 1207–1212. [Google Scholar] [CrossRef]
- Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Mantelli, F.; Allegretti, M.; Balk, R.A. The role of interleukin-8 in lung inflammation and injury: Implications for the management of COVID-19 and hyperinflammatory acute respiratory distress syndrome. Front. Pharmacol. 2021, 12, 808797. [Google Scholar] [CrossRef]
- Klava, A.; Windsor, A.C.; Farmery, S.M.; Woodhouse, L.F.; Reynolds, J.V.; Ramsden, C.W.; Boylston, A.W.; Guillou, P.J. Interleukin-10. A role in the development of postoperative immunosuppression. Arch. Surg. 1997, 132, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.M.; Lu, H.I.; Wang, Y.M.; Chen, Y.H.; Chen, Y.; Chen, L.C.; Li, S.H. Preoperative neutrophil-to-lymphocyte ratio after chemoradiotherapy for esophageal squamous cell carcinoma associates with postoperative pulmonary complications following radical esophagectomy. Perioper. Med. 2024, 13, 65. [Google Scholar] [CrossRef]
- Mori, M.; Shuto, K.; Hirano, A.; Narushima, K.; Kosugi, C.; Yamazaki, M.; Koda, K.; Yoshida, M. Preoperative neutrophil-to-lymphocyte ratio may predict postoperative pneumonia in stage i–iii gastric cancer patients after curative gastrectomy: A retrospective study. World J. Surg. 2021, 45, 3359–3369. [Google Scholar] [CrossRef]
- Lan, H.; Zhou, L.; Chi, D.; Zhou, Q.; Tang, X.; Zhu, D.; Yue, J.; Liu, B. Preoperative platelet to lymphocyte and neutrophil to lymphocyte ratios are independent prognostic factors for patients undergoing lung cancer radical surgery: A single institutional cohort study. Oncotarget 2017, 8, 35301–35310. [Google Scholar] [CrossRef]
- Forget, P.; Dinant, V.; De Kock, M. Is the neutrophil-to-lymphocyte ratio more correlated than c-reactive protein with postoperative complications after major abdominal surgery? PeerJ 2015, 3, e713. [Google Scholar] [CrossRef] [PubMed]
- Ozer, A.; Tak, S.; Demirtas, H.; Yildirim, A.K.; Simsek, E.; Oktar, G.L.; Kaya, Z. The role of monocyte distribution width in the early prediction of sepsis in patients undergoing cardiovascular surgery: A cross-sectional study. Medicina 2024, 60, 1558. [Google Scholar] [CrossRef]
- Malinovska, A.; Hernried, B.; Lin, A.; Badaki-Makun, O.; Fenstermacher, K.; Ervin, A.M.; Ehrhardt, S.; Levin, S.; Hinson, J.S. Monocyte distribution width as a diagnostic marker for infection: A systematic review and meta-analysis. Chest 2023, 164, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Crouser, E.D.; Parrillo, J.E.; Martin, G.S.; Huang, D.T.; Hausfater, P.; Grigorov, I.; Careaga, D.; Osborn, T.; Hasan, M.; Tejidor, L. Monocyte distribution width enhances early sepsis detection in the emergency department beyond sirs and qsofa. J. Intensive Care 2020, 8, 33. [Google Scholar] [CrossRef]
- Crouser, E.D.; Parrillo, J.E.; Seymour, C.; Angus, D.C.; Bicking, K.; Tejidor, L.; Magari, R.; Careaga, D.; Williams, J.; Closser, D.R.; et al. Improved early detection of sepsis in the ed with a novel monocyte distribution width biomarker. Chest 2017, 152, 518–526. [Google Scholar] [CrossRef] [PubMed]
- van den Berk, J.M.; Oldenburger, R.H.; van den Berg, A.P.; Klompmaker, I.J.; Mesander, G.; van Son, W.J.; van der Bij, W.; Sloof, M.J.; The, T.H. Low HLA-DR expression on monocytes as a prognostic marker for bacterial sepsis after liver transplantation. Transplantation 1997, 63, 1846–1848. [Google Scholar] [CrossRef]
- Wu, R.L.; Li, X.B.; Wang, B.; Lian, L. Application value of immature granulocyte count in predicting early infection after spinal operation. China J. Orthop. Traumatol. 2019, 32, 898–903. [Google Scholar]
- Porizka, M.; Volny, L.; Kopecky, P.; Kunstyr, J.; Waldauf, P.; Balik, M. Immature granulocytes as a sepsis predictor in patients undergoing cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 845–851. [Google Scholar] [CrossRef]
- Daix, T.; Guerin, E.; Tavernier, E.; Marsaud, J.P.; Hacan, A.; Gauthier, F.; Piccardo, A.; Vignon, P.; Feuillard, J.; Francois, B. Immature granulocytes: A risk factor of infection after cardiac surgery. Cytometry B Clin. Cytom. 2018, 94, 887–894. [Google Scholar] [CrossRef]
- Nierhaus, A.; Klatte, S.; Linssen, J.; Eismann, N.M.; Wichmann, D.; Hedke, J.; Braune, S.A.; Kluge, S. Revisiting the white blood cell count: Immature granulocytes count as a diagnostic marker to discriminate between sirs and sepsis—A prospective, observational study. BMC Immunol. 2013, 14, 8. [Google Scholar] [CrossRef]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 2019, 5, 18. [Google Scholar] [CrossRef]
- Reutershan, J.; Ley, K. Bench-to-bedside review: Acute respiratory distress syndrome—How neutrophils migrate into the lung. Crit. Care 2004, 8, 453–461. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Calfee, C.S.; Eisner, M.D.; Parsons, P.E.; Thompson, B.T.; Conner, E.R., Jr.; Matthay, M.A.; Ware, L.B.; The NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Attia, E.F.; Jolley, S.E.; Crothers, K.; Schnapp, L.M.; Liles, W.C. Soluble vascular cell adhesion molecule-1 (SVCAM-1) is elevated in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. PLoS ONE 2016, 11, e0149687. [Google Scholar] [CrossRef] [PubMed]
- McCormack, J.J.; Lopes da Silva, M.; Ferraro, F.; Patella, F.; Cutler, D.F. Weibel-palade bodies at a glance. J. Cell Sci. 2017, 130, 3611–3617. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.; McClintock, D.E.; Kallet, R.H.; Ware, L.B.; Matthay, M.A.; Liu, K.D. Ratio of angiopoietin-2 to angiopoietin-1 as a predictor of mortality in acute lung injury patients. Crit. Care Med. 2010, 38, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.C.; Parikh, S.M.; Balonov, K.; Miller, A.; Gautam, S.; Talmor, D.; Sukhatme, V.P. Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 2008, 29, 656–661. [Google Scholar] [CrossRef]
- Dekker, N.A.M.; van Leeuwen, A.L.I.; van Strien, W.W.J.; Majolee, J.; Szulcek, R.; Vonk, A.B.A.; Hordijk, P.L.; Boer, C.; van den Brom, C.E. Microcirculatory perfusion disturbances following cardiac surgery with cardiopulmonary bypass are associated with in vitro endothelial hyperpermeability and increased angiopoietin-2 levels. Crit. Care 2019, 23, 117. [Google Scholar] [CrossRef]
- Charbonney, E.; Wilcox, E.; Shan, Y.; d’Empaire, P.P.; Duggal, A.; Rubenfeld, G.D.; Liles, C.; Santos, C.D. Systemic angiopoietin-1/2 dysregulation following cardiopulmonary bypass in adults. Future Sci. OA 2017, 3, FSO166. [Google Scholar] [CrossRef] [PubMed]
- Ottolenghi, S.; Rubino, F.M.; Sabbatini, G.; Coppola, S.; Veronese, A.; Chiumello, D.; Paroni, R. Oxidative stress markers to investigate the effects of hyperoxia in anesthesia. Int. J. Mol. Sci. 2019, 20, 5492. [Google Scholar] [CrossRef]
- Rodriguez-Capote, K.; Manzanares, D.; Haines, T.; Possmayer, F. Reactive oxygen species inactivation of surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C. Biophys. J. 2006, 90, 2808–2821. [Google Scholar] [CrossRef]
- Misthos, P.; Katsaragakis, S.; Theodorou, D.; Milingos, N.; Skottis, I. The degree of oxidative stress is associated with major adverse effects after lung resection: A prospective study. Eur. J. Cardiothorac. Surg. 2006, 29, 591–595. [Google Scholar] [CrossRef]
- Lichtenstern, C.; Hofer, S.; Mollers, A.; Snyder-Ramos, S.; Spies-Martin, D.; Martin, E.; Schmidt, J.; Motsch, J.; Bardenheuer, H.J.; Weigand, M.A. Lipid peroxidation in acute respiratory distress syndrome and liver failure. J. Surg. Res. 2011, 168, 243–252. [Google Scholar] [CrossRef]
- Weigand, M.A.; Snyder-Ramos, S.A.; Mollers, A.G.; Bauer, J.; Hansen, D.; Kochen, W.; Martin, E.; Motsch, J. Inhaled nitric oxide does not enhance lipid peroxidation in patients with acute respiratory distress syndrome. Crit. Care Med. 2000, 28, 3429–3435. [Google Scholar] [CrossRef]
- Montuschi, P.; Kharitonov, S.A.; Ciabattoni, G.; Corradi, M.; van Rensen, L.; Geddes, D.M.; Hodson, M.E.; Barnes, P.J. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 2000, 55, 205–209. [Google Scholar] [CrossRef]
- Carpenter, C.T.; Price, P.V.; Christman, B.W. Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ards. Chest 1998, 114, 1653–1659. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric oxide and endothelial dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Squadrito, G.L.; Pryor, W.A. The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem. Biol. Interact. 1995, 96, 203–206. [Google Scholar] [CrossRef]
- Vassilakopoulos, T.; Petrof, B.J. Ventilator-induced diaphragmatic dysfunction. Am. J. Respir. Crit. Care Med. 2004, 169, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Verona, C.; Hackenhaar, F.S.; Teixeira, C.; Medeiros, T.M.; Alabarse, P.V.; Salomon, T.B.; Shuller, A.K.; Maccari, J.G.; Condessa, R.L.; Oliveira, R.P.; et al. Blood markers of oxidative stress predict weaning failure from mechanical ventilation. J. Cell. Mol. Med. 2015, 19, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.H.; Conway, E.M. Cross talk pathways between coagulation and inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef]
- Opal, S.M. Interactions between coagulation and inflammation. Scand. J. Infect. Dis. 2003, 35, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Ferluga, M.; Lucangelo, U.; Blanch, L. Dead space in acute respiratory distress syndrome. Ann. Transl. Med. 2018, 6, 388. [Google Scholar] [CrossRef]
- Schultz, M.J.; Haitsma, J.J.; Zhang, H.; Slutsky, A.S. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia—A review. Crit. Care Med. 2006, 34, 871–877. [Google Scholar] [CrossRef]
- Toth, K.; Fresilli, S.; Paoli, N.; Maiucci, G.; Salvioni, M.; Kotani, Y.; Katzenschlager, S.; Weigand, M.A.; Landoni, G. D-dimer levels in non-COVID-19 ards and COVID-19 ards patients: A systematic review with meta-analysis. PLoS ONE 2023, 18, e0277000. [Google Scholar] [CrossRef]
- McClintock, D.; Zhuo, H.; Wickersham, N.; Matthay, M.A.; Ware, L.B. Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit. Care 2008, 12, R41. [Google Scholar] [CrossRef]
- Kearon, C.; de Wit, K.; Parpia, S.; Schulman, S.; Afilalo, M.; Hirsch, A.; Spencer, F.A.; Sharma, S.; D’Aragon, F.; Deshaies, J.F.; et al. Diagnosis of pulmonary embolism with d-dimer adjusted to clinical probability. N. Engl. J. Med. 2019, 381, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
- Perrier, A.; Desmarais, S.; Goehring, C.; de Moerloose, P.; Morabia, A.; Unger, P.F.; Slosman, D.; Junod, A.; Bounameaux, H. D-dimer testing for suspected pulmonary embolism in outpatients. Am. J. Respir. Crit. Care Med. 1997, 156, 492–496. [Google Scholar] [CrossRef]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef]
- Idell, S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med. 2003, 31, S213–S220. [Google Scholar] [CrossRef]
- Rossaint, J.; Margraf, A.; Zarbock, A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front. Immunol. 2018, 9, 2712. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Ley, K. The role of platelets in acute lung injury (ALI). Front. Biosci. (Landmark Ed.) 2009, 14, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wu, Y.; Lu, X.; Hu, Y. Association between mean platelet volume and pulmonary embolism: A systematic review and meta-analysis. Aging 2021, 13, 17253–17273. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Ayvazyan, L.; Mikhailidis, D.P.; Kitas, G.D. Mean platelet volume: A link between thrombosis and inflammation? Curr. Pharm. Des. 2011, 17, 47–58. [Google Scholar] [CrossRef]
- Vincent, J.L.; e Silva, A.Q.; Couto, L., Jr.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 257. [Google Scholar] [CrossRef]
- Velickovic, J.; Palibrk, I.; Milicic, B.; Velickovic, D.; Jovanovic, B.; Rakic, G.; Petrovic, M.; Bumbasirevic, V. The association of early postoperative lactate levels with morbidity after elective major abdominal surgery. Bosn. J. Basic Med. Sci. 2019, 19, 72–80. [Google Scholar] [CrossRef]
- Mak, N.T.; Iqbal, S.; de Varennes, B.; Khwaja, K. Outcomes of post-cardiac surgery patients with persistent hyperlactatemia in the intensive care unit: A matched cohort study. J. Cardiothorac. Surg. 2016, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, R.; Karakoc, A.Z.; Cevirme, D.; Elibol, A.; Yigit, F.; Yilmaz, U.; Rabus, M.B. Predictive factors of prolonged ventilation following cardiac surgery with cardiopulmonary bypass. Braz. J. Cardiovasc. Surg. 2021, 36, 780–787. [Google Scholar] [CrossRef]
- Worrell, S.G.; Haug, K.; Dubovoy, A.; Lin, J.; Engoren, M. Is lactic acidosis after lung transplantation associated with worse outcomes? Ann. Thorac. Surg. 2020, 110, 434–440. [Google Scholar] [CrossRef]
- Qaseem, A.; Snow, V.; Fitterman, N.; Hornbake, E.R.; Lawrence, V.A.; Smetana, G.W.; Weiss, K.; Owens, D.K.; Aronson, M.; Barry, P.; et al. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: A guideline from the american college of physicians. Ann. Intern. Med. 2006, 144, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J. Parenter. Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Polito, C.; Martin, G.S. Albumin: Physiologic and clinical effects on lung function. Minerva Anestesiol. 2013, 79, 1180–1186. [Google Scholar]
- Wiedermann, C.J. Hypoalbuminemia as surrogate and culprit of infections. Int. J. Mol. Sci. 2021, 22, 4496. [Google Scholar] [CrossRef]
- Ranasinghe, R.N.; Biswas, M.; Vincent, R.P. Prealbumin: The clinical utility and analytical methodologies. Ann. Clin. Biochem. 2022, 59, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L.H.; Ingenbleek, Y. Transthyretin: Its response to malnutrition and stress injury. Clinical usefulness and economic implications. Clin. Chem. Lab. Med. 2002, 40, 1344–1348. [Google Scholar] [CrossRef]
- Bianchi, R.C.; de Souza, J.N.; Giaciani Cde, A.; Hoehr, N.F.; Toro, I.F. Prognostic factors for complications following pulmonary resection: Pre-albumin analysis, time on mechanical ventilation, and other factors. J. Bras. Pneumol. 2006, 32, 489–494. [Google Scholar] [CrossRef]
- Lin, M.; Xu, F.; Sun, J.; Song, J.; Shen, Y.; Lu, S.; Ding, H.; Lan, L.; Chen, C.; Ma, W.; et al. Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ards. Crit. Care 2024, 28, 213. [Google Scholar] [CrossRef]
- Liao, S.Y.; Casanova, N.G.; Bime, C.; Camp, S.M.; Lynn, H.; Garcia, J.G.N. Identification of early and intermediate biomarkers for ards mortality by multi-omic approaches. Sci. Rep. 2021, 11, 18874. [Google Scholar] [CrossRef]
- Hernandez-Beeftink, T.; Guillen-Guio, B.; Villar, J.; Flores, C. Genomics and the acute respiratory distress syndrome: Current and future directions. Int. J. Mol. Sci. 2019, 20, 4004. [Google Scholar] [CrossRef]
- Silveyra, P.; Floros, J. Genetic variant associations of human sp-a and sp-d with acute and chronic lung injury. Front. Biosci. (Landmark Ed.) 2012, 17, 407–429. [Google Scholar] [CrossRef]
- Currier, P.F.; Gong, M.N.; Zhai, R.; Pothier, L.J.; Boyce, P.D.; Xu, L.; Yu, C.L.; Thompson, B.T.; Christiani, D.C. Surfactant protein-b polymorphisms and mortality in the acute respiratory distress syndrome. Crit. Care Med. 2008, 36, 2511–2516. [Google Scholar] [CrossRef] [PubMed]
- Quasney, M.W.; Waterer, G.W.; Dahmer, M.K.; Kron, G.K.; Zhang, Q.; Kessler, L.A.; Wunderink, R.G. Association between surfactant protein b + 1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Crit. Care Med. 2004, 32, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.N.; Wei, Z.; Xu, L.L.; Miller, D.P.; Thompson, B.T.; Christiani, D.C. Polymorphism in the surfactant protein-b gene, gender, and the risk of direct pulmonary injury and ards. Chest 2004, 125, 203–211. [Google Scholar] [CrossRef]
- Zhai, R.; Gong, M.N.; Zhou, W.; Thompson, T.B.; Kraft, P.; Su, L.; Christiani, D.C. Genotypes and haplotypes of the vegf gene are associated with higher mortality and lower vegf plasma levels in patients with ards. Thorax 2007, 62, 718–722. [Google Scholar] [CrossRef]
- Gong, M.N.; Zhou, W.; Williams, P.L.; Thompson, B.T.; Pothier, L.; Boyce, P.; Christiani, D.C. -308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur. Respir. J. 2005, 26, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Yang, Y.M.; Fan, H. Diagnostic value of mir-155 for acute lung injury/acute respiratory distress syndrome in patients with sepsis. J. Int. Med. Res. 2020, 48, 300060520943070. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Sun, T.; Li, B.; Tian, J.; Zhang, J.; Chen, X.; Zhong, J.; Yang, X.; Li, Q. Serum mir-146a and mir-150 as potential new biomarkers for hip fracture-induced acute lung injury. Mediat. Inflamm. 2018, 2018, 8101359. [Google Scholar] [CrossRef]
- Ferruelo, A.; Penuelas, O.; Lorente, J.A. Micrornas as biomarkers of acute lung injury. Ann. Transl. Med. 2018, 6, 34. [Google Scholar] [CrossRef]
- Han, Y.; Li, Y.; Jiang, Y. The prognostic value of plasma microrna-155 and microrna-146a level in severe sepsis and sepsis-induced acute lung injury patients. Clin. Lab. 2016, 62, 2355–2360. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.C.; Moore, B.B.; Arnold, K.B.; O’Dwyer, D.N. Proteomics: Clinical and research applications in respiratory diseases. Respirology 2018, 23, 993–1003. [Google Scholar] [CrossRef]
- Ji, X.; Ji, H.L. Metabolic signatures of acute respiratory distress syndrome: COVID versus non-COVID. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024, 326, L596–L603. [Google Scholar] [CrossRef]
- Bellini, V.; Valente, M.; Bertorelli, G.; Pifferi, B.; Craca, M.; Mordonini, M.; Lombardo, G.; Bottani, E.; Del Rio, P.; Bignami, E. Machine learning in perioperative medicine: A systematic review. J. Anesth. Analg. Crit. Care 2022, 2, 2. [Google Scholar] [CrossRef]
- Soussi, S.; Collins, G.S.; Juni, P.; Mebazaa, A.; Gayat, E.; Le Manach, Y. Evaluation of biomarkers in critical care and perioperative medicine: A clinician’s overview of traditional statistical methods and machine learning algorithms. Anesthesiology 2021, 134, 15–25. [Google Scholar] [CrossRef]
- Qiu, X.; Hu, S.; Dong, S.; Sun, H. Construction of an automated machine learning-based predictive model for postoperative pulmonary complications risk in non-small cell lung cancer patients undergoing thoracoscopic surgery. PLoS ONE 2025, 20, e0333413. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, W.; Hou, S.; Xu, H.; Xia, J.; Lin, L.; Fu, H.; You, M.; Wang, J.; Xie, Z.; et al. Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery. Chin. Med. J. 2025, 138, 2170–2179. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wen, D.; Ji, M.H.; Tong, J.; Yang, J.J.; Zhou, C.M. Developing machine learning algorithms to predict pulmonary complications after emergency gastrointestinal surgery. Front. Med. 2021, 8, 655686. [Google Scholar] [CrossRef]
- Wang, S.; Lin, Y.; Shi, H.; Liang, P.; Luo, Z.; Kong, J.; Huang, J.; Cheng, M.; Zhang, B.; Wang, Y.; et al. Prediction model for postoperative pulmonary complications after thoracoscopic surgery with machine learning algorithms and shapley additive explanations. J. Thorac. Dis. 2025, 17, 3603–3618. [Google Scholar] [CrossRef]
- Xie, M.; Chen, Y.T.; Zhang, H.; Zhang, H.T.; Pan, K.; Chen, X.F.; Xie, X.L. Diagnostic value of procalcitonin and interleukin-6 on early postoperative pneumonia after adult cardiac surgery: A prospective observational study. Heart Surg. Forum 2022, 25, E020–E029. [Google Scholar] [CrossRef]
- Mendez Hernandez, R.; Ramasco Rueda, F. Biomarkers as prognostic predictors and therapeutic guide in critically ill patients: Clinical evidence. J. Pers. Med. 2023, 13, 333. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.P.; Redfern, O.C.; O’Brien, B.; Watkinson, P.J. Perioperative risk scores: Prediction, pitfalls, and progress. Curr. Opin. Anaesthesiol. 2025, 38, 30–36. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, C.; Lin, X.; Yang, Y. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. View 2021, 2, 20210003. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.K.; Williams, K.; Wang, L.; Capio, E.; Briman, M. Development of an il-6 point-of-care assay: Utility for real-time monitoring and management of cytokine release syndrome and sepsis. Bioanalysis 2019, 11, 1777–1785. [Google Scholar] [CrossRef]
- Bhalerao, K.S.; De Silva, P.I.T.; Hiniduma, K.; Grunbaum, A.; Rozza, N.; Kremer, R.; Rusling, J.F. Microfluidic immunoarray for point-of-care detection of cytokines in COVID-19 patients. ACS Omega 2024, 9, 29320–29330. [Google Scholar] [CrossRef]
- Bonavia, A.S.; Samuelsen, A.; Chroneos, Z.C.; Halstead, E.S. Comparison of rapid cytokine immunoassays for functional immune phenotyping. Front. Immunol. 2022, 13, 940030. [Google Scholar] [CrossRef] [PubMed]
- Jamaludeen, N.; Beyer, C.; Billing, U.; Vogel, K.; Brunner-Weinzierl, M.; Spiliopoulou, M. Potential of point-of-care and at-home assessment of immune status via rapid cytokine detection and questionnaire-based anamnesis. Sensors 2021, 21, 4960. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, H.; Gao, Y.; Sun, Y. Multi-omics strategies for biomarker discovery and application in personalized oncology. Mol. Biomed. 2025, 6, 115. [Google Scholar] [CrossRef]
- Chen, P.H.; Yong, S.B.; Yii, C.Y.; Li, C.J. Disease biomarkers in the precision medicine era: A comprehensive multi-omics analysis. Biomedicines 2025, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, J.R.; Elemento, O. Multi-omic molecular profiling and network biology for precision anaesthesiology: A narrative review. Br. J. Anaesth. 2023, 131, 26–36. [Google Scholar] [CrossRef]
- Nirvik, P.; Kertai, M.D. Future of perioperative precision medicine: Integration of molecular science, dynamic health care informatics, and implementation of predictive pathways in real time. Anesth. Analg. 2022, 134, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.; Kertai, M.D. Perioperative precision medicine: Where are we in 2020? Curr. Opin. Anaesthesiol. 2020, 33, 463–474. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
| Biomarker | Domain | Perioperative Kinetics | Clinical Utility | Key Limitations | Availability |
|---|---|---|---|---|---|
| CRP | Acute-phase inflammation | ↑; peak 2–3 days after surgery | Trend; complication flag | Non-specific; any inflammation | Routine |
| PCT | Bacterial infection signal | Early ↑; faster ↓ than CRP | Bacterial infection support | Surgical stress ↑; non-specific | Routine (many) |
| IL-6 | Early cytokine/stress | Hours ↑ (early) | Early risk signal | Timing/assay variability | Limited |
| IL-8 | Neutrophil recruitment | Early ↑ | Lung-injury phenotype | Non-specific; limited access | Limited |
| IL-10 | Anti-inflammatory response | Early/variable ↑ | Immune-dysregulation signal | Context-dependent | Limited |
| TNF-α | Pro-inflammatory mediator | Transient early ↑ | Hyperinflammation context | Short half-life; non-specific | Limited |
| WBC | Global leukocyte response | Early shifts common | Screening adjunct | Steroids/stress dilute signal | Routine |
| NLR | Innate ↑/adaptive ↓ balance | Often ↑ pre/post-op | Risk flag; surveillance | Non-specific; steroids/stress | Routine (derived) |
| Lymphocyte count | Adaptive suppression | Post-op ↓; may persist | Infection susceptibility | Many confounders | Routine |
| MDW | Monocyte activation | Early ↑ (infection) | Early infection adjunct | Platform-dependent | Some labs |
| Immature granulocytes | Stress myelopoiesis | Early ↑ | Infection adjunct | Non-specific | Many analyzers |
| mHLA-DR | Immune competence | ↓ after major surgery | Immune suppression stratification | Flow/handling sensitive | Specialized |
| Albumin | Reserve + leak/inflammation | Often ↓ post-op | Baseline vulnerability | Fluid/hemodilution | Routine |
| Prealbumin | Nutrition/inflammation | More dynamic than albumin | Nutritional risk adjunct | Inflammation/renal factors | Routine (often) |
| Lactate | Global physiologic stress | Early ↑; clearance matters | Severity/perfusion marker | Non-specific; adrenergic meds | Routine |
| D-dimer | Thrombo-inflammation | Common post-op ↑ | PE/DVT context aid | Very non-specific post-op | Routine |
| Fibrinogen | Acute-phase + coagulation | ↑ with inflammation | Thrombo-inflammatory context | Acute-phase reactant | Routine |
| Platelet indices (MPV) | Platelet activation | Variable | Adjunct risk signal | Preanalytical variability | Routine (derived) |
| sICAM-1/sVCAM-1 | Endothelial activation | ↑ with barrier stress | Endothelial phenotype | Limited access; non-specific | Specialized |
| vWF | Endothelial injury | ↑ with stress/injury | Endothelial injury context | Systemic confounding | Variable |
| Ang-2 (±ratio) | Permeability/Tie2 | ↑ with severe stress | Vascular leak risk | Assay/threshold gaps | Specialized |
| MDA | Oxidative stress | ↑ with oxidative injury | Mechanistic phenotype | Not standardized; non-specific | Research/limited |
| F2-isoprostanes | Oxidative lipid injury | ↑ in oxidative states | Higher-specificity oxidative stress signal | Specialized workflow | Research |
| NO metabolites | Redox/NO signaling | Context-dependent | Mechanistic signal | Measurement variability | Research |
| mtDNA | DAMP/mitochondrial injury | Emerging | Risk phenotyping | Not standardized | Research |
| miRNA/proteomic/metabolomic panels | Multi-domain signatures | Emerging | Future prediction panels | Validation/cost barriers | Research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gigliotti, S.; Guerriero, G.; Mazza, G.; Garofalo, E.; Pavia, G.; Amaddeo, A.; Rizzuto, A.; Marascio, N.; Quirino, A.; Longhini, F.; et al. Perioperative Blood Biomarkers of Infectious and Non-Infectious Postoperative Pulmonary Complications: A Narrative Review. J. Clin. Med. 2026, 15, 699. https://doi.org/10.3390/jcm15020699
Gigliotti S, Guerriero G, Mazza G, Garofalo E, Pavia G, Amaddeo A, Rizzuto A, Marascio N, Quirino A, Longhini F, et al. Perioperative Blood Biomarkers of Infectious and Non-Infectious Postoperative Pulmonary Complications: A Narrative Review. Journal of Clinical Medicine. 2026; 15(2):699. https://doi.org/10.3390/jcm15020699
Chicago/Turabian StyleGigliotti, Simona, Giuseppe Guerriero, Giuseppe Mazza, Eugenio Garofalo, Grazia Pavia, Angela Amaddeo, Antonia Rizzuto, Nadia Marascio, Angela Quirino, Federico Longhini, and et al. 2026. "Perioperative Blood Biomarkers of Infectious and Non-Infectious Postoperative Pulmonary Complications: A Narrative Review" Journal of Clinical Medicine 15, no. 2: 699. https://doi.org/10.3390/jcm15020699
APA StyleGigliotti, S., Guerriero, G., Mazza, G., Garofalo, E., Pavia, G., Amaddeo, A., Rizzuto, A., Marascio, N., Quirino, A., Longhini, F., & Matera, G. (2026). Perioperative Blood Biomarkers of Infectious and Non-Infectious Postoperative Pulmonary Complications: A Narrative Review. Journal of Clinical Medicine, 15(2), 699. https://doi.org/10.3390/jcm15020699

